Fabrication Technology for Efficient High Power Silicon...

95
Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors Reza Ghandi Doctoral Thesis KTH, Royal Institute of Technology Department of Integrated Devices and Circuits Stockholm, Sweden 2011

Transcript of Fabrication Technology for Efficient High Power Silicon...

Page 1: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient

High Power Silicon Carbide Bipolar

Junction Transistors

Reza Ghandi

Doctoral Thesis

KTH, Royal Institute of Technology

Department of Integrated Devices and Circuits

Stockholm, Sweden 2011

Page 2: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Cover illustration:

Top) Cross section and top view of fabricated 4H-SiC BJT

Bottom) Schematic demonstration of small area multi-finger vertical BJT

Fabrication Technology for Efficient High Power Silicon

Carbide Bipolar Junction Transistors

A dissertation submitted to Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden, in partial fulfillment of the requirements for the degree of Teknologie Doktor (Ph.D)

TRITA-ICT/MAP AVH Report 2011:01 ISSN 1653-7610 ISRN KTH/ICT-MAP/AVH-2011:01-SE ISBN 978-91-7415-861-8 ©2011 Reza Ghandi

Page 3: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

iii

Abstract

The superior characteristics of Silicon Carbide as a wide band gap semiconductor have motivated

many industrial and non-industrial research groups to consider SiC for the next generations of

high power semiconductor devices. The SiC Bipolar Junction Transistor (BJT) is one candidate

for high power applications due to its low on-state power loss and fast switching capability.

However, to compete with other switching devices such as Field Effect Transistors (FETs) or

IGBTs, it is necessary for a power SiC BJT to provide a high current gain to reduce the power

required from the drive circuit. In this thesis implantation free 4H-SiC BJTs with linearly graded

base layer have been demonstrated with common-emitter current gain of 50 and open-base

breakdown voltage of 2700 V. Also an efficient junction termination extension (JTE) with 80%

of theoretical parallel-plane breakdown voltage was analyzed by fabrication of high voltage PiN

diodes to achieve an optimum dose of remaining JTE charge. Surface passivation of 4H-SiC BJT

is an essential factor for efficient power BJTs. Therefore different passivation techniques were

compared and showed that around 60% higher maximum current gain can be achieved by a new

surface passivation layer with low interface trap density that consists of PECVD oxide followed

by post-deposition oxide anneal in N2O ambient. This surface passivation along with double-

zone JTE were used for fabrication of high power BJTs that result in successful demonstration of

2800 V breakdown voltage for small area (0.3 × 0.3 mm) and large area (1.8 × 1.8 mm) BJTs with

a maximum dc current gain of 55 and 52, respectively. The small area BJT showed RON =

4mΩcm2, while for the large are BJT RON = 6.8 mΩcm2. Finally, a Darlington transistor with a

maximum current gain of 2900 at room temperature and 640 at 200 °C is reported. The high

current gain of the Darlington transistor is achieved by optimum design for the ratio of the active

area of the driver BJT to the output BJT.

Page 4: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

iv

Table of Contents

Abstract ......................................................................................................................................................... iii

Table of Contents ........................................................................................................................................ iv

List of Appended Papers ............................................................................................................................ vi

Summary of Appended papers .................................................................................................................. ix

Acknowledgments ...................................................................................................................................... xii

List of Symbols and Acronyms ............................................................................................................... xiv

1 Introduction ......................................................................................................................................... 1

2 Power Devices; Current Technology and Challenges .................................................................... 3

2.1 Si vs. SiC ............................................................................................................................................. 3

2.2 Power Rectifiers ................................................................................................................................. 5

2.2.3. JBS and MPS .................................................................................................................................. 7

2.3 Power Field Effect Switches ............................................................................................................ 8

2.3.1. SiC MOSFET ................................................................................................................................. 8

2.3.2. SiC JFET ....................................................................................................................................... 10

2.4 IGBT ................................................................................................................................................. 12

2.5 GTO .................................................................................................................................................. 13

2.6 Power Bipolar Junction Transistors .............................................................................................. 13

3 Fabrication of SiC devices................................................................................................................ 29

3.1 Bulk and Epitaxial Growth of SiC ................................................................................................ 29

3.2 Surface Preparation ......................................................................................................................... 33

3.3 Etching .............................................................................................................................................. 34

Page 5: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

R.Ghandi Table of Contents

v

3.4 Lithography ...................................................................................................................................... 35

3.5 Ion Implantation .............................................................................................................................. 36

3.6 Surface Passivation .......................................................................................................................... 37

3.7 Metallization ..................................................................................................................................... 39

4 Bipolar Junction Transistors in 4H-SiC, Fabrication and Characterization ............................. 41

4.1 Design of 4H-SiC BJTs .................................................................................................................. 41

4.2 Bipolar Transistors with regrown extrinsic base and etched JTE ............................................ 45

4.3 Bipolar Transistors with linearly graded base layer and epitaxial JTE ..................................... 45

4.4 Etched Junction Termination Extension for High Power Devices ......................................... 47

4.5 Surface Passivation Influence on the Performance of 4H-SiC BJTs ....................................... 53

4.6 Influence of Crystal Orientation on the Current Gain of 4H-SiC BJTs ................................. 57

4.7 2.8 kV Bipolar Transistors with Improved Junction Termination ........................................... 58

4.7.1. Degradation .................................................................................................................................. 61

4.7.2. Switching Characteristics ............................................................................................................ 61

4.8 Monolithic Darlington Transistors ............................................................................................... 63

4.9 High Temperature Characteristics ................................................................................................ 65

5 Summary and Future Outlook ........................................................................................................ 67

Bibliography ................................................................................................................................................ 71

Page 6: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

vi

List of Appended Papers

I. Fabrication of 2700-V 12-mΩcm2 non ion-implanted 4H-SiC BJTs with common-emitter current gain of 50 R. Ghandi, H.-S. Lee, M. Domeij, B. Buono, C.-M. Zetterling, M. Ostling, IEEE Electron Device Letters, v 29, n 10, p 1135-1137, 2008.

II. High Voltage 4H-SiC PiN Diodes with Etched Junction Termination Extension R. Ghandi, B. Buono, M. Domeij, G. Malm , C.-M. Zetterling, M. Ostling IEEE Electron Device Letters, v 30, n 11, p 1170-1172, 2009.

III. High Current Gain Implantation-free 4H-SiC Monolithic Darlington Transistor R. Ghandi, B. Buono, M. Domeij and M. Östling, IEEE Electron Device Letters, v 32, n 2, p 188-190, 2011.

IV. Surface Passivation Effects on the Performance of 4H-SiC BJTs R. Ghandi, B. Buono, M. Domeij, R. Esteve, A. Schöner, J. Han, S. Dimitrijev, S.A. Reshanov, C.-M. Zetterling, M. Östling, IEEE Transactions on Electron Devices, v 58, n 1, p 259-265, 2011.

V. Removal of Crystal Orientation Effects on the Current Gain of 4H-SiC BJTs using Surface Passivation R. Ghandi, B. Buono, M. Domeij, S. Shayestehaminzadeh, C-M. Zetterling, and M. Östling, Submitted to IEEE Electron Device Letters.

VI. High Voltage (2.8 kV) Implantation-free 4H-SiC BJTs with Long-Term Stability of the Current Gain R. Ghandi, B. Buono, M. Domeij, C.-M. Zetterling, M. Ostling Submitted to IEEE Transaction on Electron Devices.

VII. High-current-gain SiC BJTs with regrown extrinsic base and etched JTE H.-S. Lee, M. Domeij, R. Ghandi, C.-M. Zetterling, M. Ostling, IEEE Transactions on Electron Devices, v 55, n 8, p 1894-1898, 2008.

Page 7: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

vii

Related work and other work not included in the thesis 1. B. Buono, R. Ghandi, M. Domeij, G. Malm, C.-M Zetterling, M. Östling, “Modeling and

Characterization of Current Gain versus Temperature in 4H-SiC Power BJTs” IEEE Transactions on Electron Devices, v 57, n 3, p 704-11, 2010.

2. B. Buono, R. Ghandi, M. Domeij, G. Malm, C.-M Zetterling, M. Östling, ” Influence of Emitter Width and Emitter-Base Distance on the Current Gain in 4H-SiC Power BJTs” IEEE Transactions on Electron Devices, v 57, n 10, p 2664-2670, 2010.

3. K. Buchholt, R. Ghandi, M. Domeij, C-M. Zetterling, J. Lu, P. Eklund, L. Hultman and

A. Lloyd Spetz, “Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4H-silicon carbide”, Accepted for publication in Applied Physics Letters, 2011.

4. R.Ghandi , H.-S.Lee, M.Domeij, B.Buono, C.-M.Zetterling and M.Östling,

“Implantation-Free Low on-resistance 4H-SiC BJTs with Common-Emitter Current Gain of 50 and High Blocking Capability” Materials Science Forum, v 615-617, p 833-836, 2009.

5. M. Östling, M. Domeij, C. Zaring, A. Konstantinov, R. Ghandi, B. Buono, A. Hallen, C.-M Zetterling, “SiC Bipolar Power Transistors - Design and Technology Issues for Ultimate Performance” Materials Research Society Symposium Proceedings, v 1246, p 175-186, 2010.

6. M. Usman, A. Hallén, R. Ghandi and M. Domeij, “Effect of 3.0 MeV helium implantation on electrical characteristics of 4H-SiC BJTs” Physica. Scripta. T141 014012, 2010.

