Fast arithmetical algorithms in M bius number systems

24
Fast arithmetical algorithms in obius number systems Petr K˚ urka Center for Theoretical Study Academy of Sciences and Charles University in Prague Valparaiso, November 2011

Transcript of Fast arithmetical algorithms in M bius number systems

Page 1: Fast arithmetical algorithms in M bius number systems

Fast arithmetical algorithms inMobius number systems

Petr KurkaCenter for Theoretical Study

Academy of Sciences and Charles University in Prague

Valparaiso, November 2011

Page 2: Fast arithmetical algorithms in M bius number systems

Iterative systems

X compact metric space, A finite alphabet(Fa : X → X )a∈A continuous.(Fu : X → X )u∈A∗, Fuv = Fu ◦ Fv , Fλ = Id

Theorem(Barnsley) If (Fa : X → X )a∈A arecontractions, then there exists a unique attractorY ⊆ X with Y =

⋃a∈A Fa(Y ), and a continuous

surjective symbolic mapping Φ : AN → Y

{Φ(u)} =⋂

n>0

Fu[0,n)(X ), u ∈ AN

Page 3: Fast arithmetical algorithms in M bius number systems

Binary system A = {0, 1}, Φ2 : AN → [0, 1]

F0(x) =x

2, F1(x) =

x + 1

2

Φ2(u) =∑

i≥0

ui · 2−i−1, u ∈ AN

0 1

[0][1]

Expansion graph: xa→ F−1

a (x) if x ∈ Wa = Fa[0, 1]

Page 4: Fast arithmetical algorithms in M bius number systems

Binary signed system is redundant

A = {1, 0, 1}, Φ3 : AN → [−1, 1]

F1(x) =x − 1

2, F0(x) =

x

2, F1(x) =

x + 1

2

Φ3(u) =∑

i≥0

ui · 2−i−1, u ∈ AN

-1 1

[1] - [0] [1]

Page 5: Fast arithmetical algorithms in M bius number systems

Real orientation-preserving Mobius transformations

Ma,b,c ,d(x) =ax + b

cx + d, ad − bc > 0

act on R = R ∪ {∞}and on U = {z ∈ C : ℑ(z) > 0}

Stereographic projection d(z) = iz+1z+i

d : R → ∂D = {z ∈ C : |z | = 1} unit circled : U → D = {z ∈ C : |z | < 1} unit disc

Page 6: Fast arithmetical algorithms in M bius number systems

Disc Mobius transformations M = d ◦M ◦ d−1

F0(z) =3z−iiz+3

F0(x) = x/2hyperbolic

F1(z) =(2+i)z+1z+2−i

F1(x) = x + 1parabolic

F2(z) =(7+2i)z+i

−iz+(7−2i)

F2(x) =4x+13−x

elliptic

1/0

-4

-2

-1

-1/2

-1/4

0

1/4

1/2

1

2

4

1/0

-3

-2

-1

0

1

2

3

1/0

-1

0

1

Mean value E(Mℓ) =

∂D

z d(Mℓ) = M(0)

Page 7: Fast arithmetical algorithms in M bius number systems

Circle metric and derivation

the length of arc between d(x) and d(y):

(x , y) = 2 arcsin|x − y |√

(x2 + 1)(y 2 + 1)

circle derivation of M(x) = (ax + b)/(cx + d):

M•(x) = limy→x

(M(x),M(y))

(x , y)

=(ad − bc)(x2 + 1)

(ax + b)2 + (cx + d)2

Page 8: Fast arithmetical algorithms in M bius number systems

Contracting and expanding intervals

Uu = {x ∈ R : F •u (x) < 1}, Fu(Uu) = Vu

Vu = {x ∈ R : (F−1u )•(x) > 1}

F(x)=x/2UV

F(x)=x+1U

V−√2

−√22

√2

√22 −1

212

Page 9: Fast arithmetical algorithms in M bius number systems

Mobius number system(MNS) (F ,W)

(Fa : R → R)a∈A Mobius transformationsWa ⊆ Va expansion intervals

⋃a∈AWa = R

Expansion graph: xa→ F−1

a (x) if x ∈ Wa

xu0→ F−1

u0(x)

u1→ F−1u0u1

(x)u2→ · · ·

x ∈ Wu0, F−1u0

(x) ∈ Wu1, F−1u0u1

(x) ∈ Wu2

Wu := Wu0 ∩ Fu0(Wu1) ∩ · · · ∩ Fu[0,n)(Wun)

x ∈ Wu iff u is the label of a path with source x :

Page 10: Fast arithmetical algorithms in M bius number systems

Expansion subshift:

SW := {u ∈ AN : ∀n,Wu[0,n) 6= ∅}

Symbolic extension:

Φ(u) = limn→∞

Fu[0,n)(i) ∈ R, u ∈ SW

Φ : SW → R is continuous and surjective.

