farmakogenetika

197
Farmakogene*ka Prof.dr. Amina Kozaric 24.10.2014 PMF 1

description

farmakogenetika predavanje

Transcript of farmakogenetika

Farmakogene*ka  

Prof.dr.  Amina  Kozaric  24.10.2014  

PMF  

1

Defini*ons  

•  Pharmacogenomics:  Analysing  en*re  genomes,  across  groups  of  individuals,  to  iden*fy  the  gene*c  factors  influencing  responses  to  a  drug.  

•  Pharmacogene-cs:  Studying  an  individual's  gene*c  make  up  in  order  to  predict  responses  to  a  drug  and  guide  prescrip*on.  

2

Objec*ves  of  Pharmacogene*cs  

 1.  Iden*fy  varia*on  in  response  2.  Elucidate  molecular  mechanisms    3.    Evaluate  clinical  significance  4.    Develop  screening  tests  5.    Individualize  drug  therapy    

3

Personalized Medicine!

Courtesy of Felix W. Frueh US FDA

Personalized Medicine!•  Medicine is personal:!

–  We are all different.!–  Some of our differences translate into how we react to drugs

as individuals.!–  This is why personalized medicine is important to

everyone.!•  Why does someone need twice the standard dose to

be effective?!•  Why does this drug work for you but not me?!•  Why do I have side-effects and you don’t?!•  Why do some people get cancer and others don’t?!•  Why is anecdotal information irrelevant to your own

health and treatment?!

Variability of Disease!Variability of Disease!

Courtesy Felix W. Frueh

The Goal of Personalized Medicine!

•  The  Right  Dose  of  •  The  Right  Drug  for  •  The  Right  Indica*on  for  •  The  Right  Pa*ent  at  •  The  Right  Time.  

What is DNA?

April  1953  Drs.  James  Watson  and  

Francis  Crick  determined  the  structure  of  DNA    (double  helix)  

April  2003    Human  Genome  Project  

determined  the  en-re  DNA  sequence  of  a  human    

(3  billion  le/ers)  

 

April  1953  Drs.  James  Watson  and  

Francis  Crick  determined  the  structure  of  DNA    (double  helix)  

What  is  Pharmacogenomics?  

R  X  

Pharma = drug or medicine Genomics = the study of genes

R  X  

Pharmacogenomics?  

Personalized  medicine  tailored  to  your  genes  

Pharma = drug or medicine Genomics = the study of genes

R  X  

What  is  Pharmacogenomics?  

Case  Study  –  Breast  Cancer  Pa-ents  

Case  Study  –  Breast  Cancer  Pa-ents  

Tumoricide  

16  

Case  Study  –  Breast  Cancer  Pa-ents  

17  

Case  Study  –  Breast  Cancer  Pa-ents  

30%  

18  

Helped  No  Effect/Hurt  

Tumoricide  

Helped  No  Effect/Hurt  

Tumoricide  

Why?  

Your  DNA  

How  do  scien-sts  make  personalized  medicine?  

You   Your  cells  

Your  DNA  

Picture  credit:  adapted  from  Riken  Research:  h[p://www.rikenresearch.riken.jp/eng/frontline/5514  

How  do  scien-sts  make  personalized  medicine?  

It’s  all  about  what  makes    YOUR  gene-c  code  UNIQUE  

Gene*c  Code:  DNA  DeoxyriboNucleic  Acid  (DNA)  contains  all  the  informa-on  

necessary  to  make  a  complete  organism  

DNA is composed of a combination of 4 nucleotides

Gene*c  Code:  DNA  DeoxyriboNucleic  Acid  (DNA)  contains  all  the  informa-on  

necessary  to  make  a  complete  organism  

DNA is composed of a combination of 4 nucleotides

A  

Adenine  

Gene*c  Code:  DNA  DeoxyriboNucleic  Acid  (DNA)  contains  all  the  informa-on  

necessary  to  make  a  complete  organism  

DNA is composed of a combination of 4 nucleotides

A   T  

Adenine   Thymine  

Gene*c  Code:  DNA  DeoxyriboNucleic  Acid  (DNA)  contains  all  the  informa-on  

necessary  to  make  a  complete  organism  

DNA is composed of a combination of 4 nucleotides

A   T   C  

Adenine   Thymine   Cytosine  

Gene*c  Code:  DNA  DeoxyriboNucleic  Acid  (DNA)  contains  all  the  informa-on  

necessary  to  make  a  complete  organism  

DNA is composed of a combination of 4 nucleotides

A   T   C   G

Adenine   Thymine   Cytosine   Guanine  

DNA:  A  long  double-­‐stranded  string  of  nucleo-des  that  encode  for  many  genes.  

Gene  

The  Central  Dogma:  DNAàRNAàProtein  

DNA:  A  long  double-­‐stranded  string  of  nucleo-des  that  encode  for  many  genes.  

Gene  

RNA:  A  single-­‐stranded  copy  of  one  gene.    

RNA  

The  Central  Dogma:  DNAàRNAàProtein  

DNA:  A  long  double-­‐stranded  string  of  nucleo-des  that  encode  for  many  genes.  

Gene  

RNA:  A  single-­‐stranded  copy  of  one  gene.    

The  Central  Dogma:  DNAàRNAàProtein  

RNA  

Protein:  Proteins  are  composed  amino  acids.  Amino  acids  are  made  from  triplets  of  nucleo-des  called  codons.        