7. Lee, H.-S. Domeij, M.; Zetterling, C.-M.; Ghandi, R.; Ostling, M.; Allerstam, F., “1200 V

4H-SiC BJTs with a common emitter current gain of 60 and low on-resistance” Materials Science Forum, v 600-603, p 1151-1154, 2009.

8. Ghandi, R. Lee, H-S.; Domeij, M.; Zetterling, C.-M.; Ostling, M. ” Backside nickel based ohmic contacts to n-type silicon carbide” Materials Science Forum, v 600-603, p 635-638, 2009.

9. Ghandi, R.; Lee, H.-S.; Domeij, M.; Zetterling, C.-M.; Ostling, M. “Simultaneous study

of nickel based ohmic contacts to Si-face and C-face of n-type silicon carbide” Proceedings of International Semiconductor Device Research Symposium, ISDRS, 2007.

10. R. Ghandi, B. Buono, M. Domeij, R. Esteve, A. Schöner, J. Han, S. Dimitrijev, S.A.

Reshanov, C.-M. Zetterling and M. Östling, “ Experimental evaluation of different passivation layers on the performance of 3kV 4H-SiC BJTs” Materials Science Forum, v 645-648, p 661-664, 2010.

11. B. Buono, R. Ghandi, M. Domeij, G. Malm, ,C.-M Zetterling and M. Östling, ”

Temperature Modeling and Characterization of the Current Gain in 4H-SiC Power BJTs” Materials Science Forum, v 645-648, p 1061-1064, 2010.

Page 8: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

R.Ghandi Table of Contents

viii

12. R.Ghandi, B.Buono, M.Domeij, C.-M.Zetterling, and M.Östling, “High Voltage, Low

On-resistance 4H-SiC BJTs with Improved Junction Termination Extension”, To be published in Material Science Forum, 2011.

13. L. Lanni, R. Ghandi, M. Domeij, C.-M. Zetterling, B. G. Malm, M. Östling,

“Measurements and simulations of lateral PNP transistor in a SiC NPN BJT technology for high temperature integrated circuits” To be published in Material Science Forum, 2011.

14. B. Buono, R. Ghandi, M. Domeij, G. Malm, ,C.-M Zetterling and M. Östling, ”Current

Gain Degradation in 4H-SiC Power Bipolar Junction Transistors” To be published in Material Science Forum, 2011.

15. J Hållstedt, R Ghandi, M Kolahdouz, M Östling and H H Radamson, “Integration of

HCl chemical vapor etching and SiGe:B selective epitaxy for source/drain application in MOSFETs”, Semicond. Sci. Technol. v 22, S123–S126, 2007.

16. R. Ghandi, M. Kolahdouz, J. Hållstedt, Jun Lu, R. Wise, H. Wejtmans, M. Östling and

H.H. Radamson, “High boron incorporation in selective epitaxial growth of SiGe layers”, Journal of Materials Science: Materials in Electronics, v 18, n 7, p 747-751(5), 2007.

17. M Kolahdouz, R Ghandi, J Hållstedt, R Wise, Hans Wejtmans, and H H Radamson,

“The influence of Si coverage in a chip on layer profile of selectively grown Si1-xGex layers using RPCVD technique”, Thin Solid Films, v 517, n 1, p 257-258, 2008.

18. R Ghandi, M Kolahdouz, J Hållstedt, R Wise, Hans Wejtmans, and H H Radamson,

“Effect of strain, substrate surface and growth rate on B-doping in selectively grown SiGe layers”, Thin Solid Films, v 517, n 1, p 334-336, 2008.

19. H. H. Radamson, M. Kolahdouz, R. Ghandi, and J. Hallstedt, “Selective epitaxial growth

of B-doped SiGe and HCl etch of Si for the formation of SiGe:B recessed sources and drains (pMOS transistors)”, Thin Solid Films, v 517, n 1, p 84-86, 2008.

20. J. Hållstedt, M. Kolahdouz, R. Ghandi, R. Wise, J. W. Weijtmans and H. H. Radamson,

“Pattern dependency in selective epitaxy of B-doped SiGe layers for advanced metal oxide semiconductor field effect transistors”, Journal of Applied Physics, v 103, 054907, 2008.

21. H. H. Radamson, M. Kolahdouz, R. Ghandi, and M. Ostling, “High strain amount in

recessed junctions induced by selectively deposited B-doped SiGe layers”, Materials Science and Engineering: B, v 154-155, p 106-109, 2008.

Page 9: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

ix

Summary of Appended papers

Paper I.

This paper reports high blocking (2.7 kV) implantation-free Bipolar Junction Transistors with

low on-state resistance (12 mΩcm2) and high common-emitter gain of 50 that are fabricated by

design and implementation of graded base doping to provide low resistive base contacts. In this

design, the base layer is fully depleted close to the breakdown voltage providing an efficient JTE

without ion implantation. Eliminating the implantation step in this approach can be beneficial for

avoiding high temperature annealing needed for activation of dopants and also for avoiding

generation of life-time reducing defects that can affect high current gain and blocking capability.

The author performed all the device processing and the electrical characterization and

wrote the manuscript.

Paper II.

This paper presents implantation-free mesa-etched 4H-SiC PiN diodes with a near-ideal

breakdown voltage of 4.3 kV (about 80% of the theoretical value). The key step in achieving a

high breakdown voltage is a controlled etching into the epitaxially grown p-doped anode layer to

reach an optimum dopant dose of ~1.2×1013 cm-2 in the junction termination extension (JTE).

Electroluminescence revealed a localized avalanche breakdown in good agreement with device

simulation. A comparison of diodes with single-zone and two-zone etched JTE show a higher

breakdown voltage and a smaller sensitivity to variation in processing conditions for diodes with

a two-zone JTE. The author performed all the device processing and the electrical

characterization and wrote the manuscript.

Paper III.

An implantation-free 4H-SiC Darlington transistor with high current gain of 2900 (JC = 970

A/cm2 and VCE = 6V) at room temperature is reported in this paper. The device demonstrates a

record maximum current gain of 640 at 200 °C offering an attractive solution for high

temperature applications and exhibits an open-base breakdown voltage of 1kV that is less than

optimum bulk breakdown due to isolation trench between the driver and the output BJT. On the

same wafer a monolithic Darlington pair with a non-isolated base layer was also fabricated. At

room temperature, this device shows a maximum current gain of 1000 and open-base breakdown

voltage of 2.8 kV which is 75% of the parallel-plane breakdown voltage. The author performed

all the device processing and the electrical characterization and wrote the manuscript.

Page 10: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

R.Ghandi Summary of Appended Papers

x

Paper IV.

In this paper, the electrical performance in terms of maximum current gain and blocking

capability has been compared theoretically and experimentally for 4H-SiC BJTs passivated with

different surface passivation layers. Variation in BJT performance has been correlated to densities

of interface traps and fixed oxide charge, as evaluated through MOS capacitors. Six different

methods were used to fabricate SiO2 surface passivation on BJT samples from the same wafer.

The highest current gain was obtained for PECVD deposited SiO2 which was annealed in N2O

ambient at 1100 °C during 3 hours. Variations in breakdown voltage for different surface

passivations were also found, and this is attributed to differences in fixed oxide charge that can

affect the optimum dose of the high voltage junction termination extension (JTE). The

dependence of breakdown voltage on the dose was also evaluated through non-implanted BJTs

with etched-JTE. The author performed all the device processing and most of the electrical

characterization and wrote the manuscript.

Paper V.

In this study, the dependence of the current gain and the base resistance on the crystal

orientation for single finger 4H-SiC BJTs are analyzed. Statistical evaluation techniques were also

applied to study the effect of surface passivation and mobility on the performance of the devices

and it is showed that the BJTs with emitter edge aligned to the [1210] direction shows lower

current gain before surface passivation and higher base resistance after contact formation

compared to other investigated crystal directions. However the devices show similar current gain

independent of the crystal orientation after surface passivation. The author performed all the

device processing and most of the electrical characterization and wrote the manuscript.

Paper VI.

In this work, implantation-free 4H-SiC BJTs with high breakdown of 2800 V have been

fabricated utilizing a controlled two-step etched junction termination extension (JTE). The small

area devices show a maximum dc current gain of 55 and VCESAT = 1.05 V at Ic = 0.107 A that

corresponds to a low ON-resistance of 4 mΩ·cm2. The large area device have a maximum dc

current gain of 52 and VCESAT = 1.14 V at Ic = 5 A that corresponds to an ON-resistance of 6.8

mΩ·cm2. Also these devices demonstrate a negative temperature coefficient of the current gain

(β=26 at 200°C) and a positive temperature coefficient of the ON-resistance (RON = 10.2

mΩ·cm2 at 200°C). The small area BJT shows no bipolar degradation and low current gain

degradation after 150 Hrs stress of the base-emitter diode with current level of 0.2A (JE=500

A/cm2). Also, large area BJT shows a VCE fall time of 18 ns during turn-on and a VCE rise time of

10 ns during turn-off for 400 V switching characteristics. The author performed all the device

processing and all of the electrical characterization and wrote the manuscript.

Page 11: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

R.Ghandi Summary of Appended Papers

xi

Paper VII.

