Fault Location

38
PRESENTED BY ERIK SCHELLENBERG IDAHO POWER Fault Locating

TAGS:

description

Distance Relay Design

Transcript of Fault Location

  • PRESENTED BY

    ER IK SCHELLENBERGIDAHO POWER

    FaultLocating

  • Topics

    ImpedanceBased ReactanceMethod TakagiMethod ModificationstoTakagiMethod TWS&DoubleEndedNegativeSequence

  • OneLine

    EquivalentTheveninSources Bus Line RelaywithCT&CCVT

  • RadialLine

    Applyafaultmdistancedownaradialline

    misapercentage oftheline.Forexampleifthefaultis25%fromBusSthen(1m)yields75%,foratotallineimpedance,ZL ,of100%

  • V/I=mZL (sometimes)

    UsingohmslawthefaultlocatoratScancalculatetheimpedance,(mZL),thatthevoltageVisbeingdroppedacrossforthreephaseboltedfaults.

  • V/ICalculation

    TheequivalentcircuitwithrespecttoBusSclearlyshowsthatthemeasuredvoltageVisbeingdroppedacrosstheportionofthetransmissionlinetothefaultpoint.

    (m)ZL =V/I(Ohms)

    (V/I)ZL

    m= (%)

    FaultLocation=m(LineLength)(miles)

  • V/I&FaultResistance

    Assumethefaulthassomeresistance,Randthetransmissionlineispurelyinductive.

  • SimplifiedV/IwithsomeR

    LetIs =100A,XL =10,&RF =5 VLINE =100(1090)=10090V VF =100 (50)=500V Vs =VLINE +VF =11263V Distance=VS/IS=1163 mZLDistance

    Is

    Vs =VLINE+VF

    VF

    VLINE

    XL

    RF

    Distance

  • V/ILimitations

    Usingohmslawdirectlyasfaultlocatorisimpracticalforavarietyofreasons.Someoftheseinclude:

    Onlyworksonthreephasefaults Onlyworksonradiallines Onlyworksonboltedfaults ImpactedbyLoad

  • SimpleReactanceMethod

    Transmissionslineimpedance,Z,istypicallydominatedbythereactivecomponent,X.

    Faultimpedanceistypicallydominatedbytheresistivecomponent,R.

  • FaultResistance&ReactanceMethod

    Letslookattheradialexamplewithfaultresistanceagain.

    Theforwardvoltagedropmeasuredbythefaultlocatoris Vs =mZL(Is)+Is(RF)

  • MinimizetheEffectofRFusingReactance

    DividebythemeasuredcurrentIs

    Retainonlytheimaginarycomponentofeachquantity

  • ReactanceMethodwithRemoteSource

    Nolongeristhesystemradial

    ThecurrentflowingthroughRF isnowthesumofthelocalsource,Is,andtheremotesource,IR

  • SameReactanceTechnique:NowwithIR

    Writetheforwardvoltagedropequation,

    DividebyIs tocalculateameasuredImpedance,

    Taketheimaginarycomponentofeachtermtomitigatefaultresistance,

  • HomogenousSystem&Reactance

    IfyouhaveahomogenoussystemthenbothIS andIR willhavethesameangleandtheimaginarypartof(If/Is)Rf iszero.

    Is

    IRIf=IS+IR

  • NonHomogenousSystem&Reactance

    IS andIR willnothavethesameangleandtheimaginarypartof(If/Is)Rf willshowupinthefaultlocationcalculationasanerrorterm.

    lS

    lR

    lf

  • SimpleReactanceSummary

    ThesimplereactancemethodwasanimprovementoverthestraightOhmsLawcalculationbutitstillhassomedrawbacks:

    ImpactedbyLoad Nonhomogenoussystemsintroduceerrorinfaultresistanceterm

  • TakagiMethod

    In1979ToshioTakagiandYukinari Yamakoshi filedforaU.S.Patentforanewsingleendedfaultlocatingmethod.

    In1982Takagi,etal.delivertheirpaper.

    T.Takagi,Y.Yamakoshi,M.Yamaura,R.Kondow,T.Matsushima,DevelopmentofaNewTypeFaultLocatorUsingtheOneTerminalVoltageandCurrentData,IEEETransactionsonPowerApparatusandSystems,Vol.PAS101,No.8,August1982.

  • Superposition

    ThekeytotheTakagimethodistheideaofsuperposition

    +

    Load PureFaultNetwork

    CompositeFaultNetwork

  • TakagiLocal&RemoteCurrent

    CompositeFaultNetwork PureFaultNetwork

    Voltageequationforthelefthandside Voltageequationfortherighthandside

    BothequationsequalVF.SettheLeftsideequaltotherightside

  • NoFaultCurrentinLoadCircuit

    If =If becausethereisnofaultbranchcurrentinthepureloadstate

    +

    Load PureFaultNetwork

    CompositeFaultNetwork

  • TakagiFaultCurrent

    FromthepreviousslidewecalculatedIR intermsofIS

    PlugintoIF equation

  • ForwardVoltageDrop&Takagi

    Fromthepreviousfaultlocationalgorithmswedevelopedtheforwardvoltagedropequationwithrespecttofaultlocator:

    Pluginournewequationforthefaultbranchcurrent,If:+

    =

  • PauseforError

    willbezeroifthenumeratoranddenominatorhavethesamephaseangle,(homogeneoussystem)

    Ifthereisloadflowonthesystem willbenonzerobutifthemagnitudeoffaultdutyismuchgreaterthanload,theangle willapproachzero.