DNA:  A  long  double-­‐stranded  string  of  nucleo-des  that  encode  for  many  genes.  

Gene  

Protein:  Proteins  are  composed  amino  acids.  Amino  acids  are  made  from  triplets  of  nucleo-des  called  codons.        

RNA:  A  single-­‐stranded  copy  of  one  gene.    

The  Central  Dogma:  DNAàRNAàProtein  

Codon  1  

DNA:  A  long  double-­‐stranded  string  of  nucleo-des  that  encode  for  many  genes.  

Gene  

Protein:  Proteins  are  composed  amino  acids.  Amino  acids  are  made  from  triplets  of  nucleo-des  called  codons.        

RNA:  A  single-­‐stranded  copy  of  one  gene.    

The  Central  Dogma:  DNAàRNAàProtein  

Codon  1  Codon  2  

DNA:  A  long  double-­‐stranded  string  of  nucleo-des  that  encode  for  many  genes.  

Gene  

Protein:  Proteins  are  composed  amino  acids.  Amino  acids  are  made  from  triplets  of  nucleo-des  called  codons.        

Amino  acid  1   Amino  acid  2  

RNA:  A  single-­‐stranded  copy  of  one  gene.    

The  Central  Dogma:  DNAàRNAàProtein  

Codon  1  Codon  2  

DNA:  A  long  double-­‐stranded  string  of  nucleo-des  that  encode  for  many  genes.  

Gene  

Protein:  Proteins  are  composed  amino  acids.  Amino  acids  are  made  from  triplets  of  nucleo-des  called  codons.        

Amino  acid  1   Amino  acid  2  

Protein!  

RNA:  A  single-­‐stranded  copy  of  one  gene.    

The  Central  Dogma:  DNAàRNAàProtein  

Codon  1  Codon  2  

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  DNA:  

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met

DNA:  

Amino  Acids/Protein:  

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met

DNA:  

Amino  Acids/Protein:   Val

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu

DNA:  

Amino  Acids/Protein:   Val

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu Ser

DNA:  

Amino  Acids/Protein:   Val

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu Ser Pro

DNA:  

Amino  Acids/Protein:   Val

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu Ser Pro

DNA:  

Amino  Acids/Protein:   Val

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu Ser Pro

DNA:  

Amino  Acids/Protein:   Val

ATG                GTG              CTG                TCT                ACT  DNA:  

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu Ser Pro

DNA:  

Amino  Acids/Protein:   Val

ATG                GTG              CTG                TCT                ACT  

Met Leu Ser Thr

DNA:  

Amino  Acids/Protein:   Val

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu Ser Pro

DNA:  

Amino  Acids/Protein:   Val

Words:        Tom                  and              Sam                are                  bad  

ATG                GTG              CTG                TCT                ACT  

Met Leu Ser Thr

DNA:  

Amino  Acids/Protein:   Val

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu Ser Pro

DNA:  

Amino  Acids/Protein:   Val

Words:        Tom                  and              Sam                are                  bad  

ATG                GTG              CTG                TCT                ACT  

Met Leu Ser Thr

DNA:  

Amino  Acids/Protein:   Val

     Tom                  and              Sam                are                  sad  Words:  

A  small  change  in  the  gene  sequence  can  result  in  a  very  different  protein      

ATG                GTG              CTG                TCT              CCT  

Met Leu Ser Pro

DNA:  

Amino  Acids/Protein:   Val

Words:        Tom                  and              Sam                are                  bad  

ATG                GTG              CTG                TCT                ACT  

Met Leu Ser Thr

DNA:  

Amino  Acids/Protein:   Val

     Tom                  and              Sam                are                  sad  Words:  

Changes  in  DNA  are  called  varia-ons  or  muta-ons  

Variations in the DNA (genotype) can cause observable changes (phenotype) in individuals

Helped  No  Effect/Hurt  

Tumoricide  

Why  does  Tumoricide  work  on  some  pa-ents  but  not  

on  others?  

What  are  the  reasons  a  person  would  react  differently  to  drugs?  

1.  Having  the  receptor  (protein)  to  recognize  the  drug    

2.  Other  physiological  traits  that  enable  you  to  respond  to  a  drug  

3.  How  your  body  processes  the  drugs  a[er  receiving  it  

Drugs  and  Receptors  

Cell    

Drugs  and  Receptors  

Cell    

Receptor  (Protein)  

Drugs  and  Receptors  

Cell    

Receptor  (Protein)  

Drugs  and  Receptors  

Cell    

Drug  (Ligand)   Receptor  

(Protein)  

Drugs  and  Receptors  

Cell    

Drug  (Ligand)   Receptor  

(Protein)  

Your  DNA  and  Drugs  Varia*on  in  genes  can  cause  varia*on  in  receptors  

Cell    

Your  DNA  and  Drugs  Varia*on  in  genes  can  cause  varia*on  in  receptors  

Cell    

Your  DNA  and  Drugs  Varia*on  in  genes  can  cause  varia*on  in  receptors  

Cell    

Cell    

Cell    

Your  DNA  and  Drugs  Varia*on  in  genes  can  cause  varia*on  in  receptors  

Cell    

Cell    

Cell    

Cell    

Cell    

Your  DNA  and  Drugs  Varia*on  in  genes  can  cause  varia*on  in  receptors  

Cell    

Cell    

Cell    

Too  Many  (hypersensi-ve)  

Cell    

Cell    

Your  DNA  and  Drugs  Varia*on  in  genes  can  cause  varia*on  in  receptors  

Cell    

Cell    

Cell    

Too  Many  (hypersensi-ve)  

Too  Few  (hyposensi-ve)  

Cell    

Cell    

Your  DNA  and  Drugs  Varia*on  in  genes  can  cause  varia*on  in  receptors  

Cell    

Cell    

Cell    

Cell    

Cell    

Too  Many  (hypersensi-ve)  

Too  Few  (hyposensi-ve)  

Mutated (insensitive)

Where  Drugs  “Fit”  In  

Lock  =  Receptor                                                                        Key  =  Drug    

Taste  cell  

“This  tastes  bi/er!”  