This paper describes successful fabrication of 4H-SiC bipolar junction transistors (BJTs) with a

regrown extrinsic base layer and an etched junction termination extension (JTE). Large-area 4H-

SiC BJTs measuring 1.8 × 1.8 mm (with an active area of 3.24 mm2) showed a common emitter

current gain β of 42, specific on-resistance RSP_ON of 9 mΩcm2, and open-base breakdown voltage

BVCEO of 1.75 kV at room temperature. The key to successful fabrication of high-current-gain

SiC BJTs with a regrown extrinsic base is efficient removal of the p+ regrown layer from the

surface of the emitter–base junction. The BJT with p+ regrown layer has the advantage of lower

base contact resistivity and current gain that is less sensitive to the distance between the emitter

edge and the base contact, compared to a BJT with ion-implanted base. Fabrication of BJTs

without ion implantation means less lifetime-reducing defects, and in addition, the surface

morphology is improved since high-temperature annealing becomes unnecessary. BJTs with flat-

surface junction termination that combine etched regrown layers show about 250 V higher

breakdown voltage than BJTs with only etched flat-surface JTE. The author contributed with

device processing and electrical characterization.

Page 12: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

xii

Acknowledgments

My four years PhD study that is summarized in this thesis is indebted to guidance, assistance and

encouragement of several individuals at Royal Institute of Technology (KTH). First and

foremost, I would like to express my sincere gratitude to my principal supervisor, Dr. Martin

Domeij for his continuous support, motivation and immense knowledge in semiconductor

technology. He was indeed the true master mind behind this thesis and all of our successful

results are based on his accurate design and analysis.

Prof. Mikael Östling, head of the device technology department, dean of the ICT School at KTH

and my second supervisor is deeply appreciated for giving me the opportunity to study in the

field of SiC device technology and also for fruitful guidance and motivation in the research and in

the daily life.

I am indeed grateful to Dr. Henry Radamson as a supervisor in my master project and also as a

supporting friend in my academic and personal life. His true passion along with broad knowledge

had indeed an enormous influence on my research and study.

My deep gratitude goes to Prof. Carl-Mikael Zetterling for his scientific guidance and insightful

discussions. I also enjoyed his advanced student-centered teaching methods. Bread-baking design

of experiment (DOE) was one of my sweetest memories at KTH.

I am also indebted to Dr. Hyung-Seok Lee for teaching me the SiC process technology and also

for his support and encouragement. Jan-Olov Svedberg and Krister Gumaelius at TranSiC are

also thanked for their assistance and solutions in problematic processing issues.

Dr. Gunnar Malm, Prof. Anders Hallen and Dr. Per-Erik Hellström are deeply appreciated for

their kind scientific support and assistance.

During these years, I spent many hours with my very nice friends at the ICT school.

Mohammadreza Kolahdouz (Mreza) is indeed my oldest friend for more than 20 years and I have

many sweet memories with him. His energetic character along with scientific collaboration was

enormous help for me passing through the tough moments during study and research. I am also

grateful to Sohrab Redjai Sani for continuous support and motivation during these years and also

for wonderful morning chats and coffee times.

Page 13: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

R.Ghandi Acknowledgment

xiii

The other people at SiC group have kindly helped me and this thesis would not have been

finished without their continuous support. Special thanks go to Benedetto Buono for his

theoretical knowledge in semiconductor physics and also for his unique simulation techniques

that was essential for my research activity. I am also grateful to him for the afternoon Italian

coffee that helped me to work in dark winter days of Stockholm. My officemate, Luigia Lanni is

appreciated for her kind support and patience during my stressful times writing the thesis. I am

also thankful to Romain Esteve for his accurate recipes that were crucial for my devices and his

assistance during measurements. Muhammad Usman is also appreciated for very nice scientific

and non-scientific discussions.

Also Timo Söderqvist , Christian Ridder, Dr. YongBin Wang, Dr. Julius Hållstedt, Dr Zhen

Zhang, Dr. Jun Luo, Dr. Jiantong Li, Valur Gudmundsson, Sam Vaziri, Arash Salemi, Mahdi

Moeen, Oscar Gustafsson, Eugenio Dentoni Litta at EKT and my other friends, Ana Lopez,

Majid Mohseni, Mahdi Darab, Nader Nikkam, Reza Sanatinia and Ali Khatibi are thanked and

appreciated for the encouragement, assistance and motivation during my study.

This thesis in also indebted to vary kind people at the Electrum Lab. Foremost; I would like to

thank Reza Nikpars, for his generous help with the lab machines and also for his kind and

cheerful attitude that made me enjoy the annoying times in the clean room. Magnus Lindberg and

all other staff at the lab are deeply appreciated for their help and nonstop assistance.

A special thank to Gunilla Gabrielsson and Zandra Lundberg for their warm kindness and help

in bureaucratic administrative issues.

Last but not least I would like to send my gratitude to all members of my family. My parents are

deeply appreciated for always supporting me and believing in me. Also my deep gratitude and

appreciation go to my wife, Zeinab, for her patient companionship throughout these years and

for her true love in the life. This thesis is dedicated to you.

Thank you all!

Reza Ghandi January-2011

Page 14: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

xiv

List of Symbols and Acronyms

µn Electron Mobility

µp Hole Mobility

A Ampere

AFM Atomic force Microscopy

Al Aluminum

Al2O3 Aluminum Oxide

AlN Aluminum Nitride

B Boron

BJT Bipolar Junction Transistor

BPD Basal Plane Dislocation

BVCBO Open emitter breakdown voltage

BVCEO Open base breakdown voltage

C Carbon

CO Carbon monoxide

CO2 Carbon dioxide

C-V Capacitance-Voltage

CVD Chemical Vapor Deposition

DB Base minority carrier diffusion coefficient

DB Base minority carrier diffusion coefficient

DE Emitter minority carrier diffusion coefficient

DI water De-Ionized water

DIMOSFET Double-Implanted MOSFET

Dit Interface Trap Density

E Electric field

EC Critical electric field

Eg Energy Bandgap

FET Field Effect Transistor

GTO Gate turn-off Thyristor

G-V Conductance-Voltage

HF Hydrofluoric acid

Page 15: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

R.Ghandi List of Symbols and Acronyms

xv

HTCVD High Temperature Chemical Vapor Deposition

IB Base current

IC Collector current

IC0 Reverse saturation current at base-collector junction

ICP Inductively coupled Plasma

IE Emitter current

IGBT Insulated Gate Bipolar Transistor

InE Electron current in Emitter

IpE Hole current in Emitter

IR Recombination current

I-V Current-Voltage measurement

JBS Junction Barrier Schottky

JFET Junction FET

JTE Junction Termination Extension

Ln Electron diffusion length in emitter

MJTE Multistep Junction Termination Extension

MOS Metal Oxide Semiconductor

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MPS Merged PiN/Schottky

n Electron concentration

N2O Nitrous oxide

NB Base doping concentration

NC Effective conduction band density of states

NE Emitter doping concentration

ni Intrinsic carrier concentration

Ni Nickel

NIT Near Interface Traps

NO Nitric oxide

p Hole concentration

PECVD Plasma Enhanced Chemical Vapor Deposition

POCl3 Phosphoryl Chloride

q Electron charge

Qeff Effective Charge

RIE Reactive Ion Etching

RON ON-Resistance

RTA Rapid Thermal Annealing

Page 16: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

R.Ghandi List of Symbols and Acronyms

SBD Schottky Barrier Diode

SCR Space Charge Region

Si Silicon

SiC Silicon Carbide

SiO2 Silicon dioxide

SSF Shockley Stacking Fault

Ti Titanium

TLM Transfer Length Method

TMA Trimethylaluminum

UMOSFET U-shaped groove MOSFET

V Voltage

Vbr Breakdown Voltage

VCE Collector-emitter voltage

VF Forward Voltage Drop

vsat Saturated Velocity

WB Base region width

WE Emitter region width

α Common-base current gain

αT Base transport factor

β Common-emitter current gain

γC Collector efficiency

γE Emitter injection efficiency

εr Relative Permittivity

λ Thermal Conductivity

ρc Specific contact resistance

Page 17: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

1

Chapter 1

1 Introduction

Based on the United Nations report, development and climate change are among the major

global issues in this century that affect millions of people throughout the world [1]. Development

includes higher standards of living, full employment, and conditions of economic progress while

human influence of the climate change is attributed to increase of atmospheric CO2

concentration due to emission of fossil fuel combustion. Power electronic devices have a great

impact on economy and environment due to the widespread use in many industrial and non-

industrial applications. More efficient power devices can provide cost effective and environment

friendly tools for higher energy efficiency that is a required solution factor for the global issues.

Silicon based power devices with capability of handling significant current and voltages are

commercially available from 1950s and have been extensively developed since then. But, the

performance of these devices is limited for high power applications and also for high temperature

environment. However Silicon Carbide as a wide band gap semiconductor has the potential to

replace Si in high power devices due to its superior electrical and physical properties. Similar to

Si, there are a wide range of unipolar and bipolar devices that have the potential to be adopted

for different power ratings. The SiC bipolar junction transistor (BJT) is a candidate for the next

generation of high voltage switches especially for high power and harsh environment

Page 18: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

R.Ghandi List of Symbols and Acronyms

applications.

