Fall$ 08! HighPerformance%Building%Guidelines%

16
High Performance Building Guidelines 2nd Edition Fall 14

Transcript of Fall$ 08! HighPerformance%Building%Guidelines%

Page 1: Fall$ 08! HighPerformance%Building%Guidelines%

 

 

High  Performance  Building  Guidelines  2nd  Edition  

Fall  14  

08  Fall  

 

Page 2: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

2    

Introduction  

This  guide  was  assembled  with  input  from  each  of  the  Johns  Hopkins  University’s  Schools,  Divisions  and  Campuses.    It  will  assist  designers,  project  managers  and  maintenance  technicians  to  improve  sustainable  energy  designs,  their  implementation  and  operations.    This  will  more  clearly  communicate  our  energy  and  water  reduction  goals  for  construction,  building  materials,  equipment  and  systems,  and  operational  and  maintenance  needs  to  both  internal  stakeholders  and  to  our  design  consultants.  The  Office  of  Sustainability  has  collaborated  with  our  campus  Design  and  Construction,  Project  Management  and  Facilities  Operations  staff  to  identify  areas  needing  improved  sustainable  choices.    

Improving  our  sustainable  efforts  challenges  each  of  us  to  identify  and  implement  the  most  environmentally  friendly,  financially  sound  and  socially  acceptable  solutions  for  our  institution.  These  initiatives  will  reduce  our  Greenhouse  Gas  emissions,  water  consumption  and  waste  generation.    Many  of  these  opportunities  will  result  in  more  efficient  buildings,  equipment  and  systems,  intended  to  save  energy  and  operating  expenses.    No  initiatives  should  compromise  the  user’s  comfort,  productivity  or  safety.      

 

 

 

 

Questions  or  comments  about  this  guide?    Please  contact  Ed  Kirk,  the  University  Energy  Manager  at  443-­‐997-­‐2343  or  [email protected].  

   

Page 3: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

3    

Table  of  Contents  

1. Guiding  Principles  a. Using  this  Guide  b. Energy  Reduction    c. Greenhouse  Gas  Reduction  Goals  d. LEED  and  Building  Energy  Codes  

2. Tools  and  Benchmarks  a. Financial  Evaluation  b. Metering  &  Measuring  Performance  c. Energy  Modeling  d. Audits  and  Inspections  e. Commissioning  f. LEED,  Energy  Star,  IGCC  and  Energy  Code  g. Utility  Incentives  and  Rebates  

3. Building  Envelope  a. Roofing  b. Windows  and  Doors  c. Thermal  Insulation  

4. Mechanical  Equipment  and  Systems  a. Heating  and  Hot  Water  b. Ventilation  and  Cooling  c. Domestic  Water  d. Elevator  e. CHP  f. Controls  (BAS,  BMS,  ATC,  EMS)  g. Dashboards    

5. Electrical  Equipment  and  Systems  a. Service,  Transformers  and  Distribution  b. Emergency  Power  c. Lighting  d. Lighting  Controls  e. Plug  Loads  

6. Specific  Space  Types  a. Data  Centers  b. Research  spaces  c. Cooking  Facilities  d. Mechanical  and  Electrical  spaces  e. Tel/Data  Closets  f. Mobile  Equipment  

7. Renewable  Energy  a. Solar  PV  b. Solar  Thermal  c. Wind  d. Bio  Fuels  

8. References  

Page 4: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

4    

 

Guiding  Principles  

Using  this  Guide:    The  information  contained  here  is  intended  to  apply  to  all  projects  that  touch  building  systems  that  consume  energy  or  water,  regardless  of  project  budget  or  square  foot  impact.    Using  progressive  ways  of  providing  for  capacity,  redundancy,  reliability  and  future  flexibility,  so  every  project  or  renovation  moves  JHU  toward  its  overall  goals.  Verify  through  proper  installation,  set-­‐up  and  commissioning  that  the  thermal  envelope  and  all  building  components  and  systems  are  working  optimally.  