PTC-­‐Receptor   PTC  

Why  can  some  people  taste  PTC    and  others  can’t?  

Phenylthiocarbamide

Taste  cell  

“This  tastes  bi/er!”  

PTC-­‐Receptor   PTC  

Why  can  some  people  taste  PTC    and  others  can’t?  

Taste  cell  

“I  don’t  taste  anything!”  

Non-­‐binding  PTC-­‐

Receptor  

PTC  

Where  does  tas*ng  PTC  come  from?  You  have  two  copies  of  every  

gene:    one  from  Mom    

and    one  from  Dad  

Where  does  tas*ng  PTC  come  from?  You  have  two  copies  of  every  

gene:    one  from  Mom    

and    one  from  Dad  

Where  does  tas*ng  PTC  come  from?  You  have  two  copies  of  every  

gene:    one  from  Mom    

and    one  from  Dad  

•  Your  two  genes  are  the  genotype  

You  have  two  copies  of  every  gene:    

one  from  Mom    and    

one  from  Dad  

Where  does  tas*ng  PTC  come  from?  

•  Your  two  genes  are  the  genotype  •  A  gene  can  be  dominant  or  recessive  

You  have  two  copies  of  every  gene:    

one  from  Mom    and    

one  from  Dad  

Where  does  tas*ng  PTC  come  from?  

•  Your  two  genes  are  the  genotype  •  A  gene  can  be  dominant  or  recessive  •  The  expressed  trait  is  a  phenotype  

You  have  two  copies  of  every  gene:    

one  from  Mom    and    

one  from  Dad  

Where  does  tas*ng  PTC  come  from?  

Tas*ng  PTC  is  dominant  (T)  over  inability  taste  PTC  which  is  recessive  (t)  

TT   Tt   [  

Tas*ng  PTC  is  dominant  (T)  over  inability  taste  PTC  which  is  recessive  (t)  

TT   Tt   [  

Tas*ng  PTC  is  dominant  (T)  over  inability  taste  PTC  which  is  recessive  (t)  

TT   Tt   [  

Tas*ng  PTC  is  dominant  (T)  over  inability  taste  PTC  which  is  recessive  (t)  

TT   Tt   [  

Tas*ng  PTC  is  dominant  (T)  over  inability  taste  PTC  which  is  recessive  (t)  

TT   Tt   [  

For  individuals  with  these  genotypes,    what  would  their  phenotypes  be?  

TT  

“This  tastes  REALLY  bi[er!”  

SUPERTASTER  

Tas*ng  PTC  is  dominant  (T)  over  inability  taste  PTC  which  is  recessive  (t)  

Tt   [  

“This  tastes  bi[er!”  TASTER  

TT  

“This  tastes  REALLY  bi[er!”  

SUPERTASTER  

Tas*ng  PTC  is  dominant  (T)  over  inability  taste  PTC  which  is  recessive  (t)  

Tt   [  

“This  tastes  bi[er!”  TASTER  

TT  

Tas*ng  PTC  is  dominant  (T)  over  inability  taste  PTC    which  is  recessive  (t)  

Tt   [  

“I  dont  taste  anything!”  

NON-­‐TASTER  

“This  tastes  REALLY  bi[er!”  

SUPERTASTER  

Drug  receptor  summary  

Ability  to  taste  PTC  has  a  very  strong  gene-c  component  PTC  =  chemical    and  Drugs  =  chemical  

 Differences  in  ability  to  taste  PTC  is  similar  to    

differences  in  reac*ons  to  drugs  ""

Helped  No  Effect/Hurt  

Tumoricide  

Why?  

Two  Types  of  Breast  Cancer  

•  Tumoricide  is  a  personalized  medica-on  •  Tumoricide  only  works  for  Her2+  breast  tumors  

Y  Her2-­‐   Her2+  

80  

Helped  No  Effect/Hurt  

Tumoricide  

Her2-­‐   Her2+  

Screening  for  Her2+  Cells  

American Journal of Clinical Pathology. 2008;129(2):263-273

Her2-­‐   Her2+  

Screening  for  Her2+  Cells  

American Journal of Clinical Pathology. 2008;129(2):263-273

+   Tumoricide   =  ?  

Screening  for  Her2+  Cells  

American Journal of Clinical Pathology. 2008;129(2):263-273

+   Tumoricide   =  ✓  

Breast  Cancer  1990  

• Surgery  • Radia-on  • Chemotherapy  (drugs)  

2012  • Surgery  • Radia-on  • Chemotherapy    

• Specialized  treatments  (for  certain  types  of  breast  cancer)  

http://www.ucdmc.ucdavis.edu/welcome/features/20080709_cancer_sweeney/index.html

What  are  the  reasons  a  person  would  react  differently  to  drugs?  