This thesis is focused on design, fabrication and characterization of high voltage 4H-SiC BJTs

and demonstrates significant progresses in SiC BJT performance in terms of current gain and

breakdown voltage. Implementing graded base doping profile and new surface passivation along

with efficient etched junction termination result in successful fabrication of implantation-free

BJTs with current gain of 55 and breakdown voltage of 2800. The second chapter of this thesis

briefly discusses basic operation, current technology and challenges for fabrication technology

and performance of Si and SiC power devices with the main focus on bipolar transistors. Chapter

3 covers the basic process steps for fabrication of SiC devices and Chapter 4 discusses design

parameters of 4H-SiC BJTs and also demonstrates new techniques and results from fabrication

of high voltage transistors. Conclusion and summary are finally covered in Chapter 5.

Page 19: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

3

Chapter 2

2 Power Devices; Current Technology and

Challenges

In this section, the current technology of different power devices as well as progress and

challenges are briefly discussed. In each section, the main challenges for Si power devices are

highlighted but the main focus will be on 4H-SiC power devices.

2.1 Si vs. SiC

Silicon based high power electronic devices have been commercially available for more than 50

years and are regarded as the key components of nearly all power electronic systems. However,

the performance of Si based power devices is limited at high power density and high temperature

environments. The superior characteristics of SiC as a wide band gap semiconductor and also

important progress in fabrication of high quality crystalline SiC has motivated many groups to

consider SiC as the main candidate to replace Si in next generations of high power devices [2].

Therefore it is important to discuss material and electrical properties of SiC and compare them

with Si.

Due to different stacking order of silicon and carbon atoms, silicon carbide possesses more

Page 20: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

4

than one crystal structure. This characteristic which is known as polytypism has brought different

polytypes for SiC crystalline structure. 3C-, 4H- and 6H-SiC are three stable single crystalline

polytypes for device purposes (Fig. ‎2.1).

Electrical properties of Si, 3C-, 6H-, 4H-SiC are compared in Table ‎2-1. The higher bandgap of

SiC compared to Si is regarded as the main advantage for high power devices that results in larger

critical electric field and higher temperature capability. These superior properties enable the use

of thinner drift layers with lower resistance and less leakage current at elevated temperatures for a

desired breakdown voltage. 3C-SiC shows the highest electron mobility compared to other

polytypes of SiC and the lowest critical electric field. This polytype, which is also known as cubic

crystalline SiC, has been successfully grown on Si substrate but it still suffers from low material

quality. 2-4 inches 4H and 6H-SiC substrates are commercially available today and many 4H and

6H high power devices have been reported. However, 4H-SiC is the preferred polytype

compared to 6H due to a higher electron and hole mobilities which are essential for achieving

low on-resistances and also due to higher critical electric field for high voltage applications.

Fig. ‎2.1 Three stable polytypes of SiC [3]

Page 21: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

5

Table ‎2-1 Electrical properties of Si and different polytypes of SiC

Material Properties Si 3C-SiC 6H-SiC 4H-SiC

Bandgap (eV at 300K) Eg 1.12 2.4 3.0 3.2

Critical Electric Field (V/cm) Ec 2.5×105 2×106 2.5×106 2.2×106

Thermal Conductivity (W/cmK at 300K) λ 1.5 3-4 3-4 3-4

Saturated Electron Drift Velocity (cm/s) vsat 1×107 2.5×107 2×107 2×107

Electron Mobility (cm2/V·s) μn 1350 1000 500 950

Hole Mobility (cm2/V·s) μp 480 40 80 120

Relative Permittivity εr 11.9 9.7 10 10

The specific on-resistance (RON) of the drift layer can be calculated as [4]:

‎2-1

in which VB is the breakdown voltage. Therefore higher critical electric field in SiC compare to Si

not only provides higher breakdown voltage but also results in lower resistance which is required

for high power applications.

2.2 Power Rectifiers

High voltage Si power rectifiers are widely used in power electronic applications. An efficient

power rectifier should demonstrate a required high voltage capability in the blocking mode with

low leakage current as well as a low ON-resistance in the forward conduction mode. In power

circuits, rectifiers are continuously switched between the ON and OFF states. These devices are

also required to demonstrate low power loss switching characteristics especially for high

frequency applications. The main power rectifiers are PiN diodes and Schottky diodes. The

advent of SiC with one order of magnitude higher critical electric field has made it possible to

implement thinner drift layer with higher doping and lower ON-resistance compared to Si. Also

these devices have demonstrated higher temperature capability compared to Si based devices. In

this section, structure, characteristics and challenges of these devices are shortly discussed and

recent breakthroughs of SiC rectifiers are highlighted.

2.2.1. PiN Rectifiers

Si PiN rectifier consists of a highly doped p and n layers with an intermediate lowly doped layer

(normally n) that is equivalent to an intrinsic region (i). This rectifier behaves as a normal high

Page 22: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

6

voltage p-n diode except that at high current density, the lowly doped layer is flooded with high

concentration of holes and electrons that exceed the doping concentration. This phenomenon

which is also known as conductivity modulation results in a very low resistance of the layer and

allows the diode to carry relatively higher current density during forward conduction. However

the main disadvantage of the PiN diode is its poor switching performance that results in high

power loss. During turn-on and before conductivity modulation, due to the high resistive i-

region, high magnitude forward voltage overshoot occurs which is not desirable in power circuit

design. During turn-off the presence of a large concentration of stored carriers must be removed

from the layer, and the device shows a poor reverse recovery characteristic that causes significant

switching power losses. Therefore, optimum performance of the Si PiN diode is limited by the

maximum switching frequency and a trade-off between forward voltage drop and switching

speed is needed. 4H-SiC PiN diodes can provide higher switching speed and lower voltage drop

compared to Si PiN diodes because of a thinner drift layer. These diodes have also shown high-

temperature operation that is desired in many high power applications. The main concern for

fabrication of high voltage 4H-SiC PiN diodes is high quality growth of a lowly doped thick

epitaxial layer with high minority carrier life-time for optimum conductivity modulation.

However, the performance of the SiC PiN diode can be degraded under forward voltage stress

resulting in an increasing forward voltage drop. This phenomenon which is known as bipolar

degradation is due to Shockley stacking faults (SSFs) that originate from basal plane dislocations

and this is discussed in more detail in sections ‎2.6.2.2 and ‎3.1.3.2. Table ‎2-2 summarizes recent

reported high voltage SiC PiN diodes in terms of breakdown voltage, ON-resistance and forward

voltage drop at 100 Acm-2.

Table ‎2-2 Recent reported high voltage 4H-SiC PiN diodes

Number Vbr (kV) RON (mΩcm2) VF @100 Acm-2 Ref.

1 3.3 1.7 3.3 [5]

2 4.5 1.7 3.3 [6]

3 6.5 34 3.4 [7]

4 10 38 3.9 [8]

5 12-19 65 4.4-7.5 [9]

2.2.2. Schottky Barrier Diode (SBD)

Si Schottky barrier diodes are composed of a rectifying metal contact deposited on a

semiconductor substrate and demonstrate a unipolar current transport due to the potential

Page 23: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

7

barrier at the interface between the metal and the semiconductor. The main advantage of these

devices is the possibility of achieving minimum ON-resistance during forward conduction by

proper choice of metal with desired work function for the lowest potential barrier. However,

decreasing the potential barrier increases the leakage current in the blocking mode and that

requires a trade-off between forward voltage drop and reverse leakage current especially at higher

temperatures. Also because of the absence of minority carriers in the current transport, SBDs

show no reverse recovery and the switching is instead governed by the diode space charge

capacitance. Si SBDs are therefore widely used for high frequency low power electronics

applications. High voltage 4H-SiC SBDs have been introduced to the market since 2001.

Compared to Si diodes, these rectifiers show faster switching due to the thinner drift layer at the

expense of higher forward voltage drop across the junction. Therefore, SiC SBDs are interesting

devices particularly when the switching power losses are dominant. At the moment, 300V/30A-

1700V/25A SiC SBDs are commercially available and there is potential for fabrication of higher

power rectifiers as the material quality improves further.

2.2.3. JBS and MPS

To utilize the properties of the PiN diode and Schottky diodes, JBS and MPS have been

introduced as monolithic combinations of both devices. Junction barrier controlled Schottky

(JBS) is a Schottky diode with an integrated P+-N junction grid into the drift region. During

reverse bias, the integrated P layer, extend the depletion layer, shield the Schottky barrier and

reduce the leakage current compared to conventional Schottky rectifiers. Merged PiN/Schottky

(MPS) rectifiers employ the same approach for combining two conventional rectifiers and act like

JBS in the blocking mode. However, the integrated P+ layers are forward biased at high current

levels and inject high concentration of minority carriers into the lowly doped n-layer that results

in conductivity modulation, thereby protecting the diode from overheating under surge current

conditions. Due to the presence of Schottky contact, the total charge required for conductivity

modulation is less compared to the PiN diode that results in better recovery during turn-off. SiC

JBS diodes are regarded as an interesting candidate to replace SBDs in the relatively high voltage

range. However material quality and process complexity are still the main concern for fabrication

of these types of devices. Fig. ‎2.2 shows an example of high voltage 4H-SiC JBS diode and Table

‎2-3 demonstrate recent reported JBS rectifiers.

Page 24: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

8

Fig. ‎2.2 Schematic cross-section of a 10 kV 4H-SiC JBS diode [10].

Table ‎2-3 Recent reported high voltage 4H-SiC JBS diodes

Number Vbr (kV) RON (mΩcm2) VF Ref.

