Fatigue i

46
fatigue fatigue L. Vergani L. Vergani

description

Useful

Transcript of Fatigue i

  • fatiguefatigue

    L. VerganiL. Vergani

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    2

    From latin fatigare.

    Components of machines, vehicles and structures are frequently subjected to repeated loads (cyclic loads) and the resulting cyclic stresses can lead to microscopic damage. This damage can accumulate until it develops into a crack that leads the failure of the component, even at stresses well below the ultimate strength of materials. This process of accumulating damage is the FATIGUE.

    Mechanical failure due to:

    55% high cycle fatigue (HCF)

    10% low cycle fatigue (LCF)

    15% fatigue (RCF, CF, creep-fatigue,)

    20% static loading

    10% other kind of failure

    Fatigue of Materials

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    3

    Mechanical failures due to fatigue have been studied for more than 150 years. One early study was in 1828 by Albert in Germany. Fatigue was studied in the mid-1800s by several researchers in response to failures of components as railway axles, shaft, gears.. The fatigue failures are frequent also at present

    Fatigue of materials

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    4

    The damage is characterized by three steps:

    Nucleation of the crack (from the surfaces or internal from existing defects)

    Propagation (short crack, long crack)

    Final failure

    Fatigue damage MECHANISMS

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    5

    The nucleation of a micro-crack is due to the plastic strain and the persistent slip band (PSB).

    Nucleation of a micro-crack

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    6

    In the most strained zones the material fails and micro-cracks nucleate. In the first stage these micro-cracks propagate in the direction of the maximum tangential stress (Stage I). They can be inter-granular or trans-granular.

    Nucleation of a micro-crack

    Da Suresh - Fatigue of Materials

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    7

    During the Stage I the propagation of the micro-cracks is influenced by the microstructure of the material.

    When the dimensions of the micro-crack are increasing the friction between the crack faces is increasing too. The propagation of the cracks continues in a plane perpendicular to the applied load (Stage II), until the sudden failure.

    Propagation of a micro-crack

    Da Suresh - Fatigue of Materials

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    8

    The fatigue propagation zone is fairly flat and marked by the beach marks.

    When the crack has reached a sufficient size a final failure occurs.

    Propagation of a micro-crack

    The final failure can be ductile (involving large deformation) or brittle (involving little deformation) depending on the material.

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    9Description of a cyclic loading

    Variable loading

    off-shore structure

    airplane

    Da Broek - The Practical Use of Fracture Mechanics

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    10

    With the aim to evaluate the effect of the fatigue the cyclic loading could be schematized as:

    Alternating stress

    Mean stress

    Amplitude ratio

    2minmax =a

    2minmax +=med

    max

    min

    =R

    Description of a cyclic loading

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    11Fatigue design

    A D

    B C

    No cracks Large cracks

    Low stress amplutude

    High stress amplutude

    uni-axial loading

    A. HCF (fatigue strength, Haigh diagram, Whler curves).

    B. LCF (Coffin-Manson curves)

    C. Elasto-plastic fracture mechanics (EPFM)

    D. Linear-elastic farcture mechanics (LEFM).

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    12Fatigue design

    AD

    B C

    F

    E

    G

    H

    No cracks Large cracks

    Low stress amplitude

    High stress amplitude

    Uniaxial Stress

    Multiaxial Stress

    Amplitude of the loading cycles

    Complexity applied loadings

    Geometry and dimensions

    Acceptability of the

    damage

    Environment

    Experience

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    13Fatigue characterization of materials

    Whler curves (S-N curves)

    R=costant (very often =-1)

    The diagram of curves S-N is a log-log diagram

    UTS

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    14S-N curves

    We can enter in these curves by considering the life or by considering the stress amplitude

    FA

    UTS

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    15Fatigue test machines

    Rotating bending test machine scheme

    da Davoli, Vergani, Beretta, Guagliano, Baragetti Costruzione di macchine 1 McGraw-Hill

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    16Macchine di prova

    Rotating bending test machines

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    17Fatigue test machines

    Axial loading test machine

    da Davoli, Vergani, Beretta, Guagliano, Baragetti Costruzione di macchine 1McGraw-Hill

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    18

    POLITECNICO DI MILANO

    Fatigue characterization of materials

    The tests to evaluate the fatigue strength of materials are carried out by using standard specimens

    (norma ISO 1143)

    d = 10 mm

    Ra= 0.3m

    Kt = 1

    FAf/Rm= 0.4 - 0.6

    FAa/Rm= 0.3 - 0.45

    FAt/Rm= 0.23 - 0.33

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    19Fatigue characterization of materials

    If multiple fatigue tests are run at one stress level, there is always considerable statistical scatter in the fatigue life. If the statistical scatter in cycles failure is considered a distribution as in figure is obtained.

    If the logarithm of Nf is considered as the variable a symmetrical distribution is obtained: standard Gaussian (normal) (equivalent to lognormal distribution of Nf) statistical use is resonable.

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    20

    Statistical analysis of fatigue data permits the average fatigue curves t.o be established along with additional S-N curves for various probabilities of failure

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    Fatigue characterization of materials

    The experimental data are treated by the statistical approach: STAIR CASE.This approach allows to determine the fatigue strength characterized by the 50% of probability of failure.A large number of specimens to be experimentally tested is required.The number of specimens has to be odd in order to have a different number of failure and survivors.Before starting the tests the maximum number of loading cycles and the value of are chosen.