1.  Having  the  receptor  (protein)  to  recognize  the  drug    

2.  Other  physiological  traits  that  enable  you  to  respond  to  a  drug  

3.  How  your  body  processes  the  drugs  a[er  receiving  it  

The  presence  of  receptors  influence  how  we  react  to  drugs  like  Tumoricide  or  chemicals  like  PTC      

Tumoricide    Works!  

Tumoricide    Does  Not  Work  

Her2-­‐   Her2+  

Y  

TT   Tt   [  

“This  tastes  REALLY  bi[er!”  

SUPERTASTER  

“This  tastes  bi[er!”  TASTER  

“I  dont  taste  anything!”  

NON-­‐TASTER  

The  presence  of  receptors  influence  how  we  react  to  drugs  like  Tumoricide  or  chemicals  like  PTC      

Where are the PTC receptors?

What  are  taste  buds?  Taste  buds  are  found  on  papillae  on  your  tongue  

What  are  taste  buds?  Taste  buds  are  found  on  papillae  on  your  tongue  

Papillae                  

bumps  on  your  tongue  

What  are  taste  buds?  Taste  buds  are  found  on  papillae  on  your  tongue  

Taste  buds  cells  are  found  on  the  papilla      

Papillae                  

bumps  on  your  tongue  

What  are  taste  buds?  Taste  buds  are  found  on  papillae  on  your  tongue  

Taste  buds  cells  are  found  on  the  papilla      

PTC  receptors  are  found  on  the  taste  buds  

Papillae                  

bumps  on  your  tongue  

What  are  taste  buds?  Taste  buds  are  found  on  papillae  on  your  tongue  

PTC  receptors  are  found  on  the  taste  buds  

Papillae                  

bumps  on  your  tongue  

Nerve  Cell  Transmits  signal  

to  brain  Taste  buds  cells  are  found  on  the  papilla  

   

What  are  taste  buds?  Taste  buds  are  found  on  papillae  on  your  tongue  

PTC  receptors  are  found  on  the  taste  buds  

Papillae                  

bumps  on  your  tongue  

Nerve  Cell  Transmits  signal  

to  brain  

Brain  Wow!  This  tastes  

really    bi[er  

Taste  buds  cells  are  found  on  the  papilla      

If  a  person  has  more  taste  buds,  then  he/she  may  be  able  to  taste  the  PTC  more  strongly.  

Are  there  other  traits  that  can  allow  a  person  to  more  strongly  taste  PTC?    

Coun-ng  the  number  of  tongue  papillae  

5 papillae 20 papillae 35 papillae

Coun-ng  the  number  of  tongue  papillae  

5 papillae 20 papillae 35 papillae

Ideal graph representing the number of tongue papillae related to the phenotype of PTC taste

These results support our hypothesis that the super-taster has more papillae!

Ideal graph representing the number of tongue papillae related to the phenotype of PTC taste

The number of papillae in the non-taster is variable. Why would the number of papillae be variable in a non-

taster?

What  does  it  take  to  be  a  PTC  Taster?  Two  traits  are  important  for  determining  PTC  taste  sensi-vity    

   1)  PTC  receptor  genotype—Do  you  have  the  receptors  that  

enable  you  to  taste  PTC  

What  does  it  take  to  be  a  PTC  Taster?  Two  traits  are  important  for  determining  PTC  taste  sensi-vity    

   1)  PTC  receptor  genotype—Do  you  have  the  receptors  that  

enable  you  to  taste  PTC  

2)  The  density  of  papillae  on  your  tongue  correlates  to  the  sensi-vity  of  tas-ng  PTC  

taster super-taster

What are the reasons a person would react differently to drugs?

1.  Having the receptor (protein) to recognize the drug

2.  Other physiological traits that enable you to respond to a drug

3.  How your body processes the drugs after receiving it

http://publications.nigms.nih.gov/medbydesign/chapter1.html

 

   ADME    

•   Absorp-on  •   Distribu-on  

•   Metabolism  

•   Excre-on  

A Drug’s Life

Metabolic enzymes

Liver

DNA variations in special proteins in the liver called enzymes can influence a person’s ability to metabolize

certain drugs

Drug Metabolites Enzymes

Adverse Drug Reactions (ADR) • Definition- unwanted, negative response to a

prescribed drug at normal doses and during normal use – Examples?

Adverse Drug Reactions (ADR) • Definition- unwanted, negative response to a

prescribed drug at normal doses and during normal use – Examples?

•  There are multiple causes for ADRs – environmental basis – genetic basis

Adverse Drug Reactions (ADR) • Definition- unwanted, negative response to a

prescribed drug at normal doses and during normal use – Examples?

•  There are multiple causes for ADRs – environmental basis – genetic basis

•  Poor metabolizers can experience ADRs at normally therapeutic drug doses

Case study: Nortriptyline metabolism

Three women of the same height, weight, age, and racial background are depressed and go to the doctor. The doctor prescribes an antidepressant, Nortriptyline,

at a dose of 100 mg.

•  Person A has an adverse reaction •  Person B nothing happens •  Person C gets better…

A

B  

C  

Case study: Nortriptyline metabolism

Three women of the same height, weight, age, and racial background are depressed and go to the doctor. The doctor prescribes an antidepressant, Nortriptyline,

at a dose of 100 mg.