1 1.6 7.5 1.4 V @100 Acm-2 [11]

2 5 25.2 3.5 V @108 Acm-2 [12]

3 10 100 3.37 V @20 Acm-2 [10]

2.3 Power Field Effect Switches

Silicon power field effect transistors became widely popular and have replaced power bipolar

transistors in most applications. These devices have the potential for high frequency switching as

well as simpler driver circuitry through voltage controlled drivers. However the performance of

Si power switches at high voltage ranges are limited in the maximum current capability due to

lightly doped high resistance drift layers. For medium range blocking voltages (up to 800 V), Si

power MOSFETs such as CoolMOS by Infineon [13] demonstrate superior characteristics and

are available in the market. The advent of SiC paved the way for thinner drift layer for the desired

breakdown voltage compared to Si and demonstrates the potential of faster switching speed and

lower switching loss using SiC FETs. In this section, the main features of SiC MOSFETs and

JFETs are shortly discussed and recent reported values are demonstrated.

2.3.1. SiC MOSFET

The first SiC power metal-oxide-semiconductor field-effect-transistor (power MOSFET) was

Page 25: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

9

developed by Palmour et al. [14] and called SiC UMOS. This structure which was developed by

other groups in the following years, includes a U-shaped trench inside the epitaxially grown p-

doped layer (grown on the lowly doped drift layer) followed by thermal oxidation for isolation,

and deposition of polysilicon as the gate (Fig. ‎2.3a). However, this structure suffered from poor

quality of the SiC/SiO2 interface especially at the rough sidewalls of the trench that resulted in

low inversion layer mobility. Also the high electric field accumulation at the corners of the trench

was intensified at the gate oxide and caused long term oxide reliability issues for the devices.

Fig. ‎2.3 Cross section view of a)UMOS and b)DIMOSFET SiC power transistors [15].

The other structure is called double implant MOSFET (DIMOSFET) which includes separate

implantation of p-well and n+ sources has the advantage of higher inversion channel mobility and

high voltage capability (Fig. ‎2.3b). However, this structure requires high temperature anneal after

ion implantation that can degrade the performance of the device. Also a high interface state

density at the SiC/SiO2 interface still limits the effective electron mobility in the channel and

improved oxidation techniques are required (see section ‎3.6). Table ‎2-4 summarizes the recent

reported values for 4H-SiC MOSFETs.

Page 26: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

10

Table ‎2-4 Recent reported 4H-SiC MOSFETs

Number Vbr (kV) RON (mΩcm2) Ref.

1 0,95 8,4 [16]

2 1,2 9 [17]

3 1,4 15,7 [18]

4 1,6 40 [19]

5 2,4 42 [20]

6 10 123 [21]

2.3.2. SiC JFET

The SiC junction field effect transistor (JFET) is another type of field effect switch that is free

from the gate oxide and therefore does not suffer from oxide reliability and mobility reduction by

interface states. Therefore JFETs are regarded as reliable high power switches especially at higher

temperatures. In this configuration, the n-channel is controlled by the space charge region

between the gate and the source through a voltage on the gate (Fig. ‎2.4). The requirement of the

negative voltage for turning off the device makes the JFET as a normally-on switch which is not

preferred in power electronics applications. This problem is solved by a cascade configuration of

Si MOSFET and SiC JFET (Fig. ‎2.5) in which turning off the triggering MOSFET provides a

negative bias to the gate of the JFET and turns it off. The other approach is to make a normally-

off JFET with a channel pinched off at zero gate bias (Fig. ‎2.6). The complexity of ion

implantation control especially at the sidewall and limitation of operational threshold voltage

margin are regarded the main practical issues for these devices. Some recent reported SiC JFETs

are shown in Table ‎2-5.

Fig. ‎2.4 Schematic illustration of vertical SiC JFET [22]

Page 27: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

11

Fig. ‎2.5 Cascade configuration of Si MOSFET and SIC JFET

Fig. ‎2.6 Schematic demonstration on normally off JFET with (left) [23] and without (right) [24] source-mesa sidewall implantation

Table ‎2-5 Recent reported 4H-SiC JFETs

Number Vbr (kV) RON (mΩcm2) Ref.

1 0,6 2,6 [25]

2 0,8 6,5 [26]

3 1,65 1,8 [27]

4 1,68 5,5 [28]

5 1,7 2,77 [29]

6 1,9 2,8 [23]

7 2,055 5,7 [30]

8 3,5 390 [31]

9 11 130 [32]

Page 28: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

12

2.4 IGBT

Insulated Gate Bipolar Transistor is a monolithic combination of power bipolar transistor and

MOSFET that provides attractive characteristics of high input impedance of the voltage

controlled MOSFET as well as low forward voltage drop at high current densities due to

conductivity modulation. Si IGBTs, as a commercially successful power device, replaced bipolar

transistors in medium power applications that require high switching frequency and excellent on-

state characteristics However, performance of Si IGBTs are limited by high switching losses due

to presence of minority carriers. High critical electric field as well as high temperature capability

of SiC has urged different groups to consider fabrication of high voltage SiC IGBTs as a

potential candidate for higher power applications. n-channel IGBT which is composed of n-

channel MOS and a PNP transistor is a preferred structure compared to p-channel IGBT due to

the improved n-channel MOS process conditions with low interface states (Fig. ‎2.7). However,

an n-channel IGBT requires a p-type substrate. P-type substrates are not available in large

dimensions and production volumes and they also introduce high resistance in series to the

device. Recently 13 kV, 22 mΩcm2 n-IGBT have been reported [33]. This device shows

conductivity modulation during forward conduction that corresponds to higher current capability

compared to a 10kV SiC DMOSFET. High quality thick epitaxial growth with a long carrier life

time is still a major challenge for development of SiC IGBTs.

Fig. ‎2.7 Schematic view of SiC IGBTs for p-channel (left) and n-channel (right) [34]

Page 29: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

13

2.5 GTO

Gate Turn-Off thyristors are specific thyristors with possibility of reverse gate drive current for

turning off the device which is required in high power DC applications. Si GTOs suffer from

large switching loss especially during turn-off due to the large current tails. The SiC GTO with

high voltage capability is considered as an interesting device due to better thermal conductivity

and larger breakdown field. However, the requirement of a large gate drive current for turn-off

and also material quality are regarded as the main challenges of SiC GTO for high power

applications [34].

2.6 Power Bipolar Junction Transistors

Si bipolar power transistors are available since 40 years. The potential of operating at relatively

high current densities with low power loss and high voltage capability was regarded as the

distinguished features of power BJTs. However, due to low current gain of power BJTs at typical

operating current levels, they have been replaced with insulated gate bipolar transistors (IGBT)

and power MOSFETs in many power electronics applications. Interesting properties of SiC as a

wide band gap semiconductor and robustness to harsh environments has made it possible to

consider the SiC BJTs as one candidate for high power applications due to its low power on-state

loss and fast switching capability. In this section basic characteristics of power bipolar transistors

along with recent advances and challenges of SiC BJTs are discussed.

2.6.1. Structure and Operation of BJT

The bipolar junction transistor is a three terminal electronic device that consists of two joined

back-to-back p-n junctions. In this configuration npn BJT is preferred to pnp BJTs due to higher

electron mobility compared to hole mobility. Unlike unipolar devices where majority carriers

constitute the current conduction, both minority and majority carriers comprise the current

conduction for bipolar devices. As it can be seen in Fig. ‎2.8, in the forward-active mode of the

npn BJT when the emitter-base diode is forward-biased, electrons are injected from the highly

doped n-terminal (emitter) to the intermediate p-terminal (base). Some of these electrons

recombine in the base but most of them are swept out through the reverse-biased base-collector

diode and reach the collector region of the device, thereby producing a collector current.

Therefore it is possible to control carrier transport and hence the electric current by the voltage

bias of the emitter-base diode. Generally the total currents between emitter, base and collector

can be related as:

Page 30: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

14

2-2

In the common-emitter mode in which the base current (IB) is an input variable while the

collector current (IC) is the output variable, β (common-emitter current gain) is defined as the

ratio of IC/IB. For the common-base mode, α is defined as the ratio between IC/IE and called

common-base current gain. It can be shown that

2-3

For an efficient switch, it is desired to achieve high common-emitter current gain (β) that requires

common-base current gain (α) close to 1. Emitter, base and collector currents are composed of

majority and minority carriers in each layer and they can be described as follows (Fig. ‎2.8) :

2-4

2-5

2-6

in which InE and IpE are emitter currents due to electron and hole injections into the base and

emitter respectively. IR is recombination current in the space-charge region of emitter-base diode,

IRS is surface recombination current due to the defects at the interface with passivation layer and

IRB is bulk recombination current in the base. The reverse saturation current of the base-collector

junction is defined as IC0 that is also negligible at collector biases below avalanche breakdown.

Fig. ‎2.8 Schematic demonstration of current components in an npn bipolar transistor in forward-active mode.