  • TakagiDistance

    Ifwe:MultiplybythecomplexconjugateofIs, Taketheimaginarypartoftheequationtoeliminatefaultresistance, Assumethesystemistotallyhomogeneous,andfinally Solveform

    Wewillgetthefollowingequation:

  • Zero&NegativeSequenceTakagi

    TheTakagicanusethezerosequencetermforgroundfaults,eliminatingtheneedforprefaultdata

    Thenegativesequencecanalsobeused

  • MutualCoupling

    Thereismagneticcouplingbetweenphasesonacurrentcarryingtransmissionline,Zm.

  • MutualCoupling

    Applyaboltedfaultsomelengthmdowntheline.

    Avoltageisinducedineachphasethroughthemutualcoupling.HereZm iswrittenexplicitlyasZab andZac.

  • VoltageEquation

    Theforwardvoltagedropequationforthefaultedphaseis

    Adding&Subtractingthesamequantity0

    Gatheringterms

  • VoltageEquationContd

    RecognizethatIa+Ib+Ic istheresidualorzerosequencecurrent

    Zm isadifficultquantitytohandledirectly.ThroughtheuseofSymmetricalComponenttheoryitcanbeshownthat:

    SolvingforZs intheZL0 equationandpluggingthisintotheZL1 equationyieldsaZm thatisequalto:

  • Va andthemysteriousk

    Va isnowexpressedintermsofpositiveandzerosequencelineparameterswhichcanbeloadedintoarelayassettings

    FactoroutmZL1,(thedistancetothefault)

    Definektomaketheequationprettier

  • ModifiedTakagi

    OnceagaintaketheimaginarycomponentofbothsidesandsolveformZL1

  • TwoTerminalMethods

    Moreaccuratethansingleendedmethods

    Minimizes/Eliminateseffectsof FaultResistance Loading LineChargingCurrent

    Moreoverhead.Datamustbegatheredorsharedfrommultiplelocations

  • TravelingWave

    Afaultwillcauseatransienttopropagatealongthelineasawave

    Thewaveisacompositeoffrequencieswithafastrisingfrontandslowerdecayingtail

    Thewavestravelatnearthespeedoflightandeventuallydecay

    Bytimetaggingthewavefrontsastheycrossbothterminalsaveryprecisefaultlocationcanbecalculated

  • WavePropagation

    Thewavesleavethedisturbedareatravelingatthevelocityofpropagationwhichisalittlelessthanthespeedoflight

  • NegativeSequenceQuadratic

    In1999Demetrios A.Tziouvaras,JeffRoberts,andGabrielBenmouyal ofSELintroducedanewdoubleendedtechniquethatusesthenegativesequencequantitiesfrombothterminalstofaultlocate.

    D.A.Tziouvaras,J.B.Roberts,G.Benmouyal,NewMultiEndedFaultLocationDesignForTwo orThreeTerminalLines,presentedatCIGREConference,1999,http://www.selinc.com/techpprs/6089.pdf.

  • DoubleEndedNegativeSequence

    ByusingthenegativesequencemethodologyproposedbySELthefollowingsourcesoferroraremitigated:

    Prefault load Zerosequencemutualcoupling Zerosequenceinfeedfromlinetaps FaultResistance

  • References

    T.Takagi,Y.Yamakoshi,M.Yamaura,R.Kondow,andT.Matsushima,DevelopmentofaNewTypeFaultLocatorUsingtheOneTerminalVoltageandCurrentData,IEEETransactionsonPowerApparatusandSystems,Vol.PAS101,No.8,August1982.

    W.A.Elmore,ZeroSequenceMutualEffectsonGroundDistanceRelaysandFaultLocators,Proceedingsofthe19thAnnualWesternProtectiveRelayConference,Spokane,WA,October1992.

    E.O.SchweitzerIII,EvaluationandDevelopmentofTransmissionLineFaultLocatingTechniquesWhichUseSinusoidalSteadyStateInformation,Proceedingsofthe9thAnnualWesternProtectiveRelayConference,Spokane,WA,October1982.

    K.Zimmerman,andD.Costello,ImpedanceBasedFaultLocationExperience,Proceedingsofthe31stWesternProtectiveRelayConference,Spokane,WA,October2004.

    J.Glover,MSarma,andT.Overbye,PowerSystemAnalysisandDesign,GlobalEngineering,2008.

    W.Stevenson,andJ.Grainger,PowerSystemAnalysis,McGrawHillSeriesinElectricalandComputerEngineering,1994

    HewlettPackard,TravelingWaveFaultLocationinPowerTransmissionSystems,ApplicationNote1285