Energy  &  Water  Reduction  Goals:    Each  project  should  set  a  goal  to  be  designed  to  use  30%  less  energy  and  water  than  allowed  by  the  latest  published  codes.    Projects  effecting  energy  use  should  perform  some  sort  of  energy  modeling  and  use  Life  Cycle  Cost  Analysis,  when  possible,  to  compare  project  options,  enabling  design  teams  to  make  informed  decisions.    All  project  options  that  pay  for  themselves  in  less  than  half  their  life  expectancy  should  be  brought  to  the  design  team’s  attention  for  serious  consideration.    This  means  that  financial  analysis  that  considers  total  cost  of  ownership  (Life  Cycle  Cost  Analysis)  must  be  performed.  Do  not  allow  systems  to  become  overly  complex,  costly  to  install  or  difficult  to  maintain.    Build  in  the  ability  for  automatic  tune-­‐ups,  fault  detection  and  performance  verification  using  “dashboards”  and  smart  phone  apps.    Ensure  a  healthy,  productive  and  safe  environment  for  the  building’s  occupants.      

Greenhouse  Gas  Reduction:  Our  University  goal  to  reduce  our  GHGs  by  51%  by  2025  need  to  be  measurable.    Real-­‐time    metering  is  required  on  all  energy  and  water  systems  to  regularly  verify  performance  and  progress  toward  our  reduction  goals.    

LEED  and  Building  Energy  Codes:    We  wish  to  create  the  healthiest,  most  productive  work  environments  possible.    When  conflicts  occur  between  building  and  energy  code  requirements,  we  insist  upon  open  dialogue  amongst  the  design  team  and  the  JHU  owner  representatives  so  we  are  sure  we  are  meeting  the  end  user’s  needs,  the  intent  of  the  codes  and  not  just  the  letter  of  the  codes.      

Page 5: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

5    

Tools  and  Benchmarks  

Financial  Evaluation:    Energy  code  enhancements  have  forced  designers  and  operators  to  pay  more  attention  to  project  budgeting.    Even  more  important  than  a  project’s  initial  design  and  construction  funding,  and  regardless  of  size,  are  energy  code  limits  and  impacts  to  operating  costs  over  their  expected  life.    While  the  use  of  first  cost  estimating  is  a  simple  tool  when  developing  initial  project  budgets,  today’s  budgets  must  include  energy  code  compliance.    Life  Cycle  Cost  Analysis  must  be  used  for  “Value  Engineering”  cost  cutting  options  that  could  impact  energy  and  water  use,  storm  water  mitigation  or  other  long  term  environmental  factors.      

Measuring  Performance:    Each  building  requires  utility  metering  to  track  energy  and  resource  use.    At  a  minimum  metering  is  required  for  electrical,  gas,  oil,  water,  steam  and  chilled  water.    For  new  construction  and  major  renovations,  and  where  applicable  to  major  alterations  to  the  system  infrastructure,  sub-­‐metering  is  also  needed  on  domestic  hot  water  make-­‐up,  irrigation,  cooling  tower,  boiler  make-­‐up,  gray  water  system  inputs,  lighting,  HVAC  and  building  equipment,  and  plug  loads.      

Energy  Modeling:  Full  modeling  is  required  for  all  new  construction  and  major  renovations.    Some  energy  modeling  is  also  required  for  any  renovations  that  alter  mechanical  or  electrical  systems.    Energy  modeling  should  reflect  how  the  spaces  and  systems  will  operate  once  occupied.    Models  are  the  tool  needed  to  perform  Value  Engineering  or  for  obtaining  utility  rebates.  The  Energy  Use  Intensity  (EUI)  calculation  from  energy  model  will  be  compared  to  similar  space  use  types.    If  planning  a  renovation,  model  should  show  existing  pre-­‐renovation  consumption,  the  latest  ASHRAE  90.1  code  limit  and  estimated  post-­‐renovation  consumption.      

Listed  below  are  some  Energy  Use  Intensities  (EUI)  in  site  KBTU/gsf/yr.  This  table  will  assists  the  design  team  to  understand  what  limits  exist  to  beat  JHU’s  goal  of  30%  less  energy  use.  

  Building  Type     JHU  ’09  Avg  EUI          ASHRAE  90.1  2010        JHU  <30%  Goal    JHU  small  renovation  Goal  