Emitter

Base

Collector

InE

InC

IRB

IpE

IR

IC0

IE

IB

IC

IRS

Page 31: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

15

The common-base current gain can be written as:

2-7

where γE, αT, γC are called emitter injection efficiency, base transport factor and collector

efficiency, respectively. Emitter injection efficiency illustrates the ability of the emitter to inject

electrons into the base region. Since the injection of the holes into the emitter does not

contribute to the collector current, emitter injection efficiency is less than one. The emitter

efficiency is dependent on the design of emitter and base regions. It can be shown that if the

emitter thickness is significantly shorter than hole diffusion length in the emitter, then

2-8

in which N is doping concentration, D is minority carrier diffusion constant and W is thickness

of corresponding base and emitter regions. Therefore designing the BJT with highly doped

emitter layer and lowly doped thin base layer is advantageous for achieving an emitter efficiency

closer to 1 and consequently higher current gain (β). However, a lowly-doped base layer can

result in a low punch-through breakdown voltage (described later), which is not desired. The base

transport factor (αT) is a measure of the ability of injected electrons from the emitter to diffuse to

the base without recombining, and αT therefore depends on the recombination rate in the base

region. This factor can be calculated using the following formula:

2-9

where Ln is electron diffusion length in the base and WB is the base thickness. For a lowly doped

thin base layer where the electron diffusion length is much larger than the base thickness, the

base transport factor can be estimated as:

2-10

Since the base-collector is reversed biased most of the electrons that reach the SCR region are

swept out and the collector efficiency can be assumed to be 1.

Page 32: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

16

Fig. ‎2.9 The output characteristics of BJT in common emitter mode. A, B and C are saturation, quasi saturation and active

regions.

A typical output characteristic (IC-VCE) of the BJT in common emitter mode is illustrated in Fig.

‎2.9. This curve can be divided in three sections. For low VCE voltages, both base-emitter and

base-collector diodes are forward biased which results in injection of majority carriers (electrons)

and minority carriers (holes) into the drift (collector) region. In this mode, which is called

saturation mode (A), if the concentration of injected carriers exceeds the background doping of

the lowly doped drift layer, then the collector region is conductivity modulated and a low ON-

resistance (lower than for a unipolar device) can be reached. However, if obtaining conductivity

modulation is difficult (like in SiC) then the ON-resistance in the BJT will be dominated by the

drift resistance. For higher collector voltages, the transistor enters the quasi saturation region (B)

in which the injected carrier concentration remains higher than the collector doping

concentration only in a fraction of the drift layer and that results in higher ON-resistance,

compared to the saturation region. Finally for even higher collector voltages, transistor enters the

active mode (C) in which base-emitter diode is forward biased and base-collector diode is reverse

biased. In this mode, due to the reverse-biased base-collector junction, the injection of minority

carriers into the drift layer is negligible and the current gain is higher compared to other bias

points in A and B. However, the IV characteristics in the active mode is not constant and it

shows a slight increase of the collector current with increasing collector-emitter voltage that

results in intersection of I-V curves extensions at a negative voltage (Early voltage). This behavior

is due to a decreasing effective base width with increasing reverse bias of the base-collector

junction (Fig. ‎2.10).

Ic

VCE

AB C

IB

Page 33: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

17

Fig. ‎2.10 Schematic demonstration of decreasing the effective base width with increasing collector-emitter voltage.

At high collector current densities and high collector-emitter voltages, the majority carrier

concentration in the drift layer (electrons) exceeds the doping concentration of the layer. In this

case, which is known as base widening effect (or Kirk effect), the polarity of the net charge in the

drift layer is changed from positive to negative and it results in a change in the gradient of the

electric field distribution and in the position of the maximum electric field from p-n junction to

n-n+ junction (Fig. ‎2.11). Therefore, high current densities can increase the effective base

thickness and result in decreased current gain. For the extreme cases, this base widening effect

can be destructive for high base currents that generate positive feedback in the collector current

and cause second breakdown [35].

Fig. ‎2.11 Base widening effect at high collector current densities for npn BJTs with content collector voltages.

The BJT is also limited to a maximum collector-emitter voltage, due to avalanche breakdown at

the base-collector junction or punch-through breakdown. For the open-emitter case, increasing

the collector voltage followed by multiplication of the generated carriers results in sharp increase

of the collector current and demonstrates the avalanche breakdown (BVCBO) as a conventional p-

n+n+ p (Base) n (Collector)

Elec

tric

Fie

ld

Distance

V2V1

tB1

tB2

V1 < V2

tB1 > tB2

n+n+ p (Base) n (Collector)

Elec

tric

Fie

ld

Distance

J2

J1

tB1

tB4

J3

J4 J1 < J2 < J3 < J4

tB1 < tB4

Page 34: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

18

n junction. However, in the case of open-base, avalanche breakdown (BVCEO) starts at lower

voltages due to transistor action in which the collector current is the avalanche current amplified

by the current gain. It can be shown that:

2-11

where n is an empirical constant with a value between 3 and 5 in Si. Therefore, increasing the

current gain can limit the maximum collector emitter voltage. However for the SiC BJTs,

prediction of the BVCEO is difficult and the reported values ranged from 40% [36] to 60% [37] of

the ideal breakdown voltage of the collector layer. However in this thesis, the open-base and

open-emitter breakdown voltages were measured in the same range that can be correlated to the

small current gain at low leakage currents. Another limiting phenomenon is punch-through

breakdown in which the depletion regions between the base-collector and the base-emitter diodes

reach each other. In this situation, the base-emitter junction becomes forward biased and

breakdown occurs. However, punch-through breakdown can be avoided if the total base has

sufficient doping dose (concentration × thickness).

Normally, vertical power transistors apply mesa edges for isolation of the layers. At the mesa

edges, and close to the surface of the device, the critical electric field can be increased due to the

curvature of the electric field profile. Therefore junction termination has to be adopted to locally

reduce the electric field. There are different junction termination techniques for power BJTs that

can be adopted singularly or in combination with each other. The most common technique for

BJTs is an implanted Junction Termination Extension (JTE) in which the collector layer is locally

implanted by p-dopants with lower doping than the base layer close to the base mesa. The other

technique is field ring (guard ring) termination that includes implanting p-type field rings

surrounding the entire base mesa. This technique can be combined with implanted JTE and

called guard ring assisted JTE [38]. Another junction termination is mesa-etched JTE that

requires etching of single or multiple zones in the implanted [39] or in the epitaxial p-base layer

(Paper I) close to the main isolation to the collector. All of these terminations should be designed

in a way to achieve an accurate dose of charge that becomes completely depleted to the surface

close to the desired breakdown voltage, thereby reducing the maximum electric field in the edge

region.

Page 35: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

19

2.6.2. SiC BJT

The first SiC bipolar transistor was reported at IEDM in 1977 [40]. In this work, emitter and base

layers were epitaxially grown followed by dry etching for layers isolation and metallization. This

BJT showed common emitter current gain of 4 and breakdown voltage of 50 V for an emitter

area of 200 × 200 µm2 (Fig. ‎2.12). However it took more than 10 years until Palmour et al.

reported the first power BJT in 6H-SiC in 1993 [41]. This device exhibited the current gain of

10.4 and 200 V breakdown voltage with high temperature capability.

Fig. ‎2.12 The first SiC BJT with the current gain of 4 and breakdown voltage of 50V [40].

In 2000, Ryu et al. demonstrated 1800 V, 3.8 A 4H-SiC BJT with epitaxial base and emitter layers

[42] (Fig. ‎2.13). However in the same year, Tang et al. showed the first BJT with implanted

emitter and claimed this process offered the flexibility of controlling the base width by varying

the emitter implantation [43]. This device showed a high current gain of 36 and low breakdown

voltage of 40V due to the punch through effect. In [44], punch through was suppressed by

increasing the base width thereby achieving 500 V breakdown voltage, but the common emitter

current gain decreased to 9 due to implantation-induced defects at the emitter-base p-n junction,

Page 36: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

20

that reduced the emitter injection efficiency (Fig. ‎2.13). Consequently, 4H-SiC BJTs with epitaxial

and implanted emitter were compared and it was confirmed that epitaxially formed p-n junctions

provide better charge injection compared to the implanted p-n junctions and are therefore

preferred in BJT process technology [45].

Fig. ‎2.13 Cross sectional view of 1800 V epitaxial emitter (top) [42] and implanted emitter (bottom) [44] 4H-SiC BJTs.

It was also shown that interface traps between surface passivation layer and SiC can affect

electron transport and thereby decrease the current gain. Improvement in 4H-SiC surface

passivation lead to demonstration of power 4H-SiC BJTs with current gain of >50 using thermal

oxidation instead of deposited oxide [46] and 35 using thermal oxide followed by nitric oxide

annealing [47]. Further improvement of the current gain for power SiC BJTs was reported by

Krishnaswami et.al with optimized continuous epitaxial growth of the base and emitter layers at

lower temperature. This technique demonstrated an increase in the minority carrier lifetime in the

Page 37: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

21

emitter and base layers by reducing point defects and impurities while maintaining stoichiometry

of the highly doped SiC layers [48]. Also due to the relatively low hole mobility and lack of

shallow acceptor levels, the base resistance of the 4H-SiC BJTs is relatively high. Therefore

achieving optimum ohmic contact for lowest ON-resistance device is important. 1677 V, 5.7

mΩcm2 [49] and 757 V, 2.9 mΩcm2 4H-SiC BJTs [50] were reported with Ni–AlTi–Ni as the

improved base contacts followed by Al/AlTi as a thick overlay metal on the base and emitter.

fingers to improve the voltage and current distribution. However these devices suffered from low

current gains of 7.1 and 18.8 respectively. Lee et al. demonstrated 1200 V, 5.2 mΩcm2 4H-SiC

BJTs with high current gain of 60 using a triple layer of Ni/Ti/Al for the base contacts and

surface passivation by thermal oxidation in N2O ambient that results in reduced surface

recombination [51]. It was also shown that design of the power BJTs can affect the performance

of the devices. Domeij et al. demonstrated a clear emitter size effect indicating the significant

influence of surface recombination on the maximum current gain and also revealed the minimum

requirement distance of 2-3 µm between the emitter edge and base contact implant to avoid the

effect of implantation–induced defects for the optimum performance [52]. 4H-SiC BJTs using a

base contact without implantation [53] and regrown extrinsic base layer (Paper VII) showed the

possibility of fabricating implantation-free BJTs. Zhang et al. reported a 1300 V 4H-SiC BJT with

a common–emitter current gain up to 31 using double base epilayers (Fig. ‎2.14) in a completely

implantation-free process [54].

