Fact sheet i4D - luchtvaartfeiten.nl · FACT SHEET i4D Modernizing the European Air Traffic...

10
FACT SHEET i4D Modernizing the European Air Traffic Management system

Transcript of Fact sheet i4D - luchtvaartfeiten.nl · FACT SHEET i4D Modernizing the European Air Traffic...

  •                  

       

    FACT SHEET i4D Modernizing the European Air Traffic Management system  

  • Fact  sheet  i4D                

    Introduction  “The  European  Commission  has  acted  to  speed  up  the  reform  of  Europe's  air   traffic  control   system.  The  Commission  says   it   is   looking  to  head  off  a  capacity  crunch  as  the  number  of  flights  is  forecast  to  increase  by  50%  over  the  next  10-‐20  years.  Inefficiencies  in  Europe's  fragmented  airspace  bring  extra  costs  of  close  to  EUR  5  billion  each  year  to  airlines  and  their  customers.  They  add  42  kilometres  to  the  distance  of  an  average  flight  forcing  aircraft  to  burn  more  fuel,  generate  more  emissions,  pay  more  in  costly  user  charges  and  suffer  greater  delays.  The  United  States  controls  the  same  amount  of  airspace,  with  more  traffic,  at  almost  half   the   cost.”   1  This   article   by   EU   business   captures   the   problems   that   are   experienced   by   European   airspace   user   due   to   fragmentation   in   the   European  Airspace.  The  European  Commission  has  launched  the  Single  European  Sky  to  unify  the  European  airspace  and  modernize  the  air  traffic  management  system.  SESAR  is  the  technological  dimension  and  has  set  up  nearly  300  research  and  development  projects  to  realize  modernization.  This  fact  sheet  is  about  initial  4D,  one  of  SESAR’s  solutions.  First  the  problems  that  are  faced  today  are  described  and  the  objectives  set  by  SESAR  to  reduce  these  problems.  Then  the  operation  and  technical  requirements  of  initial  4D  are  described  and  concluded  in  the  implementation  plans.  A  Dutch  summary  can  be  found  at  the  end  of  this  fact  sheet.    

    Why  SESAR?  The   first   air   traffic   control   arose   nearly   a   century   ago   from   the   need   to  provide  separation  between  aircraft  and  allow  safe  air  travel,  this  is  still  the  most  important  factor  of  the  Air  Traffic  Management  (ATM)  system  that  we  know   today.2   The   current   system   however,   is   not   able   to   provide   the  efficiency  that   is   required  by  the  airspace  users  and  EU.  Reason  for   this   is  the   fragmented   European   Airspace   and   inefficiencies   in   the   system.   This  results   in   insufficient   capacity,   delays,   inefficient   routing   and   thus   has  negative   effects   on   costs   and   the   environment.3   On   top   of   this   the  European  air  traffic  is  expected  to  grow  from  9.5  million  flights  annually  to  17  million   in  2030,   this  will  only  add   to   the  problems   that  ATM   is  already  facing.  Without  a  change  to  the  ATM  systems,   the  problems  are  expected  to  keep  increasing.4    

    What  is  SESAR?  The   European   Commission   (EC)   launched   the   Single   European   Sky   (SES)  initiative  to  reform  the  ATM  system  at  a  European  level.  Their  objectives  for  2020  and  beyond  compared  to  2005  are:  • A  three-‐fold  increase  in  capacity  • Improve  safety  by  a  factor  or  10  • Reduce  environmental  impact  of  flights  by  10%  • Reduce  costs  by  50%  per  flight    

     In  2007  the  Single  European  Sky  ATM  Research  (SESAR)  was  established  as  the   technological   dimension   of   SES   by   the   EC   and   EUROCONTROL.   They  develop   technologies   and   operational   concepts   that   will   modernise   the  European  ATM  system.  The   ATM  Master   Plan5   provides   roadmaps   for   stakeholders   that   connect  SESAR’s   research   and   development   projects   with   deployment.   Showing  them  the  essential  operational  and  technological  changes  to  meet  the  SES  objectives.  There  are  six  key  features  that  are  essential   to  reaching  the  SESAR’s  goals  are:  