  Office         90     37.1     26     50  

  Classroom       169     39.8     28     55    

  Data  Center   PUE     2+         1.1     1.2-­‐1.3  

  Library         124     55     39.5     60  

  Research  Facility  (Bio)     357     148     105     225      

  Research  Facility  (other)     216     125      88     175  

   Residence  Halls       112     66.6      47     75  

Page 6: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

6    

Audits  and  Inspections:    Understand  what  the  existing  energy  impact  is  and  what  the  opportunities  are.    Modifications  made  and  retraining  of  occupants  will  need  periodic  follow-­‐up.    Commissioning:    Some  level  of  commissioning  input  is  required  during  design,  construction  and  occupancy  for  all  projects  that  effect  energy  or  water  systems.  Do  not  allow  systems  to  become  overly  complex,  costly  to  install  or  difficult  to  maintain.    Insist  on  a  continuous  commissioning  process  and  easy  to  verify  performance  “dashboards”  accessible  to  the  occupants  or  stakeholders.    Ensure  a  healthy,  productive  and  safe  environment  for  the  building’s  occupants.        Utility  Incentives  &  Rebates:  Ensure  estimates  and  calculations  to  obtain  utility  rebates  or  other  incentives  are  incorporated  in  the  cost  estimates  anytime  lighting  or  MEP  systems  will  be  impacted.    

 

Building  Envelope  

New  Building  Siting:    Look  at  building  as  a  system  and  review  orientation  and  landscape  elements  

Roofing  and  re-­‐roof  with  an  average  R-­‐38  insulating  value,  including  skylight  values,  and  use  topcoat  with  a  Reflectivity  >  30%.    Surface  should  strive  for  3  year  aged  Solar  Reflective  index  of  >  64  per  ASTM  E  1980.  When  re-­‐roofing  we  ask  that  the  following  considerations  be  met:  

• Roofing  system  minimum  value  of  R-­‐30,  except  within  3  feet  of  roof  drains.  • Roofing  have  a  minimum  pitch  of  1/4  inch  per  foot  and  zero  standing  water.  • Minimum  curb  and  flashing  heights  of  9  inches.  • The  entire  roofing  system  have  an  expected  life  (not  to  be  confused  with  warranty)  of  30  

years.  • The  roof  design  and  equipment  lay-­‐out  will  allow  for  renewable  energy,  storm  water  

mitigation  or  heat  island  mitigation.  • The  roof  can  withstand  foot  traffic  of  typical  tradesmen,  severe  weather  events  and  bird  

activity  without  reducing  it's  life.  • Tear-­‐off  must  be  recycled  and  new  roofing  system  must  use  sustainable  and  recyclable  

materials.  

Exterior  walls  average  insulation  R-­‐20  including  window  and  door  values.        

Windows  and  Doors:  Storefronts  and  Glazing  with  a    

• low  E  <0.03    • U  of  <0.3  (total  window)      • Visible  Transmittance  >  0.7    • <10%  light  reflective      

Page 7: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

7    

• SHGC  <0.3      • thermally  broken  frames  and  doors.      • air  leakage  is  limited  to  <1  cfm/sf  for  doors  and  <0.2  cfm/sf  for  windows  and  skylights.  

Skylights:  

•   Skylights  must  have  a  U  value  no  greater  than  .50  and  a  SHGC  no  greater  than  .40  per  AAMA  A440-­‐11  tests  and  NFRC  labeled  (IECC  2012).  •   IECC  2012  calls  for  a  3%  maximum  of  the  roof  area  to  be  lit  with  skylights.    If  the  building  is  equipped  with  automatic  day  lighting  controls  you  may  increase  that  to  5%.      •   There  are  also  new  minimum  top  lighting  requirements  (50%  of  the  floor  area  must  be  lit),  for  top  floors  of  buildings  with  ceiling  heights  over  15  feet.  This  applies  to  office,  lobbies,  atriums,  concourses,  corridors,  storage,  gyms  and  warehousing.  

 

Mechanical  Equipment  and  Systems  

Heating  Systems:    Boilers,  furnaces  and  water  heaters  should  have  energy  efficiency  >95%,  or  in  the  top  3%  for  energy  efficiency  for  their  class  of  equipment.    Design  HHW  system  to  match  boiler  peak  efficiency,  and  for  140F  max  (use  5F  OA  for  design  calculations)  and  use  OAT  reset  control.  Where  possible,  use  available  waste  heat  to  pre-­‐heat  returning  hot  water,  preheat  make-­‐up  for  domestic  hot  water,  preheat  AHU  inlet  air  in  winter  and  to  reheat  supply  air  after  mechanical  dehumidification.  Use  systems  that  employ  variable  flows  to  respond  to  demand.  Consider  modular  equipment  designs  to  ensure  capacity,  redundancy  and  reliability.    Consider  how  to  integrate  building  level  Combined  Heat  and  Power  (CHP)  or  Cogeneration  anytime  heating  system  or  its  replacement  is  considered.    Ground  Source  Heat  pump  and  Hybrid  Systems  should  also  be  evaluated.  Heating  systems  should  be  designed  to  allow  for  maximum  system  efficiencies.  