Fig. ‎2.14 1300 V 4H-SiC BJT with a common–emitter current gain up to 31 using double base epilayers.

In Paper I, we reported a 2700 V, 12 mΩcm2 implantation-free SiC bipolar junction transistors

with common-emitter current gain of 50 using a graded-base doping (see section ‎4.3). This design

Page 38: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

22

was optimized in terms of junction termination extension and contact metallization and resulted

in 2800 V, 4 mΩcm2 implantation-free BJT in Paper VI (see section ‎4.7). Fabrication of these

devices in an implantation-free process can be beneficial for avoiding life-time killing defects that

are generated during implantation. This also provides the possibility of placing the base contact

closer to the emitter mesa to reduce the cell pitch for reducing the specific on-resistance. Table

‎2-6 summarizes the recent reported values for 4H-SiC BJTs and Fig. ‎2.15 compares recent high

power transistors in terms of breakdown voltage vs. on-resistance.

Table ‎2-6 Recent reported 4H-SiC BJTs

Number Vbr (kV) RON

(mΩcm2)

Current

Gain Ref.

1 0.95 3.2 134 [55]

2 1 2.9 33 [56]

3 1.2 6.3 70 [57]

4 1.2 5.2 60 [51]

5 1.5 3.4 40 [58]

6 1.6 5.1 70 [59]

7 1.8 4.4 40 [60]

8 2.2 4.5 35 [58]

9 2.7 12 50 Paper I

10 2.8 4.5 55 Paper

VI

11 6 28 [61]

12 9.2 49 [62]

Page 39: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

23

Fig. ‎2.15 Comparison of recent high power 4H-SiC transistors.

2.6.2.1. Advantages of 4H-SiC BJTs

Operation of Si power bipolar transistors is limited by two major destructive effects that are

known as thermal runaway and second breakdown. The thermal runaway, in which the total

current increases with a positive feedback mechanism, occurs at elevated temperatures. This

phenomenon, can occur due to the positive temperature coefficient of the forward voltage drop

in a Si BJTs, and is caused by an increasing carrier lifetime in the device at elevated temperatures.

This leads to a higher carrier concentration, higher current density and even more local increase

in the temperature which is escalated by more increase in the total current. However, a SiC BJT

shows negative temperature coefficient of the current gain in which, the current gain of the

device is significantly decreased at higher temperatures due to the activation of deep level

acceptors in the base that limit the emitter injection efficiency. Also the specific ON-resistance of

the device is increased at elevated temperatures due to the decreasing electron mobility which

causes an increase in the resistance of the collector layer (an example of high temperature

performance is shown in Fig. ‎2.16). These characteristics are desired for parallel connection of

BJTs for high temperature applications.

1

10

100

100 1000 10000

On

-Re

sita

nce

(mΩ

.cm

2)

Breakdown Voltage (V)

4H-SiC Unipolar Limit

Si Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

4H-SiC Unipolar Limit

BJT-1

BJT-2

BJT-3

BJT-4

BJT-5

BJT-6BJT-7 BJT-8

BJT-9

BJT-10

BJT-11

BJT-12

MOSFET-1MOSFET-2

MOSFET-3

MOSFET-4 MOSFET-5

MOSFET-6

JFET-1

JFET-2

JFET-3

JFET-4

JFET-6JFET-5

JFET-7

JFET-8

Page 40: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

24

Fig. ‎2.16 IC-VCE characteristics of 4H-SiC BJT at room and elevated temperature (Paper VI).

The other destructive mechanism which was described earlier is second breakdown. The high

critical field strength of SiC made it possible to use higher doping in the collector layer. For this

reason second breakdown occurs at a very high current density which is well outside the normal

operation area of the device [63].

2.6.2.2. Challenges for SiC BJTs

Along with many advantages of the SiC BJT, still some main challenges for these devices should

be addressed. Since the BJT is a current controlled device, for more efficient power switching,

even higher current gain is desired. As discussed earlier, state of the art technology shows a

current gain of less than 100 for the power BJTs with more than 1 kV blocking capability. To

compete with other switching devices, it is necessary to provide higher current gain which can be

reached with better epitaxial growth conditions and optimum surface passivation.

For high frequency application, minimal conductivity modulation is desired for an efficient

switching; however, for high voltage switches, the power BJT should demonstrate conductivity

modulation in the saturation region for the lowest ON-resistance. This condition, which is

regarded as the main advantage of bipolar devices compared to unipolar devices, has not been

shown in 4H-SiC BJTs. Low carrier lifetime which are due to the various defects in the SiC

structure and also higher doping of the drift layer compared to Si power BJTs are factors behind

the absence of conductivity modulation. Therefore, optimum growth condition in terms of less

defects and higher carrier life time not only improves the current gain but it can be advantageous

also for achieving conductivity modulation. The other challenge which is the main obstacle for

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 1 2 3 4 5 6 7 8 9

Ic (A

)

VCE (V)

T=25

T=200IB=1mA/step

Page 41: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

25

commercialization of 4H-SiC BJTs is degradation of the forward voltage drop (VCESAT) and

degradation of the current gain, under forward bias stress at high current density. Like the PiN

diodes, degradation of VCESAT is mainly attributed to carrier trapping and recombination in the

base and/or collector due to the SSFs (see section ‎3.1.3.2 and Fig. ‎2.17).

Fig. ‎2.17 Schematic demonstration of stacking fault effects on the current transport in the base and collector regions.

However a current gain degradation mechanism with no significant decrease on the on-resistance

has been observed for BJTs on BPD-free substrate, and for small-area BJTs on standard

substrates. The reason for this gain degradation is not clear and three possible mechanisms have

been proposed:

1. an increase of the interface trap density along the SiC/SiO2 interface

2. recombination enhanced defect generation in the base emitter region

3. small size stacking faults in the base-emitter region [64].

Fig. ‎2.18 shows examples of bipolar degradation and current gain degradation in a 4H-SiC BJT.

Emitter

Base

Collector

InE

IC

Page 42: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

26

Fig. ‎2.18 Example of bipolar degradation (Top) and current gain degradation (Bottom) after base-emitter stress of 4H-SiC BJTs

(Paper VI).

2.6.2.3. Darlington Configuration

As discussed earlier, it is important to improve the common-emitter current gain (β) to reduce

the power required by the drive circuit. Increasing the current gain by two cascaded BJTs in a

Darlington configuration is a potential solution for high power applications at the expense of a

higher forward voltage drop. The optimally-designed Darlington can provide higher current gain

(β Darlington = β (Driver BJT) × β (Output BJT)) compared to a single BJT along with high voltage blocking

characteristics. Hybrid SiC Darlington transistors with 500 V and current gain of 430 [65] and

10kV with current gain of 440 [66] have been previously reported. However, monolithic

Darlington design is more preferred due to simpler design, better control in fabrication process

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8

Ic (

A)

VCE (V)

Before

Ib0.3AIc4A_30min

Ib0,3AIc4A_10Hrs

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 1 2 3 4 5 6 7 8 9

Ic (A

)

VCE (V)

Before Stress

Ib200mA_40Hrs

Ib200mA_150Hrs

Page 43: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 2

27

and reproducibility. Recently Zhang et al. demonstrated a 10 kV monolithic Darlington BJT with

current gain of 1200 [67]. Fig. ‎2.19 shows structure and photographic images of 10 kV hybrid and

monolithic Darlington BJTs .

Fig. ‎2.19 Structure and photographic image of co-packed hybrid (Top) [66] and monolithic (Bottom) 4H-SiC Darlington BJTs

[67].

The dependence of the maximum current gain in a 4H-SiC BJT on the collector current,

emphasizes the importance of the ratio between the area of the driver and the output BJTs. For

the maximum current gain, the driver BJT should be designed in a way that it is not only biased

for the maximum gain but also provides the required current for the highest gain to the output

BJT. In Paper III an implantation free monolithic Darlington with a maximum current gain of

2900 at room temperature is reported and it is shown that the high current gain is related to an

optimum design for the ratio of the active area of the driver BJT to the output BJT

(approximately 1:10).

Page 44: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

28

Page 45: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

29

Chapter 3

3 Fabrication of SiC devices

This chapter describes process technology for fabrication of SiC devices with more emphasis on

bipolar transistors and PiN diodes. It begins with a short introduction to bulk and epitaxial

growth of SiC that follows the outline of [68] and discusses surface preparation techniques,

etching, lithography, ion implantation and metallization as the main processing steps for

fabrication of devices. Most of the process steps are similar to Si technology, however due to the

different properties of SiC some modifications are required and these are highlighted in each

section.