Page 11: Fast arithmetical algorithms in M bius number systems

Continued fractions a0 − 1

a1 −1

a2 − · · ·= F a0

1 F0Fa11 F0 · · ·

F1(x) = x − 1, W1 = (∞,−1)

F0(x) = −1/x , W0 = (−1, 1)

F1(x) = x + 1, W1 = (1,∞)

SW is a SFT.

forbidden words:

00, 11, 11, 101, 101

xa→ F−1

a (x) if x ∈ Wa

-2 -1 0 1 2 3

11

0

1-

-1/1

-1/2-1/2

-1/3-1/3

0/1

1/2

1/1

1/31/2

0/1

1/3

3/2

2/1

1/1

3/2

2/1

3/1

3/14/1

4/11/0

-2/1

-3/2

-3/2

-1/1

-3/1

-2/1

-4/1

-3/1

1/0

-4/1

0

1 1-

01 01 -

10

11

10-

11--

010

011

010 -

011 --

101

-

110

111

101

-

110--

111 ---

Page 12: Fast arithmetical algorithms in M bius number systems

Binary signed system, A = {1, 1, 2}

F1(x) = (x − 1)/2

F1(x) = (x + 1)/2

F2(x) = 2x

W1 = (−1, 0)1→ (−1, 1)

W1 = (0, 1)1→ (−1, 1)

W2 = (1,−1)2→ (12 ,−1

2)

SW is a SFT.

forbidden words:

12, 12, 211, 211

SW = {2nu : u ∈ {1, 1}N}Φ(2nu) =

∑∞i=0 ui · 2n−i

7/8

1/1

3/4

7/8

5/8

3/4

1/2

5/83/8

1/21/4

3/8

1/8

1/40/1

1/8

3/2

2/1

1/1

3/2

2/1

4/1

4/18/1

8/1

-8/1

-8/1

-4/1

-4/1

-2/1

-3/2

-1/1

-2/1

-3/2

-1/8

0/1

-1/4 -1/8

-3/8 -1/4

-1/2

-3/8

-5/8

-1/2

-3/4

-5/8

-7/8

-3/4

-1/1

-7/8

1

2

1- 11

11

-

21

22

21 -

11 -

11 --

111

111 -

111 -

111

--

211

221

222

221 -

211 --

111

-

111- -

111 --

111 ---

Page 13: Fast arithmetical algorithms in M bius number systems

Fractional bilinear functions

P(x , y) =axy + bx + cy + d

exy + fx + gy + h, M(x) =

ax + b

cx + d.

Mx =

a 0 b 00 a 0 b

c 0 d 00 c 0 d

, My =

a b 0 0c d 0 00 0 a b

0 0 c d

P(Mx , y) = PMx(x , y), P(x ,My) = PMy(x , y),MP(x , y) are fractional bilinear functions.

Page 14: Fast arithmetical algorithms in M bius number systems

Bilinear graph

vertices: (P , u, v), u, v ∈ SW .

(P , u, v)a→ (F−1

a P , u, v) if P(Wu0,Wv0) ⊆ Wa

(P , u, v)λ→ (PF x

u0, σ(u), v)

(P , u, v)λ→ (PF y

v0, u, σ(v))

Proposition If u, v ∈ SW and w ∈ AN is a label of apath with source (P , u, v), then w ∈ SW andΦ(w) = P(Φ(u),Φ(v)).

Page 15: Fast arithmetical algorithms in M bius number systems

Linear graph

vertices: (M , u) ∈ M1 × SW ,

emission: (M , u)a→ (F−1

a M , u) if M(Wu0) ⊆ Wa

absorption: (M , u)λ→ (MFu0, σ(u))

Proposition There exists a path with source (M , u)whose label w = f (u) ∈ SW and Φ(w) = M(Φ(u)).

If M remain bounded, then the algorithm has lineartime complexity.