Steam  Use  in  Buildings:  All  steam  conversion  equipment  must  be  at  least  98%  thermally  efficient.  Where  possible,  use  steam  at  plant  pressure  for  energy  conversion  equipment,  eliminating  the  need  for  costly  pressure  reducing  stations  and  their  associated  energy  losses,  flash  tanks,  and  relief  valves  and  associated  exit  piping,  and  reducing  pipe  and  heat  exchanger  sizes.    If  some  research  or  unique  specialty  equipment  operates  on  reduced  steam  pressure,  use  reducing/control  valves  at  the  point  of  use.    Use  enthalpy  wheels  or  point  of  use  ultrasonic  humidifiers  instead  of  steam  humidifiers  in  air  handlers.    Do  not  use  clean  steam  generators  when  plant  steam  is  available.    Properly  manage  high  pressure  drip  condensate  with  heat  exchangers,  all  effort  should  be  taken  to  avoid  the  use  of    flash  tanks,  and  venting  steam  or  condensate  to  atmosphere  anywhere  in  the  system.    This  applies  to  building  and  infrastructure  renovations.    It  is  desired  to  capture  100%  of  steam  condensate,  extract  the  maximum  heat  possible  and  send  it  back  to  the  plant  at  less  than  100F.  See  drawing  1  below.    

Page 8: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

8    

Domestic  Hot  Water  systems:  Use  instantaneous,  point  of  use,  water  heaters  where  low  flow  (<1.0  gpm)  devices  are  used.  If  tying  any  sinks  into  a  recirculating  hot  water  system  ensure  loop  water  can  be  delivered  to  any  fixture  within  6  seconds  of  activation  .  When  a  water  heater  is  required,  use  greater  than  95%  efficient,  instantaneous,  fully  modulating  capability  for  varied  flow  and  variable  make-­‐up  water  temp.    Consider  using  waste  heat  to  preheat  make-­‐up  water  to  hot  water  heaters.  Use  demand  control  on  circulating  pumps.    

Drawing  1

 

 

Thermal  Insulation:      Steam,  Hot  water  and  Chilled  water  Systems:    Plant  steam  will  be  between  300  and  375F.    2012  IECC  Section  C403.2.8  requires  all  parts  of  these  systems  with  flow  through  them  be  insulated.    This  includes  flanges,  strainers,  valves,  expansion    joints,  etc.,  which  may  have  removable  insulation.    ASHRAE  90.1  2010  allows  insulation  with  either  conventional  insulation  or  removable/reusable  insulation  blankets  and  requires  thicker  insulation  for  all  temperature  ranges  and  

Page 9: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

9    

on  all  parts  of  the  systems  touching  fluid  flow  (see  Table  1  below).    According  to  OSHA  non-­‐insulated  surface  temperatures  need  to  be  below  120F.  Adding  a  layer  of  insulation  to  existing  insulation  on  lines  and  fittings  is  often  more  cost  effective  than  removing  and  reinsulating  those  systems.  Chilled  water  systems  can  have  no  exposed  surfaces  and  insulation  must  be  vapor-­‐tight  to  prevent  condensation.  

 

Ventilation  &  Air  Conditioning  Equipment:    Effort  shall  be  taken  in  design  and  controls  to  eliminate    systems  that  allow  simultaneous  cooling  and  reheating.  Employ  less  energy  intensive  ways  of  dehumidification  than  using  conventional  chilled  water  coils  with  hot  water  reheat.  

Air  Handlers:  Evaluate  the  use  of  enthalpy  wheels  or  smart  run-­‐around  coils  to  precondition  make-­‐up  air  with  energy  from  exhaust  air.    Consider  Heat-­‐Pipe  or  wrap  around  coils  for  chilled  water  coil  to  pre-­‐cool  and  re-­‐heat.  Use  >Merv  12  filtering  prior  to  the  first  coil,  direct  drive  fans,  enthalpy  control,  reset  temperature  and  static  pressure  controls,  consider  using  ultrasonic  humidification,  VAV  reheat  coils  should  not  be  used  to  provide  primary  heating  to  a  space.    Separate  perimeter  heat  from  ventilation  for  heating.  Provide  individual  comfort  control  for  each  space  including  occupancy  and  CO2  control  of  T-­‐stat  &  VAV  where  applicable.    positively  closing  &  robust  2-­‐way  control  valves.  Where  possible  VAVs  should  not  be  designed  with  reheat,  but  shall  utilize  their  dampers  to  provide  minimum  flow  as  needed,  based  on  space  ventilation  requirements  and  occupancy  control.  Eliminate  “morning  warm-­‐up”  mode  at  unit.    Design  AHU  preheat  and  HHW  for  140F  max.    at  5F  OA  design  conditions  and  use  reset  schedule.  For  systems  using  VAV  with  reheat  size  the  coils  to  use  95F  RHW  temp.  Where  possible  the  use  of  dedicated  outside  air  delivery  systems  should  be  evaluated  and  buildings  should  be  kept  at  a  slightly  positive  pressure.    Unoccupied  set-­‐points  pertain  to  space  temperatures  only  and  are  seasonal  and  location  specific.    