•  Person A has an adverse reaction •  Person B nothing happens •  Person C gets better…

A

B  

C  

Why?

ADME of Nortriptyline

100mg  Nortriptyline  

Adverse reaction Nothing happens Gets better

A B   C  

How much active drug in blood?

ADME of Nortriptyline

100mg  Nortriptyline  

Adverse reaction Nothing happens Gets better

A B   C  

95mg 5mg 50mg

DNA variation influence drug metabolism

Liver

Drug Metabolites Enzymes

A

Poor Metabolizer

95mg

DNA variation influence drug metabolism

Liver

Drug Metabolites Enzymes

B  

Ultrarapid Metabolizer

5mg

DNA variation influence drug metabolism

Liver

Drug Metabolites Enzymes

C  

Intermediate Metabolizer

50mg

2012 - What do doctors do?

A B   C  

Decrease Dose Increase Dose

Or change drug

Poor Metabolizer Ultrarapid Metabolizer

Today One-size-fits-all drugs

• Current drug development system develops drugs for the average patient

• No simple way to determine who will respond well and who will respond poorly

• One size does NOT fit all! • What’s the solution?

Today One-size-fits-all drugs

• Current drug development system develops drugs for the average patient

• No simple way to determine who will respond well and who will respond poorly

• One size does NOT fit all! • What’s the solution?

Pharmacogenomics (PGx) Personalized Medicine

April, 2050 You wake up feeling terrible, and you know it's time to

see a doctor. In the office, the physician looks you over, listens to your symptoms, and decides to prescribe you

a drug. But first, the doctor takes a look at your DNA.

TODAY vs. FUTURE

Today = Drugs are One-Size-Fits-All

Future = Drugs Specific for You! More effective & minimizes side effects

Summary Gene-c  varia-on  leads  to  phenotypic  differences  and  

differences  in  how  we  all  react  to  drugs.      

Summary Gene-c  varia-on  leads  to  phenotypic  differences  and  

differences  in  how  we  all  react  to  drugs.    

1.   Having  the  receptor  (protein)  to  recognize  the  drug      PTC  and  HER2  receptors  

   

Summary Gene-c  varia-on  leads  to  phenotypic  differences  and  

differences  in  how  we  all  react  to  drugs.    

1.   Having  the  receptor  (protein)  to  recognize  the  drug      PTC  and  HER2  receptors  

2.    Other  physiological  traits  that  enable  you  to  respond  to  a  drug      Number  of  taste  buds  on  tongue  

   

Summary Gene-c  varia-on  leads  to  phenotypic  differences  and  

differences  in  how  we  all  react  to  drugs.    

1.   Having  the  receptor  (protein)  to  recognize  the  drug      PTC  and  HER2  receptors  

2.    Other  physiological  traits  that  enable  you  to  respond  to  a  drug      Number  of  taste  buds  on  tongue  

3.  How  drugs  are  processed  in  the  body      Enzymes  in  liver  metabolize  drugs  

   

 

Pharamcogenomics    Using  people’s  gene-c  informa-on  for  the  right  

drug  at  the  right  dose  at  the  right  -me!  

R  X  

Pharmacogenetics & Pharmacogenomics!

 

•  Pharmacogene*cs:    The  role  of  gene*cs  in  drug  responses.  –  F.  Vogel.  1959  

•  Pharmacogenomics:  The  science  that  allows  us  to  predict  a  response  to  drugs  based  on  an  individuals  gene*c  makeup.  –  Felix  Frueh,  Associate  Director  of  Genomics,  FDA  

Courtesy Felix W. Frueh

Pharmacogenetics & Pharmacogenomics"

http://www.pharmgkb.org/!•  Pharmacogenetics: study of individual gene-drug

interactions, usually one or two genes that have dominant effect on a drug response (SIMPLE relationship)!

•  Pharmacogenomics: study of genomic influence on drug response, often using high-throughput data (sequencing, SNP chip, expression, proteomics - COMPLEX interactions)!

–  PharmGKB Website: http://www.pharmgkb.org/!

Purine Analogs: A Case Study in Pharmacogenetics!

•  6-mercaptopurine, 6-thioguanine, azathioprine!

•  Used to treat lymphoblastic leukemia, autoimmune disease, inflammatory bowel disease, after transplant!

•  Interferes with nucleic acid synthesis!

•  Therapeutic index limited by myelosuppression!(treatment limited by immune suppression side effect)!

6-thioguanine azathioprine!6-mercaptopurine!

Metabolism of 6-MP!

L Wang and R Weinshilboum, Oncogene 25, 1629-1638 (2006)!

Pharmacogenetics: A Case Study!

Courtesy of Michelle Whirl-Carillo!

Pharmacogenetics: A Case Study!

Courtesy of Michelle Whirl-Carillo!

Pharmacogenetics: A Case Study!

Thiopurine S-methyl Transferase Activity "and Personalized Dosage!

Second Example: Codeine and Cytochrome P450 CYP2D6

•  Codeine is a commonly used opioid – Codeine is a prodrug –  It must be metabolized into morphine for activity

•  Cytochrome P450 allele CYP2D6 is the metabolizing enzyme in the liver

•  7% of Caucasians are missing one copy of the Cytochrome P450 CYP2D6 gene –  codeine does not work effectively in these

individuals

Codeine and Morphine Metabolism!

Cytochrome Oxidase P450 Enzymes!