  • Fact  sheet  i4D                

    • Moving  from  Airspace  to  4D  Trajectory  Management  • Traffic  Synchronisation  • Network  Collaborative  Management  and  Dynamic  /  Capacity  Balancing    • SWIM  • Airport  Integration  and  Throughput  • Conflict  Management  and  Automation    SESAR  has   three   views.   The   performance   view   shows   the   high-‐level   goals  for   improving   the   Key   Performance   Areas:   Capacity,   cost-‐efficiency,  environment  and  safety.  The  deployment  view  provides  the  roadmaps  with  four   steps   for   implementations   of   the   six   key   features:   the   deployment  baseline,  step  1  time-‐based  operations,  step  2  trajectory  based  operations  and  step  3  performance  based  operations.  The  business  view  captures  the  financial   requirements   for   stakeholders  and  contains  a  high-‐level  analyses  of  the  costs  of  SESAR.    SESAR’s  objectives  to  be  reached  with  the  deployment  of  step  1  are:  • Increase  capacity  by  27%  • 40%  reduction  in  accident  risk  per  flight  hours  • Reduce  environmental  impact  of  flights  by  10%  • Reduce  costs  by  6%  per  flight.    Step  1   is  the  first  step  toward  implementation  of  the  concepts  that  SESAR  made   for   2020   and   focusses   on   flight   efficiency,   predictability   and  environment,   this   is   where   i4D   will   be   deployed.   I4D   falls   under   the   key  performance  area   traffic   synchronisation.  Deployment  of   i4D   is   scheduled  for  2020  according   to   the  2012  Master  Plan.   Full  4D  capability   falls  under  moving  from  Airspace  to  4D  Trajectory  Management  in  step  2,  deployment  dates  are  yet  to  be  determined.            

    i4D  general  system  description  Initial   4D,   also   called   i4D,   is   one   of   the   technologies   being   developed   to  attribute  to  the  key  objectives  that  are  set  by  SESAR.5  The  main  goal  of  i4D  is   to   create   more   predictability   and   controllability   about   the   position   of  aircraft.6      I4D   is  a  concept  where  a  3-‐dimentional  point   in  space   (latitude,   longitude  and  altitude)  is  added  with  a  time  constraint,  hence  the  4  dimensions.  This  enables  controllers  to  set  a  time  slot  long  in  advance  for  aircraft  to  be  at  a  Merging  Point  (MP),  in  order  to  sequence  traffic  for  arrival.  A  MP  is  a  point  is   space   where   multiple   aircraft   converge   with   the   same   destination.  

     A   typical   MP   could   be   placed   at   an   Initial   Approach   Fix   (IAF)   of   an  instrument   approach.   In   return   the   aircraft   is   allowed   to   fly   to   this   MP  without   vectors  or   speed   changes.   This   should  eventually  be  beneficial   to  both  flight  time  and  fuel  cost.    