Page 10: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

10    

Roof-­‐Top  and  Self  Contained  Units:    SEER  >  21,  Furnace  >95%  efficient,  enthalpy  wheel  or  other  energy  recovery,  VFD,  reset  temp.,  etc.  similar  to  AHU  controls.  

Air  Cooled  Split  Systems:    Air  cooled  split  systems  are  generally  not  recommended  for  use.    In  cases  where  supplemental  cooling  is  required  all  efforts  should  be  taken  to  utilize  chilled  water.    Where  dx  equipment  is  the  last  resort,  utilize  only  high  efficiency  dx  equipment.  

Chillers  and  Cooling  Towers:    Use  only  chillers  and  towers  with  efficiencies  in  the  top  5%  across  all  load  ranges,  seasonally  and  as  a  system.    Evaluate  utilizing  heat  from  the  condenser  water  for  preheat  use  and  consider  closed  loop  towers  that  save  water  and  minimize  the  effect  of  contaminants  and  corrosion  on  heat  exchange  surfaces.    Design  for  variable  flows  and  temperatures  to  optimize  performance  and  system  efficiencies.  

Water  Source  Heat  Pumps:  Use  these  to  move  heat  from  one  system  or  area  to  use  it  in  another.    COP>2.5.      The  use  of  air  cooled  split  units  or  heat  pumps  are  typically  not  desired.  Heat  pumps  or  high  efficient  chillers  that  produce  both  chilled  water  and  useable  hot  water  are  encouraged  as  we  move  away  from  steam  and  toward  hot  water  central  loops.  See  also  section  on  Ground  Source  Heat  Pumps.  

Process  Cooling  Water  Loop:    Recover  heat  and  reuse  prior  to  heat  rejection.    Use  variable  flow  and  cascade  heat  recovery  prior  to  necessary  heat  rejection.    Note  drawing  2,  below,  with  minimized  pumping  and  controls.    The  system  relies  on  proper  flow  control  and  solenoid  valves  at  each  piece  of  process  equipment.  Use  process  cooling  water  Loops  to  eliminate  the  need  for  air  cooled  dx  equipment  and  once  through  domestic  water  cooling.    Extract  usable  heat  from  these  process  cooling  loops  to  pre-­‐heat  DHW  make-­‐up  or  RHW  returns.    See  drawing  2  below  for  typical  heat  recovery/rejection  portion  of  the  system.  

Page 11: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

11    

Drawing  2

 

 

Storm  Water:  All  rain  water  run-­‐off  from  impervious  surfaces  should  pass  through  mitigation  elements.  Consider  rain  gardens,  vegetative  swales,  vegetative  roofs,  permeable  pavement,  and  collection  and  reuse  for  irrigation  or  gray  water  systems.  Baltimore  Rainwater  tax:  $48  per  800  square  feet  of  impervious  surface.  

Domestic  Water:  Use  only  water  efficient  appliances  in  the  top  5%  of  their  class.  Rest  room  sinks:    0.5  gpm  with  auto  sensors,  instantaneous  water  heaters  at  point  of  use.  Toilets:    1-­‐1.28  gpf,  touch  free  automatic.    Do  not  recommend  dual  flush  flushometers.  0.8-­‐1.0  gpf  when  tank  toilet  is  used.  Urinals:    1  pint  per  flush  and  touch  free  automatic  or  waterless  in  new  construction  with  plastic  drain  pipe  and  cartridge-­‐less  type.      

Elevators:    Require  Energy  Star  rated  units,  lights,  fan  and  motor  de-­‐energized  unless  unit  is  in  “call”  mode.  