•  57 Different active genes!•  17 Different families!•  CYP1, CYP2 and CYP3 are primarily involved in

drug metabolism.!•  CYP2A6, CYP2B6, CYP2C9 ,CYP2C19, CYP2D6,

CYP2E1 and CYP3A4 are responsible for metabolizing most clinically important drugs!

© 2006 American Medical Association. All rights reserved

Polymorphic!Cytochrome!P-450s!

Effect of Metabolic Rate on Drug Dosage!

© 2006 American Medical Association. All rights reserved

Warfarin: Significant Problems for Rats!!

Warfarin: Significant Problems for Humans!!

•  Ranks #1 in total mentions of deaths for drugs causing adverse events (from death certificates)

•  Ranks among the top drugs associated hospital emergency room visits for bleeding

•  Overall frequency of major bleeding range from 2% to 16% (versus 0.1% for most drugs)

•  Minor bleeding event rates in randomized control trials of new anticoagulants has been as high as 29% per year.

Warfarin: Significant Problems for Humans!!

•  Case Report July 2, 2008!–  Company director dies of brain hemorrhage

after heading a football!–  Consultant neurosurgeon told the inquest

the warfarin effect was probably the cause of the death!

–  It can happen to anyone!!

•  Other Warfarin Patients!•  Case Report July 2, 2008!

–  Joseph Stalin!

Why Maintaining Warfarin"Therapeutic Range is Critical!

European Atrial Fibrillation Trial Study Group, N Engl J Med 1995;333:5-10.!

Finding Doses to Maintain Therapeutic Anticoagulation is Largely Trial and Error!

Warfarin Levels Depend on Two Enzymes – CYP2C9 & VKORC1!

Estimated Warfarin Dose (mg/day) Based on Genotypes!

Frequency of VKORC1 Alleles"in Various Populations!

Sconce et al. Blood 2005, Yuan et al. Human Mol Genetics 2005, Schelleman et al. Clin Pharmacol Ther 2007, Montes et al Br J Haemat 2006!

Genetic Analysis Permits!

•  More rapid determination of stable therapeutic dose.

•  Better prediction of dose than clinical methods alone.

•  Applicable to the 70-75% of patients not in controled anticoagulation centers.

•  Reduces between 4,500 and 22,000 serious bleeding events annually.

•  Genetic testing now required by FDA

Another Anticoagulant Clopidogrel (Plavix) and CYP2C19 Alleles!

"!

23andMe!Drug Response!Reports!

What are Targeted Drugs?!•  Often, drugs are only effective in specific “sub-

populations” (responders). •  Early identification of responders can have a

dramatic effect of treatment success. •  Treatment of non-responders puts these

individuals at unnecessary risk of adverse events, while providing no benefit.

•  Personalized Medicine allows the identification of responders and non-responders for targeted therapies.

•  This is happening today!

Personalized Drugs!•  Hercep*n    (breast  cancer,  target:  Her2/neu)  •  Erbitux    (colorectal  cancer,  target:  EGFR)  •  Tarceva    (lung  cancer,  target:  EGFR)  •  Straeera    (aeen*on-­‐deficit/hyperac*vity    

     disorder,  Metabolism:  P4502D6)  •  6-­‐MP    (leukemia,  Metabolism:  TPMT)    •  An*virals    (i.e.  resistance  based  on  form  of  HIV)  

•  etc.  and  the  list  is  growing  rapidly  ...  

FDA Requires Genetic Tests"for Certain Therapies!

Courtesy of Michelle Whirl-Carillo!

Roche Chip for Cytochrome P450"Genes: CYPC19 and CYP2D6 !

Xie and Frueh, Pharmacogenomics steps toward Personalized Medicine, Personalized Medicine 2005, 2, 325-337!

AMA Course on Pharmacogenomics and Personalized Medicine!

http://ama.learn.com © 2006 American Medical Association. All rights reserved

I. Key Concepts and Terms

154

Monogenic: due to allelic variation at a single gene Polygenic: due to variations at two or more genes Polymorphic: frequently occurring monogenic variants occurring at a frequency >1%

Normal Distribution

155

Freq

uenc

y

Activity

Polymorphic Distribution

156

From Pratt WB,Taylor P. Fig 7-5b

157

GENETIC POLYMORPHISMS

Pharmacokinetic Pharmacodynamic • Transporters • Plasma protein binding • Metabolism

• Receptors • Ion channels • Enzymes • Immune molecules

158

From: Evans WE, Relling MV. Pharmacogenomics: Translating functional genomics into rational therapeutics. Science 286:487-491, 1999.

II. Genetic polymorphisms in drug metabolizing enzymes

From: Evans WE, Relling MV. Pharmacogenomics: Translating functional genomics into rational therapeutics. Science 286:487-491, 1999.

O C CH2CH2

O

(H3C)3NH2CH2C COO CH2CH2N(CH3)3

+ +

SUCCINYLCHOLINE

160

A. Atypical Plasma Cholinesterase

• a rapid acting, rapid recovery muscle relaxant - 1951 • usual paralysis lasted 2 to 6 min in patients • occasional pt exhibited paralysis lasting hrs • cause identified as an “atypical” plasma cholinesterase

Hydrolysis by pseudocholinesterase

choline succinylmonocholine

161

• Atypical plasma cholinesterase has 1/100 the affinity for succinylcholine as normal enzyme • occurs in 1:2500 individuals • tested clinically via the abilityof dibucaine to inhibit esterase hydrolysis of benzoylcholine

020406080

100

-6 -4log molar dibucaine conc.