  • Fact  sheet  i4D                

     “I4D  will  be  the  first  step  toward  full  4D  trajectories.   I4D   in  comparison  to  full   4D   will   only   be   able   to   provide   a   single   point   with   a   time   constraint  instead  of  multiple  points  with  time  constraints.”    Steps  toward  i4D  service7    There  are  seven  steps  before  an  i4D  service  can  be  established.  At  first  an  achievable   time   constraint   must   be   chosen,   which   will   be   done   with  continuously   sharing   information   between   air   and   ground.   For   example   a  controller   might   want   an   aircraft   to   be   at   the   MP   at   a   time   slot   that   is  impossible   to   achieve   or   very   uneconomical.   It   is   therefore   of   main  importance   that   the   efficient   and   reliable   sharing   of   information   can   be  realized.    The   airborne  4D   route  of   the   aircraft   is   first   downlinked   to   the   controller  and  compared  to  the  4D  ground  route  generated  by  a  ground  station.  The  airborne  trajectory  is  calculated  by  the  Flight  Management  System  (FMS)  in  the  aircraft  and  will  take  into  account  operational  information  such  as  cost  index,  load  and  meteorological  information.  The  ground  route  will  take  the  flight   plan   received   based   on   the   flight   plan   filled   by   the   pilot   before  departure   and   adds   information   to   it   such   as   restricted   areas,   hand   over  condition  between   controllers  and  optimization  of   traffic   flow.   This  might  make  the  airborne  trajectory  different  than  the  ground  trajectory.   If  there  are  any  discrepancies  between  the  air  and  ground  4D  route  the  controller  adjusts   the   desired   route,   updates   the   ground   system   if   necessary,   and  communicates   it   back   to   the   flight   crew   via   voice   or   data   link  communication.   The   flight   crew   will   now   implement   the   route   into   the  FMS.    The  second  step  will  be  the  ground-‐to-‐ground  communication  about  the  3D  trajectory.  This  step  is  to  make  sure  that  there  is  a  common  view  between  ground  units   involved   that   can  be  used  as  a  basis   in   starting   coordinating  the   downlinked   trajectory.   For   most   of   the   flights   this   step   is   a  reconfirmation   of   the   flight   plan   trajectory,   although   if   there   are   any  

    discrepancies  between  ground  systems  they  need  to  be  resolved.  This  is  to  ensure  a  trajectory  that  can  be  accepted  by  all  ground  parties  involved.    This  third  step  is  the  negotiation  of  the  3D  trajectory  between  ground  and  air.   The   agreed   ground   trajectory  will   be   uplinked   to   the   aircraft   and   the  flight   crew   will   assess   if   there   are   any   implications.   If   the   trajectory   is  rejected  the  4D  trajectory  service  is  terminated  and  the  flight  will  continue  as  a  normal  non-‐4D  flight,  solving  problems  with  voice  communication  and  tactical   control   instructions.   In   normal   cases   there   will   only   be   minor  changes   to   the   trajectory   by   the   ground   system   and   the   flight   crew   will  agree  with  the  trajectory.  The  trajectory  will  now  be  uplinked  to  the  aircraft  and   the   FMS   will   calculate   an   estimated   min/max   time   for   a   fix   on   the  agreed  route  to  downlink  back  to  the  ground.  The  min/max  times  are  used  to   generate   a   time   constraint   by   the   ground   system   that   is   achievable  by  the  aircraft.    During  step  four  the  ground  system  will  negotiate  a  time  constraint  for  the  fix.   This   will   be   calculated   by   a   ground   system   called   Arrival   Manager  (AMAN).  An  AMAN  system  will  calculate  times  for  aircraft  to  be  at  the  MP  to  optimize  the  sequence  into  an  airport.  This  timeslot  will  be  based  on  the  downlinked   information   on   what   is   actual   possible   for   the   aircraft   to  achieve.  

     

  • Fact  sheet  i4D                

     

    At   step   five   the   ground   system   negotiates   the   time   constraint   with   the  aircraft.   Because   the   time   constraint   is   derived   from   the   aircrafts   own  estimated   min/max   it   is   assumed   that   the   time   constraint   will   be  acceptable.   If   the   time   constraint   is   not   accepted   the   ground   system  will  negotiate  a  different   constraint  with   the   flight   crew  or   the   service   can  be  terminated.  If  the  time  slot  is  accepted  by  the  flight  crew,  it  is  inserted  in  the  FMS  and  the   aircraft   speed   is   automatically  managed   to   comply  with   the   time   slot  over  the  MP.    During  step  six  the  flight  will  continue  according  to  its  agreed  trajectory  and  time   constraints   while   ATC   is   clearing   the   aircraft   for   the   portion   of   the  flight  that  lays  in  their  area  of  responsibility.  Intervention  of  controllers  will  be   held   to   a   minimum,   only   in   cases   such   as   separation   or   weather   the  trajectory  will   be  modified.  When   the  aircraft   can   still  meet   its   constraint  after   a  modification   of   the   trajectory   the   service   is   continued.  When   it   is  not  possible  for  the  aircraft  to  make  the  constraint  after  a  modification  of  the  trajectory  a  warning  will  be  given  to  the  flight  crew  and  the  controller.  A  new   trajectory   is  downlinked  and  a  new  negotiation  progress  of   a   time  constraint  can  be  necessary.  At   step   seven   the   aircraft   reached   the   waypoint   at   the   agreed   time  constraint.   This   can   result   in   a   termination   of   the   service   or   a   new  negotiation   for   a   new   time   constraint   if   this   is   necessary.  