   

Page 12: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

12    

BMS/EMS:  Simplify  systems  and  controls  to  save  first  costs.  Ensure  individual  comfort  controls  for  individual  spaces.  The  sequence  of  operations  should  be  incorporated  on  the  drawings  along  with  corresponding  schematics  to  provide  easy  interpretation.  System  information  should  be  easily  exported  to  real  time  trending,  monitoring,  fault  detection  or  dashboard..  It  is  desired  that  alerts  are  created  when  equipment  is  over-­‐ridden  or  exceeding  energy  parameters.    Reduce  the  number  of  points  to  just  what  is  needed  for  troubleshooting.  Have  capacity  to  trend  all  points  for  minimum  of  72  hours.  Incorporate  occupancy  control  and  CO2  sensing  for  AHUs  where  possible.  Automatically  turn  lights  and  equipment  off  when  no  occupants  are  present.  

 Dashboards:    Meter  information  should  be  pulled  into  a  web  accessed  dashboard  so  results  can  be  shared  in  real  time.  

 

Electrical  Equipment  and  Systems  

Electrical    System:    Correctly  size  transformer  to  ensure  >30%  loading.    Upsize  distribution  wiring  where  appropriate.  Include  harmonics  mitigation  plan.  Peer  review  of  EE  design  by  power  system  optimization  expert.    Perform  electrical  audit  and  correct  identified  load  and  harmonics  deficiencies  one  year  after  spaces  have  been  occupied.    Transformers:    Use  only  energy  efficient  ones  rated  for  digital/electronic  loads  with  harmonic  mitigation.    Ensure  they  are  phase  balanced  and  loaded  to  minimum  30%  of  rated  capacity  off  peak  and  50-­‐70%  during  occupied  times.    Measure  loads  once  spaces  are  fitted  out  and  spaces  are  occupied,  but  no  later  than  12  months  after  Substantial  Completion.    Correct  or  replace  oversized  transformers  as  needed.  Since  2008  transformers  must  meet  NEMA  TP-­‐1  standards  for  energy  efficiency.    The  transformers  must  also  meet  the  DOE’s  CSL-­‐3  energy  efficiency  standards  and  have  harmonic  mitigation  features.    Transformers  must  have  full  rated  efficiency  at  1/6  load.    Specify  transformers  so  they  operate  at  50%  or  higher  load  when  the  building  is  fully  occupied  and  meet  the  intent  of  NEC.    Remember,  transformers  are  designed  to  be  loaded  to  110-­‐120%  for  short  durations  (an  hour  or  less)  and  work  best  in  the  70-­‐90%  range.  Bottom  line,  the  more  the  EE  designer  knows  about  the  electrical  equipment  and  loads  being  served  by  the  transformer  the  better  job  they  can  do  designing  for  most  efficient  and  reliable  operation.    

Electrical  Distribution:    Control  or  mitigate  system  harmonics.  

Emergency  Power:    Use  Natural  Gas  generators  for  all  future  installations  with  BACT  to  allow  for  optimizing  their  use  beyond  just  power  outages.    Consider  CHP  units  and  fuel  cells  for  this  role  when  performing  your  LCCA.  Consider  energy  efficiency  when  choosing  equipment  and  components  (crank  case  heaters,  thermal  recovery,  electric  conversion,  etc.)  

Page 13: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

13    

Lighting:  Employ  day  light  into  >75%  of  occupied  spaces,  use  Sola-­‐tube  for  interior  spaces  where  possible.  Consider  Photo-­‐Luminescent  Exit  Signs.  Use  only  LED  lighting  and  with  efficacy  >  100  lumens/watt.  Use  fixtures  that  deliver  proper  light  levels  efficiently  to  the  work  surface.  Use  the  best  qualities  of  light  possible.    Do  not  over  illuminate  spaces.  Use  dark  sky  compliant  designs  for  interior  and  exterior  lighting.  Use  lighting  layouts  with  the  lowest  watts/square  foot  to  meet  work  surface  light  levels.  Provide  photometric  calcs  for  all  spaces.  Move  day  light  to  work  spaces  with  enhanced  window  use  and  with  effective  use  of  light  tubes  or  skylights  (Solatubes  preferred)  

Lighting  Controls:  Provide  a  detailed  sequence  of  operation  and  schematic  on  drawings  for  easy  interpretation  of  installing  contractor.  Provide  occupancy  lighting  control  (100%  of  facility  spaces)  and  step  dimming  (vacancy  controls)  in  office,  meeting,  classroom  and  similar  spaces.    Automatically  control  artificial  light  output  anywhere  glazing,  skylights  or  Sola-­‐tubes  exist.  Automatically  turn  lights  and  equipment  off  when  no  occupants  are  present.        