Page 16: Fast arithmetical algorithms in M bius number systems

Linear graph

vertices: (M , u) ∈ M1 × SW ,

emission: (M , u)a→ (F−1

a M , u) if M(Wu0) ⊆ Wa

absorption: (M , u)λ→ (MFu0, σ(u))

Proposition There exists a path with source (M , u)whose label w = f (u) ∈ SW and Φ(w) = M(Φ(u)).

If M remain bounded, then the algorithm has lineartime complexity.

Page 17: Fast arithmetical algorithms in M bius number systems

Bimodular group: det(M) = 2p

0_1

1_2

1_3

1_11_1

3_1

2_1

-2__1

-3__1

-1__1-1__1

-1__3

-1__2

0_1

1_0

-1__0

1

0

10

0

101

0

1012

0

1

1

11

1

110

1

1102

1

2

2

20

2

201

2

2011

2

2

3

21

3

210

3

2101

3 2

4 21 -

4 210

-

4 2101

-

4

2

5

20

5

201

-

5

2011

-

5

1

6

11 -

6

110

-

6

1102

-

6

1

7

10

7

101

-

7

1012

-

7

1

2

3

det(M) = 2, ||M || = 6, tr(M) = 3

a 0 1 2 3

Fax

x+2x+12

2xx+1 2x + 1

Wa = Va (−13 , 1) (0, 2) (12 ,∞) (1,−3)

Page 18: Fast arithmetical algorithms in M bius number systems

Redundant bimodular system Wa = V(Fa)

1/0

-7/1

-5/1

-3/1

-2/1

-3/2

-4/3

-1/1

-3/4-2/3

-1/2

-1/3 -1/5

-1/7

0/1

1/7

1/5

1/3

1/2

2/3

3/4

1/1

4/33/2

2/1

3/15/1

7/1

0

12

345

6

7

00 01

02

03

04

06

07

10

1112

13

15

1617

20

21

22

23

2425

2630

31

32

3334

35

37

40

42

43

4445

46

47

51

5253

54

55

56

57

60

61

62

64

65

66

67

70

71

73

74

75

76 77

Top five algorithm:Keeps five matrices with the smallest norm.

Page 19: Fast arithmetical algorithms in M bius number systems

Ergodic theory of singular transformations

M(x) = ax+bcx+d

, ad − bc = 0

M = {(x , y) ∈ R2: (ax0 + bx1)y1 = (cx0 + dx1)y0}

= (R× {sM}) ∪ ({um} × R)

sM = M(i) ∈ {ac, bd} ∩ R: stable point

uM = M−1(i) ∈ {−ba,−d

c} ∩ R: unstable point

If M is singular, then sMF = sM , uFM = uM .Emission acts on columns, absorption acts on rowsof singular matrices.

Page 20: Fast arithmetical algorithms in M bius number systems

Growth of norm ||x || =√

x20 + x21

M•(x0x1) =

(ad − bc)(x20 + x21 )

(ax0 + bx1)2 + (cx0 + dx1)2

=det(M) · ||x ||2||M(x))||2

||M(x)||||x || =

√det(M)

M•(x)

Page 21: Fast arithmetical algorithms in M bius number systems

Invariant emission measure

Partition of unity wa : R → [0, 1], a ∈ A

supp(wa) ⊆ Wa,∑

a∈Awa(x) = 1

Emission process xwa→ F−1

a (x) has a uniqueLebesgue-continuous invariant measure µ.

en =∑

u∈Ln(SW)

1

2

∫lndet(Fu)

(F−1u )•

en+m ≤ en + em: emission quotients

Page 22: Fast arithmetical algorithms in M bius number systems

Invariant absorption measure

Pa =

∫wa dµ, Pab =

∫wa · wb ◦ F−1

a dµ

SW is a SFT of order 2: Rab = Pab/Pa.

Absorption process (x , a)Rab−→ (F t

b(x), b) in R× A

has a unique invariant measure ν(U , a) = Paνa(U)

an =∑

au∈Ln(SW)

1

2Pau

∫lndet(Fu)

(F tu)

• dνa

an+m ≤ an + am: absorption quotients

Page 23: Fast arithmetical algorithms in M bius number systems

Transaction quotient

E = limn→∞

exp(en/n) : Emission quotient

A = limn→∞

exp(an/n) : Absorption quotient

T = E · A : Transaction quotient

T >√r : positional r -ary system (Heckmann).

T < 1.1: redundant bimodular system.

Page 24: Fast arithmetical algorithms in M bius number systems

Conjecture There exists a multiplication algorithmwith average linear time complexity.