     

     

    For  efficient  use  of   i4D,  a  uniform  system  with  agreed  standards  for  every  user   is   required.   The   system  will   only   generate  benefits  when   there   is   an  efficient  sharing  of  the  trajectory  and  it  will  thus  be  necessary  to  have  the  appropriate   communication   systems   on   the   ground   as   well   as   in   the   air.  System  Wide   Information  Management   (SWIM)   network   will   be   of   much  importance   to   the   system,   because   i4D   relies   on   the   efficient   sharing   of  information.   The   benefit   of   the   i4D   system   will   increase   with   increasing  equipped  aircraft  in  the  area  where  the  service  is  provided.8    

    Components  and  capability  requirements    The   components   needed   to   fulfil   to   the   system   requirements   can   be  divided  into  airborne  and  ground  based  equipment9.  Airborne:  • Enhanced   FMS:   to   calculate   the   trajectory   and   a   time-‐keeping  

    functionality   to   provide   accurate   delivery   of   the   flight   over   the  metering  fix.  

    • Controller  Pilot  Data   link  Connection   (CPDLC):  The  aircraft  needs  to  be  able  to  support  data   link  to  receive  route  clearances  with  time,  speed  and  vertical  constrains.  Also  the  aircraft  needs  to  be  able  to  reply  to  a  time  slot.  

    • Automatic   Dependence   surveillance-‐Contract   (ADS-‐C):   required   to  downlink   the   trajectory   and   an   achievable   time   at   a   fix   requested   by  controllers.  

    • Control  Display  Unit  (CDU):  It  will  display  the  data  link  messages  to  the  flight   crew   and   provides   the   means   to   answer   to   the   clearances  (WILCO,  UNABLE  and  reject).    

     Ground  based:  • Data  link  Front-‐End  Processor  (DLFEP):  this  will  be  responsible  for  data  

    link   exchanges   such   as   ADS-‐C   and   CPDLC.   It   will   include   Network  monitoring,   communication   establishment,   contracts   and   messages  uplinks   and   reception   of   downlinked   data   as  well   as   semantic   checks  and  translation  of  the  data  from/to  the  internal  ground  systems  format.  

  • Fact  sheet  i4D                

    • Human  Machine  Interface  (HMI):  displays  the  radar  image  enriched  by  the  ground  and  airborne  flight  plan  data.  It  will  provide  an  interface  to  the  controllers  to  input  clearances  and  manage  the  flight.  

    • Flight   Data   Processing   System   (FDPS):   will   compute   the   ground  trajectory   and   send   flight   plan   information   to   a   human   machine  interface   where   it   can   be   adjusted   and   updated   with   current  information.  It  will  provide  ADS-‐C  data  to  the  human  machine  interface  and   computes   the   2D   discrepancy   indicator.   It   will   link   controllers   to  exchange  online  messages  and  it  will  link  flight  plans  to  radar  data.    

    • AMAN   computes   and   displays   the   arrival   sequence   in   the   airport  surroundings.   And   provides   means   for   the   approach   controllers   to  manually  update  the  sequence.  