DOE  recommended  Lighting  Power  Density  (watts/sf)  targets  (2012)  and  desired  foot  candle  levels.    Goal:    to  achieve  30%  better  than  ASHRAE  90.1  2010  and  IES  2012  

          w/sf     F.C.  base   F.C.  max     F.C.  Unocc  

  Office   (off,  50%,  100%)     0.7     20     30     0  

  Conference/Meeting  Room   0.8     20     35     0  

  Corridor         0.45     10     15     0**  

  Restroom       0.4     10     15     0  

  Mechanical  Room     0.5     10     15     0.5*,  ***  

  Stairwell         0.45     10     15     0*  

  Lobby         0.35     10     20     0**  

  Research  labs  (Labs  21)     1.4     50     75     0  

  Classroom/lecture  hall     0.7     20     30     0  

  Dining         0.6     5     20     0  

  Auditorium       0.7     5     20     0  

  Parking/Garage       0.2     1     1.5     0.5*  

  Residence       0.6     20     30     0  

  Athletic  spaces       1.0     25     65     0  

  Exterior  Walkways     0.7/lf     1     5     1  

 

Page 14: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

14    

   *    Occ  sensors  on  individual  fixtures  recommended.    Total  darkness  not  recommended  for  retrofits.  

   **  Some  night  lighting  may  be  allowed  for  a  “welcoming”  experience  when  approaching  these  areas.  

   ***  Fail  safe  Occ  sensors  should  be  used  for  lighting  around  mechanical  or  electrical  equipment.  

 

 

Electric  Hand  Driers  or  Paper  Towels?  If  electric  hand  driers  are  used,  they  must    effectively  dry  hands  in  <10  seconds,  be  energy  star  rated  and  their  noise  must  not  be  disruptive  to  adjacent  spaces.  Two  products  that  have  been  acceptable  are  the  Dyson  Airblade  and  the  Excel  Xlerator.    

Water  Coolers:    Require  Energy  Star  rated  units  with  demand  controls  on  compressor,  water  bottle  fill  spout  and  cartridge  filter.    JHU  “Take  Back  the  Tap”  initiative.  

Office  Equipment:    Require  Energy  Star  rated  units  with  preset  sleep  and  off  modes.  

Vending  Machines:    Require  Energy  Star  rated  units.    Eliminate  display  lighting  when  possible  or  ensure  LED,  control  with  VendingMiser.    

Refrigeration  and  Freezers:      Require  Energy  Star  rated  units,  directing  heat  to  plenum.  Specify  water  cooled  when  available  for  research  and  larger  units.  

Desk  and  Lap-­‐top  Computers:    Require  Energy  Star  rated  units.  Install  1e  software,  aggressive  energy  saving  and  print  paper  saving  defaults.  

 

Space  Types  

Data  Centers  and  Server  Rooms:  Cool  the  equipment  (that  is  producing  heat)to  the  manufacturer’s  specs.  Set  room  to  78F.  Recover  and  reuse  the  captured  heat  (requires  water  cooled  equipment  or  loop).  Use  free  cooling  when  outside  temperature  is  below  room  set  point.  Use  only  the  most  efficient  back-­‐up  power,  UPS  and  inverter  system  options.  Consider  CHP/CCHP  (Trigeneration)  as  base  load  and  emergency  power.  Design  for  power  use  effectiveness  less  than  1.2  and  meter  energy  at  centers  >  0.5MW.  Ensure  design  choices  to  meet  capacity,  reliability  and  redundancy  do  not  reduce  operational  energy  efficiency.    