% In

hibi

tion

Typical Atypical

Adapted from: Pharmac Ther 47:35-60, 1990.

normal enzyme inhibited > 70% abnormal inhibited < 30%

162

• Atypical plasma cholinesterase has 1/100 the affinity for succinylcholine as normal enzyme • occurs in 1:2500 individuals • tested clinically via the abilityof dibucaine to inhibit esterase hydrolysis of benzoylcholine • Family studies indicate variability in plasma cholinesterase activity consistent with 2 allelic, autosomal, codominant genes • other variant forms exist as well

163

B. Glucose-6-phosphate dehydrogenase activity Effects >100 million worldwide

R-NH2 CYP MPO PGH Synthase

R-NOH

ERYTHROCYTE

R-NOH

O2 HgbFe+2

R-NO HgbFe+3

Reactive Oxygen

NADH

NAD+ MetHgb Reductase

NADPH or GSH(?)

NADP+ or GSSG(?) HMP Shunt

G-6-PD Dependent

SOD Catalase GSH Peroxidase

Detoxification

Splenic Sequestration

Hemolytic Anemia

GSH Semi-mercaptal

sulfinamide

R-NH2

164

Drugs and Chemicals Unequivocally Demonstrated to Precipitate Hemolytic Anemia

in Subjects with G6PD Deficiency

Acetanilide Nitrofurantoin Primaquine Methylene Blue Sulfacetamide Nalidixic Acid Naphthalene Sulfanilamide Sulfapyridine Sulfamethoxazole

165

INCIDENCE OF G6PD DEFICIENCY IN DIFFERENT ETHNIC POPULATIONS

Ethnic Group Incidence(%) Ashkenazic Jews 0.4 Sephardic Jews Kurds 53 Iraq 24 Persia 15 Cochin 10 Yemen 5 North Africa <4 Iranians 8 Greeks 0.7-3

166

INCIDENCE OF G6PD DEFICIENCY IN DIFFERENT ETHNIC POPULATIONS

Ethnic Group Incidence(%) Asiatics Chinese 2 Filipinos 13 Indians-Parsees 16 Javanese 13 Micronesians <1

167

C. N-ACETYLTRANSFERASE ACTIVITY

Distribution of plasma isoniazid concentration in 483 subjects after and oral dose. Reproduced from Evans DAP. Br Med J 2:485, 1960.

168

NAT1*4 NAT2*4 NAT2*5A NAT2*6A NAT2*7A

PABA PAS SMX

PA DDS SMZ

AF Modified from Grant DM. Pharmacogenetics 3:45-52, 1993

169

ETHNIC DIFFERENCES IN THE DISTRIBUTION OF ACETYLATOR PHENOTYPE

Population % Slow % Hetero Fast % Homo Fast

South Indians 59 35.6 5.4 Caucasians 58.6 35.9 5.5 Blacks 54.6 38.6 6.8 Eskimos 10.5 43.8 45.7 Japanese 12 45.3 42.7 Chinese 22 49.8 28.2

From: Kalo W. Clin Pharmacokinet 7:373-4000, 1982.

170

XENOBIOTICS SUBJECT TO POLYMORPHIC ACETYLATION IN MAN

Hydrazines isoniazid hydralazine phenylzine acetylhydrazine hydrazine

Arylamines dapsone procainamide sulfamethazine sulfapyridine aminoglutethimide

Carcinogenic Arylamines benzidine β-naphthylamine 4-aminobiphenyl

Drugs metabolized to amines sulfasalazine nitrazepam clonazepam caffeine

171

ADVERSE EFFECTS TO SULFASALAZINE IN PATIENTS WITH

INFLAMMATORY BOWEL DISEASE

N N

COOH

OHS

O

O

HNN

SULFASALAZINE

NH2S

O

O

HNN

H2N

COOH

OH

SULFAPYRIDINE 5-AMINOSALICYLIC ACID

172

ADVERSE EFFECTS TO SULFASALAZINE IN PATIENTS WITH

INFLAMMATORY BOWEL DISEASE

Data from: Das et al. N Engl J Med 289:491-495, 1973.

Side Effect cyanosis hemolysis transient reticulocytosis

Frequency of side effect Slow Acetylators Fast Acetylators

9 1 5 0 6 0

173

0

20

40

60

80

100

120

0 20 40 60 80 100

Duration of Therapy (months)

% o

f pts

with

lupu

s

Slow AcetylatorsFast Acetylators

Relationship Between Onset of Lupus Syndrome in Fast and Slow Acetylators Receiving Procainamide. Data

from: Woosley RL, et al. N Engl J Med 298:1157-1159, 1978.

174

NH2C

O

(H3CH2C)2NH2CH2CHN

PROCAINAMIDE

NHC

O

(H3CH2C)2NH2CH2CHN CCH3

O

NHOHC

O

(H3CH2C)2NH2CH2CHN

NATCYP450

PROCAINAMIDE HYDROXYLAMINE N-ACETYLPROCAINAMIDE

175

0

20

40

60

80

100

SLOW FAST

Perc

enta

ge o

f Sub

ject

s ControlHS

Distribution of acetylator phenotype in control subjects and those experiencing a sulfonamide

hypersensitivity reaction. Rieder et al. Clin Pharmacol Ther 49:13-17, 1991.