     

    Implementation    Implementation  of   i4D  will  be  a  process   involving  multiple  parties  who  all  have  different  interests,  financial  situations  and  operations.  Only  when  the  deployment   of   SESAR   is   timely,   synchronized   and   coordinated,   in  accordance  with  the  Master  Plan,  the  performance  objectives  and  benefits  from  the  ATM  modernization  will  be  achieved.10  This  will  require  SESAR  to  fully   deliver   systems   from   concept   to   implementation   and   on   the   other  hand  involve  all  the  relevant  stakeholders  to  deploy  a  new  ATM  system.    For   this   purpose   the   EC   adopted   the   Implementing   Regulation   (The  Regulation)  setting  up  an  EU  framework  supporting  the  implementation  of  the   Master   Plan.   The   Regulation   defines   the   following   framework   to  support  SESAR  deployment:    • Common  Projects  • Governance  Mechanisms  • The  deployment  Programme  • Implementation  projects  • Target  Incentives  The   common   projects   include   those   ATM   Functionalities   (AFs)   that   will  achieve  the  essential  operational  changes  defined   in  the  Master  Plan.  The  AFs   criteria   to   be   introduced   in   common  projects   are:   They   contribute   to  

    essential  operational  changes,  they  are  mature  for  deployment  and  there  is  a  need  for  synchronized.        The   EC   is   setting   up   the   first   Common   Project,   referred   to   as   the   Pilot  Common  Project  (PCP).  The  PCP  contains  six  AFs,  including  i4D.  The  PCP  is  a  special  Common  Project  not  just  because  it  is  the  first  one  but  also  because  it   activates   a   new   process   for   stakeholders   and   the   Commission   to   work  together.  The  PCP   includes   the   first  group  of   technical  and/or  operational  changes  to  be  implemented  between  2014-‐2024.    Governance  Mechanisms   forces  a   requirement   for  all  EU  civil  and  military  operational   stakeholders,   such   as   ANSPs,   airport   operators   and   airspace  users,   to   deploy   the   AFs   in   a   specific   region   and   within   a   determined  timeframe.   It   also   applies   to   other   bodies   such   as   the  Network  Manager,  the  SESAR  JU,  EASA,  European  Standardisation  Organisations  and  Eurocae.    

     

    Common  project  setup  sequence  

    EC  

    EC  

  • Fact  sheet  i4D                

    PCP  will  be  implemented  according  to  the  Deployment  Programme  and  the  Deployment   manager   is   responsible   for   the   timely   and   synchronized  implementation.  I4D  will  be  deployed  in  all  ATS-‐units  that  provide  air  traffic  services  in  the  ICAO  EUR-‐region  airspace.11  

    Air   traffic   services   providers   and   the   Network   manager   are   required   to  make   sure   that   i4D   is   available   as   from   1   January   2025.   The   deployment  manager   shall   develop  a   strategy,  which   shall   include   incentives,   to  make  sure   that   at   least   20%   of   all   aircraft   active   in   airspace   of   European   Civil  Aviation   Conference   (ECAC)   countries  and   in   the   ICAO   EUR   region  corresponding   to   at   least   45%   of   flights   operating   in   those   countries,   are  equipped  with   the   capability   to  downlink   aircraft   trajectories  using  ADS-‐C  EPP  as  from  1  January  2026.  

     The   deployment   of   i4D   must   be   monitored   carefully   because   a   delayed  implementation   could   have   a   potential   network   performance   impact   in   a  wide  area  involving  multiple  stakeholders.  The  consequences  could  be  that  performance  objectives  are  not  met  and  there  will  be  a  negative  impact  on  the  EU  economy,  employment,  mobility  and  environment.12  

     Deployment   of   i4D   from   a   technical   perspective   is   synchronized   so   the  system  and  service  delivery  changes  are  ensured  to  meet  the  performance  objectives.   Synchronization   shall   involve   all   ANSPs,   the  Network  Manager  and  airspace  users  (air-‐ground  synchronization  need).    At   last   global   synchronization   and   consistency   is   preferred,   in   order   to  ensure   best   economic   efficiency   and   interoperability   for   airspace   users.  This   will   be   achieved   through   the   cooperative   arrangements   in   the  Memorandum   of   Cooperation   in   civil   aviation   research   and   development  concluded  between  the  United  States  of  America  and  the  EU.13    