    21

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    22Fatigue characterization of materials

    5 broken specimens (3 2 and 2 3) 6 run out specimens (2 2, 3 1 and 1 )

    2523 32 +=FA

    Less frequent event

    failure

  • L. Vergani L. Vergani -- approccio Sapproccio S--NN

    23S-N Curves

    POLITECNICO DI MILANO

    The S-N curves can be schematized

    FA

    UTSUTS

    Log

    Logm

    FA3

    7

    1010

    =

    m

    KNma =

    103 107

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    24

    POLITECNICO DI MILANO

    From the specimen to the component

    Surface finish effect

    Dimension effect

    Notch effect

    With the aim to consider these effects the follwing parameters are defined:

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    25

    POLITECNICO DI MILANO

    From the specimen to the component

    Surface finish effect: the coefficient b3 is defined equal to the ratio between the fatigue strength obtained by specimens with different surface finish and the fatigue strength obtained by standard specimens (roughness Ra=0.3 m)

    b3 pattern versus ultimate strength of materials(1- lucidato; 2-rettificato fine; 3-rettificato; 4,5-tornito)

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    26

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    27

    POLITECNICO DI MILANO

    From the specimen to the component

    Dimensional effect: the coefficient b2 is defined equal to the ratio between the fatigue strength obtained by specimens with generic dimensions and the fatiguestrength obtained by standard specimens (d=10mm).

    b2 pattern versus the dimensions

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    28

    POLITECNICO DI MILANO

    From the specimen to the component

    Notch effect: the fatigue notch coefficient Kf is defined equal to the ratio between the fatigue strength obtained by standard specimens and the fatigue strength obtained by notched specimens

    Kf depend on Kt by the notch sensivity q.

    11

    =

    t

    f

    KK

    q Bending and axial fatigue

    Torsion fatigue

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    29Notch sensitivity

    Peterson rule: Neuber rule: q

    r

    =+

    1

    1

    R [MPa]m

    0.2

    0.4

    0.6

    0.8

    800 1200 1600

    raq

    +=

    1

    1

    a=0.0634 (tempered and quenched steel)

    a=0.254 (annealed steel)

    a=0.634 (aluminium alloys)

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    30

    POLITECNICO DI MILANO

    From specimen to the component

    Kf=1+q(Kt-1)

    r M Mf1 f2

    A B

    rA> rB

    At the same max :

    From experimental tests: KfA=2,1 e KfB=3,6 If the notch radius is larger (KtA=2,5) the value of Kf decreases of 16%, on the contrary if the notch radius is lower (KtB=5), the value decreases of 28%.

    KtA=2,5 KtB=5

    2 tBfA fB fBtA

    KM M M

    K= =

    KfB> KfA The gradient effect is secondary

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    31

    POLITECNICO DI MILANO

    From the specimen to the component

    The fatigue limit of the component becames:

    f

    faFAfaFA K

    bb 32),(),('

    =

    The S-N curve of the component

    a

    FA

    FA

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    32

    POLITECNICO DI MILANO

    Mean stress effect

    Haigh diagram:

    FA

    Rm

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    33

    POLITECNICO DI MILANO

    Mean stress effect:

    Semplified diagram:

    FA

    Rm

    sn

    sn snRc

    The yielding limit is considered

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    34Mean stress effect:

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    35Compression mean stress effect

    The surface tretament are applied to improve the fatigue behavior of mechanical componentThermo-chemical treatment (carburizing and nitriding) Mechanical treatment (shot peening, cold rolling)

    +-

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    36Compressione mean stress effect

    a

    FAf

    medRc

    0

    PPlim

    a

    medres

    P'lim

    P'

    Rm

    A

    OPOPlim

    1 =

    ''lim

    2 APAP

    =

    Without residual stresses:

    With residual stresses:

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    37Haigh diagram: torsion

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    38

    POLITECNICO DI MILANO

    Finite life estimationIf the service required life is lower than the life corresponding to the fatigue limit (N=106107):

    A semplified Whler diagram is constructed

    (F) value is determined

    Log N

    max

    FAf

    1 2 3 4 5 6 7

    Rm

    F

    FAf

    F

    =105

    F> FAf

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    39

    The shaft is loaded by a varaible bending momentN=105

    b2 b3 Kf and matreial characteristics are known

    r

    Mf

    M

    fM

    D d

    =

    FAf FAfff

    b bK2 3

    M f = Mo sint

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    40Finite life

    Whler diagram

    Log N

    max

    FAf

    1 2 3 4 5 6 7

    Rm

    F

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    41example

    dL1L2

    F0 F0

    Steel: 39NiCrMo3 (Rm=900MPa, Rsn=700MPa). L1=40mm L2=60mm d=15mm B=5mm F0=10.000N

    F= F0(1+sint)

    f>107

    Failure?

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    42Example

    med=-50MPaa=60MPa

    b2, b3, Kf, FA

    t5060

    stress:

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    43Example

    a>0 m

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    44example

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    45example

    a

    FAf

    medRc O

    Plim

    Rm

    rot

  • L. Vergani L. Vergani approccio Sapproccio S--NN

    46

    POLITECNICO DI MILANO

    Example

    Lomologazione del manubrio illustrato in figura richiede che esso superi senza rompersi una prova di fatica dalla durata di 5x105 cicli con una carico applicato F1, alternato intorno al valor nullo, di 1 kN.

    Si stimi se, assegnati il materiale e le dimensioni geometriche, il manubrio superer la prova.

    DatiMat.: 39NiCrMo3 (Rm=900 MPa, Rp0.2=650 MPa)

    L=400 mm

    a= 200 mm

    Sez. A-A (circolare cava)

    De= 25 mm

    Di=20 mm

    Kt=1.7

    F1

    F1F1

    F1 A-AL

    a