Research  Spaces:  Follow  guidelines  in  Labs  21  and  High  Performance  Labs.  Use  occupancy  controls  for  lights  and  air  flow.  Design  research  spaces  for  six  air  changes  occupied  and  four  when  unoccupied  and  under  negative  pressure  to  the  adjacent  spaces.  Monitoring  for  toxic  compounds  can  allow  as  low  as  two  air  changes  when  unoccupied  by  controlling  supply  and  exhaust  air  accordingly.  Use  only  ultra-­‐high  

Page 15: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

15    

efficiency  or  high  performance  fume  hoods  and  chemical  storage  cabinets.  Retrofit  existing  fume  hoods  with  baffles  and  recertify  to  perform  to  today’s  VAV  High  Performance  standards.  Eliminate  General  Exhaust  in  lab  spaces  and  use  VAV  for  both  SA  and  Hood  Exhaust.  Annually,  decommission,  clearly  label  and  close  exhaust  damper  on  lab  hoods  not  in  use.    Purchase  only  high  efficient  ULT  freezers  and  arrange  equipment  rooms  similar  to  modern  data  center  designs  (pull  heat  away  from  the  machines).  Purchase  research  equipment  that  is  also  best  in  class  for  energy  efficiency.  General  lighting  at  no  more  than  50  foot  candles.    Use  task  lighting  as  needed  to  meet  70  FC.  Decouple  ventilation  from  heating  and  cooling  systems.  Design  lab  space  plug  loads  for  average  of  0.5-­‐1.0  W/SF  and  lighting  loads  for  0.5  W/SF.  Employ  Dedicated  OA  Systems  and  Chilled  beam  techniques  to  minimize  wasted  energy.    Electrical  Closets,  machine  and  mechanical  rooms:    Do  not  use  heating  units  or  air  conditioning  units  (except  in  lab  equipment  spaces  when  recovering  and  reusing  the  BTUs).    Use  thermostatically  controlled  fans  or  dampers  to  remove  the  heat  to  an  exhaust  system  where  it  can  be  recaptured  and  reused  as  needed.  Alarm  spaces  for  temperatures  above  95F  and  below  40F  as  appropriate.  

Tel/Data  Closets:    Understand  the  expected  heat  output.  Do  not  use  air  conditioning  units  for  rooms  with  only  routers,  switches  and  terminal  blocks.  Use  open  plenum  or  thermostatically  controlled  exhaust  fans  to  remove  heat  as  needed.  These  rooms  should  be  designed  to  operate  below  85F  and  can  use  adjacent  space  air  as  make-­‐up  to  their  exhaust  fan.  

Mobile  Equipment:  Purchase  the  most  energy  efficient  options  available.    Use  lowest  emissions  vehicles.  Use  most  sustainable  or  renewable  fuel  type.    Trash,  Recycling  and  Compost:  Ensure  there  are  accommodations  for  trash,  recycling  and  compostable  bins  anywhere  waste  is  generated.    Work  with  Operations  to  ensure  areas  will  accommodate  bin  size  and  type  changes  in  the  future.    Ensure  primary  compost  collection  in  restrooms  and  areas  where  food  is  prepped,  served  or  consumed.  Require  hauler  to  share  weight  data  separately  for  trash,  recycling  and  compost.  

   

Renewable  Energy  

Solar  PV:  PPA  model,  but  ensure  space  is  preserved  on  roof  for  future  system.  Systems  can  be  placed  on  roofs,  ground,  parking  canopies  and  parking  garage  roofs.    

Solar  Thermal:  PPA  model.  Ensure  optimal  roof  space  is  preserved  for  future  system.    Size  to  preheat  the  chosen  building    system’s  lowest  thermal  load.  

Solar  Thermal  Hybrid:    PPA  model,  but  ensure  space  is  preserved  on  roof  for  future  system.  Size  to  preheat  and  pre-­‐cool  the  chosen  system’s  lowest  thermal  load.  

Page 16: Fall$ 08! HighPerformance%Building%Guidelines%

  JHU  High  Performance  Building  Standards    

16    

Urban  Wind:    For  new  construction  evaluate  roof  mount  options.  Preserve  ideal  roof  space  for  future  installations.  

Bio  Fuels:  When  possible,  consider  alternatives  to  fossil  fuels  for  vehicles  and  equipment.  

 

References  

International  Green  Construction  Code,  2012:    http://publicecodes.cyberregs.com/icod/igcc/2012/index.htm?bu=IC-­‐P-­‐2012-­‐000023&bu2=IC-­‐P-­‐2012-­‐000019  

ANSI/ASHRAE/IES  Standard  90.1,  2013:  

https://www.ashrae.org/resources-­‐-­‐publications/bookstore/standard-­‐90-­‐1  

International  Energy  Construction  Code,  2012:  

http://publicecodes.cyberregs.com/icod/iecc/2012/  

ANSI/ASHRAE/USGBC/IES  189.1  2014:  

http://publicecodes.cyberregs.com/icod/igcc/2012/icod_igcc_2012_ashrae189p1-­‐2011_par001.htm