    Glossary  • Automatic  Dependence   surveillance-‐Contract   (ADS-‐C):   Is   a   surveillance  

    technique   that   works   via   a   data   link.   ADS-‐C   is   a   system   based   on   a  contract   between   controllers   and   an   aircraft.   The   contract   can   be   a  demand   contract,   a   periodic   contract,   an   event   contract   and/or   an  emergency  contract.  

    • ATM   Functionalities   (AFs):   Essential   operational   functionalities   for  implementation.  

    • Arrival   Manager   (AMAN):   AMAN   is   a   system   that   sequences   aircraft  into   an   airport,   taking   into   account;   airspace   state,   wake   turbulence,  aircraft  capability  and  user  preference.  This  is  done  by  assigning  aircraft  a   slot   time   to   arrive   over   a  merging   point.   This  must   increase   airport  flow  and  must  reduce  holding  times.    

    • Control  Display  Unit   (CDU):   Provides   the   interface   to   access   the   flight  management  system.    

    • Controller  Pilot  Data  link  Connection  (CPDLC):  CPDLC  is  a  method  that  is  used   to   communicate   between   pilots   and   air   traffic   controllers   via   a  data  link  system.  

    • Data   link   Front-‐End   Processor   (DLFEP):   Provides   a   road   between  controllers   and   data   link   equipped   aircraft.   It   enables   seamless  communication  between  different   types  of  data   link  systems,  creating  interoperability.    

  • Fact  sheet  i4D                

    • European   Commission   (EC):   is   the   executive   body   of   the   European  Union   responsible   for   proposing   legislation,   implementing   decisions,  upholding  the  EU  treaties  and  managing  the  day-‐to-‐day  business  of  the  EU.  

    • European   Civil   Aviation   Conference   (ECAC):   promotes   the   continued  development  of  a  safe,  efficient  and  sustainable  European  air  transport  system.  

    • Flight   Data   Processing   System   (FDPS):   Provides   real   time   flight  information   for   air   traffic   controllers   and   provides   automated   co-‐ordination  between  air  traffic  controllers.  

    • Flight   Management   System   (FMS):   A   FMS   is   part   of   the   aircrafts  avionics.  A  FMS  is  a  computer  system  that  automates  a  large  variety  of  tasks,  to  reduce  the  workload  on  the  flight  crew.  

    • Human  Machine  Interface   (HMI):  Provides  a  way  for  the  flight  crew  to  interact  with  automation  systems.    

    • Initial   Approach   Fix   (IAF):   is   the   point   where   the   initial   approach  segment  of  an  instrument  approach  begins.  

    • Merging   Point   (MP):   A   MP   is   a   fix   where   aircraft   converge   for   a  common  destination.    

    • Pilot  Common  Project  (PCP):  The  first  common  project,  including  i4D.  • Single  European  Sky  (SES):  is  a  European  Commission  initiative  by  which  

    the  design,  management  and  regulation  of  airspace  will  be  coordinated  throughout  the  European  Union.  

    • Stakeholders:   Airspace   users,   air   navigation   service   providers,   airport  operators,  military  and  the  network  manager.  

    • System  Wide   Information   Management   (SWIM)   is   the   intranet   of   air  traffic  management   and   is   of   great   importance   to   the   success   of   i4D.  The   large   exchange   of   information   nowadays   is   very   difficult   because  systems  are  often  made  with  one  specific  goal  and  they  all  have   their  own   custom   protocols.   SWIM   tries   to   make   information   interchange  available   between   all   providers   and   users   of   air   traffic   management  information.  They  will   share  aeronautical,   airport,   flight,  meteorology,  surveillance,   air   traffic   flow,   capacity   and   demand   information.   SWIM  tries  to  provide  a  safe  platform  to  give  the  right  information  to  the  right  

    people   at   the   right   time.   The   goals   of   SWIM   are   to   increase   ATM  efficiency  and  eventually  reduce  ATM  costs.  This  will  mainly  be  done  by  creating   a   uniform   system   with   standards   on   the   exchange   of  information.  