176

NAT1 N-acetyl-SMX UDPGT SMX-glucuronide

CYP2C9 MPO PGH SYNTHASE

SMX hydroxylamine Nitroso Detox

Covalent binding to cellular macromolecules/

cytotoxicity

Hypersensitivity/ Adverse Reaction

O-acetylation

Acetoxy ester

NAT1 Hydroxamic acid N,O-AT

Detoxified metabolite

Sulfamethoxazole(SMX)

NO

NH2 S

O

O

HN

CH3

177

D. CYP2D6 ACTIVITY

N C NH

NH2

N C NH

NH2

CYP2D6

OH

DEBRISOQUINE4-HYDROXYDEBRISOQUINE

H

N CH3

OCH3

H

N CH3

OH

DEXTROMETHORPHAN DEXTRORPHAN

CYP2D6

178

179

DRUGS WHOSE METABOLISM CO-SEGREGATES WITH DEBRISOQUINE

alprenolol amitriptyline bufuralol clomipramine codeine desipramine encainide ethylmorphine flecainide fluoxetine guanoxan imipramine metoprolol nortriptyline paroxetine phenformin propafenone propranolol

180

Plasma metoprolol concentrations in poor (l) and extensive (¡) metabolizers of debrisoquine after 200 mg of metoprolol tartrate administered orally. Redrawn from Lennard MS, et al. NEJM 307:1558-1560, 1982.

181

Dose requirements for nortriptyline in patients with different CYP2D6 Phenotypes. From: Meyer U. Lancet 356:1667, 2000.

182

O-demethylation morphine

N-demethylation norcodeine

6-glucuronidation codeine-6-glucuronide

M-6-G

M-3-G

normorphine

norcodeine- 6-glucuronide

CYP2D6

H3CO

NCH3

HO

O

CODEINE

183

Effect of Quinidine on the Analgesic Response to Codeine in Extensive Metabolizers of

CYP2D6 (Phenotyped with Dextromethorphan) Data from: Desmeules J, et al. Eur J Clin Pharmacol 41:23:26, 1991

0

5

10

15

20

Mo

rph

ine

Co

nc

(nM

)

0 1 1.5 2 2.5

Time (hr)

EMEM + Q

02468

10

Pa

in

Th

resh

old

(m

A)

0 1 2

Time (hr)

EMEM + Q

184

What is the cause of ‘hypermetabolizers’?

Debrisoquine phenotype in subjects with different CYP2D6 genotypes

Genotype # of Subjects

Metabolic Ratio

CYP2D6wt/(CYP2D6L)2 9 0.33

CYP2D6wt/CYP2D6wt 12 1.50

CYP2D6wt/CYP2D6(A or B) 9 2.14

CYP2D6B/CYP2D6B 6 48.84

185

(CYP2D6L)2 - gene duplication; CYP2D6A - single base deletion CYP2D6B - multiple point mutations

Data from: Agundez JG et al. Clin Pharmacol Ther 57:265, 1995.

186 From: Dalen P, et al. Clin Pharmacol Ther 63:444-452, 1998.

E. CYP2C9 ACTIVITY

187

Prescribed Daily Warfarin Dose and CYP2C9 Genotype

Warfarin Dose* Genotype 5.63 (2.56) *1/*1 4.88 (2.57) *1/*2 3.32 (0.94) *1/*3 4.07 (1.48) *2/*2 2.34 (0.35) *2/*3 1.60 (0.81) *3/*3

*Data presented as mean (SD) daily dose in mg

From: Higashi MK, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287:1690-1698, 2002.

188

F. THIOPURINE METHYLTRANSFERASE (TPMT)

N

N NH

N

SH

N

N NH

N

SCH3

TPMT

SAM SAH

6-mercaptopurine 6-methylmercaptopurine

189

TPMT Activity

Freq

uenc

y

Distribution of Thiopurine Methyl-transferase Activity. Reproduced from: Weinshelboum RM, Sladek SL. Am J Hum Genet 32:651-662, 1980.

190

G. GENETIC POLYMORPHISMS, MATERNAL SMOKING AND LOW BIRTH WEIGHT (LBW)

191

65% of all infant deaths occur among LBW infants, while LBW infants account for 7.6% of all live births

Reduction in birth wgt among smoking women Genotype Weight Reduction CYP1A1 AA 252 g CYP1A1 Aa/aa 520 g GST1 AA/Aa 285 g GST1 aa 642 g

Data from: Wang X, et al. JAMA 287:195-2002, 2002.

192

From: Esteller M, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. NEJM 243:1350-1354, 2000.

Why are some gliomas resistant to nitrosourea alkylating agents? Evidence suggests this may be the result of an epigenetic phenomenon – one that does not involve a change in DNA sequence. MGMT – methylguanine-DNA methyltransferase Methylation of the promoter region of MGMT may silence the gene

193

From: Esteller M, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. NEJM 243:1350-1354, 2000.

194

From: Esteller M, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. NEJM 243:1350-1354, 2000.

195

196

Future Role of SNPs and Pharmacogenetics

SNP - Single Nucleotide Polymorphisms

……. G G T A A C T G …… ……. G G C A A C T G …...

AS of February 2001, 1.42 million SNPs had been identified in the human genome.

197

Patients with efficacy in clinical trials

Patients without efficacy in clinical trials

Predictive of efficacy

Predictive of no efficacy