     References      1    http://www.eubusiness.com/topics/airlines/single-‐sky-‐3/  EUBusiness  -‐  Single  Sky  -‐  unblocking  congestion  in  Europe's  airspace  Published  11-‐06-‐2013    

    2      Cook,  Andrew.  European  Air  Traffic  Management  -‐  Principles,  Practice  and  Research.  Bur-‐lington:  Ashgate.  2007    3      http://ec.europa.eu/transport/modes/air/single_european_sky/  European  Commission  –  Single  European  Sky  02-‐12-‐2014    4      http://www.sesarju.eu/discover-‐sesar/why-‐sesar  Why  SESAR?  02-‐12-‐2014    5      SESAR.  European  ATM  Master  Plan.  2nd  edition,  October  2012      6    http://www.sesarju.eu/newsroom/all-‐news/4d-‐flights-‐make-‐air-‐travel-‐even-‐more-‐predictable  4D  flights  make  air  travel  even  more  predictable  03-‐12-‐2014    

  • Fact  sheet  i4D                

    7    EUROCONTROL.   Initial   4D-‐4D   Trajectory   Data   Link   (4DTRAD)   Concept   of  Operations      8    EUROCONTROL.  I4D  test  flight  heralds  new  era  in  air  traffic  management    9    Mutuel,   Laurence   H.     -‐   Initial   4D   Trajectory   Management   Concept  Evaluation    10    http://www.sesarju.eu/innovation-‐solution/deploying-‐sesar  SESAR  deployment:  delivering  operational  changes  03-‐12-‐2014    11    European  Commission.  SESAR  deployment  -‐  Targeted  stakeholder  Consultation.  December  2013    12    http://eur-‐lex.europa.eu/legal-‐content/EN/TXT/?uri=uriserv:OJ.L_.2014.190.01.0019.01.ENG  European  Union  Law  03-‐12-‐2014    13    http://eur-‐lex.europa.eu/legal-‐content/EN/TXT/?uri=CELEX:52011PC0043  European  Law  03-‐12-‐201          

    Front  page  image:  www.amazing-‐aviation.com  

    Image  references  (top  to  bottom,  left  to  right)  

    1. http://www.sesarju.eu/    2. https://www.youtube.com/watch?v=PNJxX-‐a8rcc      3. EUROCONTROL.  Initial  4D-‐4D  Trajectory  Data  Link  (4DTRAD)  Concept  of  

    Operations    4. EUROCONTROL.  Initial  4D-‐4D  Trajectory  Data  Link  (4DTRAD)  Concept  of  

    Operations    5. https://www.eurocontrol.int/articles/member-‐states  

    6. http://ec.europa.eu/transport/modes/air/consultations/doc/2014-‐01-‐31-‐sesar/consultation-‐paper.pdf  

     Dutch  Summary  De   Europese   Commissie   heeft   het   project   Single   European   Sky   opgericht  om   het   gefragmenteerde   Europese   Luchtruim   te   verenigen   en   het   Air  Traffic  Management   systeem   te  moderniseren.  Hier   is   behoefte   aan   door  de   huidige   problemen  met   capaciteit   en   inefficiëntie   die   leiden   tot   hoge  kosten  en  milieu  belasting.3  Deze  problemen  zullen  groter  worden  met  de  verwachtte  groei  van  9.5  miljoen  vluchten  per  jaar  naar  17  miljoen  in  2030.4  SESAR   is   de   technologische   dimensie   die   technologieën   en   operationele  concepten  ontwikkelt  om  modernisatie  te  realiseren  en  daarmee  capaciteit,  veiligheid,   kostenefficiëntie   en  milieubelasting   te   verbeteren.   Een   van   de  oplossingen  is  initial  4D  (i4D).5  

     I4D  is  een  van  de  technologieën  die  op  het  moment  worden  ontwikkeld  om  de  hoofdoelen  van  SESAR  te  bereiken.5   I4D  is  een  concept  waaraan  een  3-‐dimensionaal   punt   een   tijdsrestrictie  wordt   toegevoegd,  waardoor   er   een  

  • Fact  sheet  i4D                

    4-‐dimensionaal  punt  ontstaat.   I4D  operaties  maken   lang  van  te  voren  een  volgorde   van   vliegtuigen   die   convergeren   op   een   merging   point.   Na  coördinatie   tussen  grondsystemen  en  het  vliegtuig,  krijgt  elk  vliegtuig  een  tijdslot  voor  zijn  aankomst  op  een  merging  point.  Daar  staat  tegenover  dat  het  vliegtuig  toestemming  krijgt  om  naar  dit  punt  te  vliegen  zonder  vector  instructies   van   controllers.   Dit   zal   uiteindelijk   moeten   leiden   tot   een  reductie  in  vluchttijden  en  brandstof  kosten.7    Om   de   implementatie   van   i4D   gesynchroniseerd   en   zonder   vertraging   te  laten   gebeuren,   heeft   de   Europese   Commissie   een   raamwerk   opgesteld,  genaamd  Implementing  Regulation.  Dit  raamwerk  bestaat  uit  5  stappen  die  volledige   implementatie   van   een   groep   essentiële   ATM   functies  ondersteunen.   De   eerste   stap   zijn   de   Common   Projects   en   i4D   zit   in   het  Pilot  Common  Project.  Het  Pilot  Common  Project  implementeert  de  eerste  groep  ATM  functies  en  activeert  een  nieuw  proces  voor  belanghebbenden  en  de  Europese  Commissie  om   samen   te  werken.  De   tweede   stap   zijn   de  zogenaamde   Governance   Mechanisms,   die   belanghebbenden   dwingen  ATM  functies   te   implementeren  binnen  een  bepaalde   regio  en   tijdsframe.  Hoe  de  ATM  functies  geïmplementeerd  moeten  worden,  is  bepaald  binnen  het   Deployment   Programme   en   de   Deployment   Manager   draagt   de  verantwoordelijkheid   hiervoor.   Deze   strategie,   die   stimulansen   bevat,   is  verplicht   om   te   zorgen   dat   vanaf   1   januari   2026   minimaal   20%   van   alle  vliegtuigen   actief   in   het   ECAC   (European   Civil   Aviation   Conference)  luchtruim  en  45%  van  alle  vluchten  opererende  binnen  landen  van  de  ICAO  EUR  regio,  zijn  uitgevoerd  met  het  vermogen  om  vlucht  trajecten  met  ADS-‐C   EPP   uit   te   voeren.   De   luchtverkeersleiding   en   de   netwerkmanager   zijn  verplicht  om  ervoor  te  zorgen  dat  i4D  beschikbaar  is  vanaf  1  januari  2025.10  

    Dit  is  een  uitgave  van:  Luchtvaartfeiten.nl    

    Auteurs:  Pamela  Bakhuis,  Roderik  de  Jong  and  Bastian  Musters  

    Eindredactie:  Drs.  Joris  Vlaming,  Dr.  ir.  Robert  Jan  de  Boer  en  Drs.  Geert  Boosten  

    Overnemen  van  teksten  is  toegestaan.  Graag  bij  citeren  vermelden:  ‘Luchtvaartfeiten.nl  (2014),  Fact  sheet  i4D,  www.luchtvaartfeiten.nl’  

    Luchtvaartfeiten.nl  is  een  initiatief  van  de  HvA  Aviation  Academy.  Studenten  en  docenten  delen  kennis  met  politiek  en  publiek,  om  te  zorgen  voor  een  discussie  op  basis  van  feiten.  

    December  2014