3.1 Bulk and Epitaxial Growth of SiC

Single crystalline structure is considered as one of the main requirements for fabrication of

regular semiconductor devices. Therefore, in this section bulk and epitaxial growth of SiC crystal

structures as well as challenges and related issues are discussed.

3.1.1. Bulk Growth

After Jönas Jacob Berzelius, the Swedish chemist who discovered Si and most likely synthesized

Page 46: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

30

the chemical bond between silicon and carbon in 1824, Edward Goodrich Acheson, an American

chemist, found a crystalline compound of silicon and carbon in 1893 and called it

“carborundum” with the formula of SiC. He mixed silica sand and petroleum coke in the furnace

with a graphite core as the heating element. At high temperatures (>2100 °C) hexagonal SiC was

made close to the graphite and was grinded to powder for abrasive applications. However his

method was slow and difficult to control in achieving pure crystalline material for semiconductor

applications. Around 50 years later, in 1955, J.A. Lely reported a sublimation technique for SiC

crystal growth with better control in the purity and properties of the material [69]. He deployed a

cylindrical graphite crucible and heated it to the process temperature of 2500 °C to evaporate Si-

C species and formed SiC crystals platelets.

Fig. ‎3.1 Schematic demonstration of the Lely process for hexagonal SiC crystals [70]

However, his method suffered from difficulty in control of the SiC poly-type that was solved

with a modified Lely growth with seeded sublimation growth invented by Tairov and Tsvetkov in

1978 [71]. In this technique, they used seed crystal and controlled thermal gradient, to increase

growth rate and improve the material quality (Fig. ‎3.2). They produced SiC boules, sliced and

polished it to create the first SiC wafer.

Page 47: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 3

31

Fig. ‎3.2 The seeded sublimation growth or modified Lely growth invented by Tairov and Tsvetkov [68].

The seeded sublimation growth technique has been optimized and today, most SiC substrates

are grown by this method. For a better control of the desired poly-type and also for high-quality

epitaxial growth, it is preferred to use off-axis substrates (8° or 4° for 4H and 3.5° for 6H poly-

types). However, for large diameter wafers, more material from the boule is lost using this

technique which emphasizes the requirement for studying the possibility of on-axis growth.

During recent years, high temperature chemical vapor deposition (HTCVD) technique is

introduced for high quality bulk and epitaxial growth of SiC crystals [72]. In this method high

concentrations of the precursor gases silane and ethylene are decomposed, sublimed at high

temperature and condensed on the seed at the end of the reactor. Compared to seeded

sublimation growth, this method has higher growth rate (1mm/hr), higher crystalline quality due

to purity of the gases and better growth yield. However for commercial applications, even higher

growth rate and lower cost is required.

3.1.2. Epitaxial Growth

For commercial applications of SiC, chemical vapor deposition (CVD) is considered as the main

technique for epitaxial growth of high quality crystalline layers with controlled doping and

thickness. Among different CVD reactors, hot-wall reactor [73] and Chimney reactor [74] are

preferred to grow lowly doped high quality thick epitaxial layers for high voltage applications.

Also multi-wafer reactors have shown good uniformity and high material quality for large scale

production. In these methods, silane and C- precursors along with nitrogen (for n-type layers)

and trimethylaluminum (TMA) (for p-type layers) are introduced to the chamber to grow

different epitaxial layers with various doping profiles.

Page 48: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

32

3.1.3. Defects

The presence of structural defects in the crystal structure is an important issue for

commercialization of SiC devices. Quality of the SiC bulk growth and defects introduced during

epitaxial growth are among the major limiting issues in the performance of SiC power devices.

Many different types of SiC crystal defects have been reported to be reduced in density by better

control in the growth techniques. However there are still two major types of defects that require

extra attention for fabrication of SiC devices. In this section micropipes and stacking faults are

highlighted and summarized.

3.1.3.1. Micropipes

Micropipes are regarded as an important defect present in SiC. They are giant screw dislocations

that are originated from clustering several screw dislocations or contamination during the growth.

These types of defects represent an energetically favorable growth site that open up a hollow core

in the center and form spiral growth on the surface. The presence of these defects in the devices,

strongly influence the performance of the device and in most cases cause failure of the voltage

blocking capability. Therefore it is desired to reduce the distribution density of the micropipes in

the SiC bulk growth. During recent years, there has been important progress in reducing these

types of defects. Recently 100 mm SiC substrates with zero micropipe density has been released

and 150 mm substrate with 8 mp/cm2 has been demonstrated by CREE [75] and this is a

breakthrough for wide scale commercialization of SiC technology.

3.1.3.2. Stacking Faults

Another important type of defects in SiC are stacking faults. These defects that have been

characterized in [76], are nucleated from basal plane dislocations (BPDs) in the SiC substrate and

propagate with a triangular shape in the active region of the device (Fig. ‎3.3). Stacking faults can

act as recombination centers that reduce the carrier life time and therefore degrade the device

performance, for instance current gain of a SiC BJT. Additionally, the stacking faults can block

the carrier transport in regions of a device thereby increasing the forward voltage drop. For that

reason, they are regarded as one of the limiting factors for long term stability of bipolar devices in

SiC such as PiN diodes and BJTs.

Page 49: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 3

33

Fig. ‎3.3 Photoluminescence imaging at 450 ± 10nm, showing evolution of stacking faults during an

1h electrical stress sequence of a 4h-SiC BJT [77].

3.2 Surface Preparation

Fabrication yield of SiC devices is strongly dependent on proper surface preparation techniques.

This process includes the removal of organic and non-organic contaminations prior to the

oxidation, and etching for avoiding a native oxide layer prior to the metallization. Surface

cleaning techniques are divided in dry and wet cleaning methods. In the dry cleaning technique,

normally hydrogen or ozone-plasma treatments are preferred for physical removal of the

contaminations or other process related residuals (e.g. hardened photo-resist). In wet cleaning

techniques, which involve chemical removal of the contaminations and native oxide layer,

standard solutions are used that are summarized in Table ‎3-1. In fabrication of 4H-SiC BJTs in

this thesis, Seven-up and IMEC solution were applied for surface cleaning before thermal

oxidation or oxide deposition and BHF for removing native oxide layer before metallization.

Also acetone bath followed by propanol and DI water were applied between each process step to

remove any process residues.

Page 50: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

34

Table ‎3-1 Description of standard chemical solution for surface preparation of SiC substrates

Description Chemicals Temp./ Time Removal

RCA SC1 H2O:NH4OH:H2O2 (5:1: 1) 80-90°C /10 min Organic

RCA SC2 H2O:HCl:H2O2 (5:1:1) 80-90°C /10 min Ionic/ Metal

Seven-up H2SO4:H2O2 (2.5:1) 90-110°C/ 5min Organic / Metal

IMEC H2O:HF:CH3CH(OH)CH3(100:1:1) 25°C /100 s Oxide

Aqua regia HCl:HNO3 (3:1) 50°C /5min Metal

Dilute HF HF:H2O(1:10) 25°C Oxide

BHF HF:NH4F (1:7) 25°C Oxide

3.3 Etching

SiC is often used for abrasive application due to the strong bond between Si and C atoms. This

property makes it difficult to etch SiC substrate and complicates fabrication of epitaxially based

vertical power devices that require deep trenches. Therefore, unlike other semiconductors, high

quality anisotropic etching that preserves the morphology of the surface and also has a high etch

rate requires more aggressive techniques. Wet etching of SiC is not a common technique in

fabrication process due to its isotropic property and also requirement of elevated temperatures

that makes it difficult to control [78]. For higher etch rate and better uniformity, fluorine-based

dry etching of SiC in high density plasma reactors such as Reactive Ion Etching (RIE) and

Inductively Coupled Plasma (ICP) are desired. However, compared to conventional RIE, ICP has

the advantage of using separate RF-source for biasing the platen and for plasma generation that

avoids high self-bias on the wafer. Therefore, the etched surface is less damaged through high

energy ions and also better selectivity to the mask material is achieved.

Fig. ‎3.4 Scanning electron microscopy (SEM) image of the trenching effect using metal mask

Page 51: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 3

35

The main problem with ICP etching of SiC is trenching effects on the sidewall of the etched

mesa (Fig. ‎3.4) that depends on the plasma condition and the type of mask material. Better

control of the plasma and also avoiding metal masks that affect high energetic ions in the plasma

can reduce the amount of trenching.

In this thesis, STS ICP [79] (Fig. ‎3.5) was used in SF6/Ar environment with 30 W of platen

power was used to make BJT emitter fingers, base mesas and also etched junction terminations

with masking layers of deposited silicon dioxide. The SiC etch rate was 135 nm/min with etch

selectivity (SiC/SiO2) of 1.4.

Fig. ‎3.5 Schematic view of STS ICP [79].

3.4 Lithography

Similar to other electronic devices, fabrication of SiC-based components needs different

lithography steps. Since high voltage devices have fairly large features compared to integrated

circuits, standard high precision stepper lithography with resolution of 1µm can be applied for

these types of devices. In this work, 6-9 lithography steps were used for fabrication of high

voltage BJTs and PiN diodes using either a Karl Suss MA6/BA6 1:1 mask aligner [80], a DSW

8500/2035 g-line 5:1 stepper or an ALS 2035 G-line stepper (Fig. ‎3.6). However, in most cases,

since the stepper lithography machine was calibrated to 4-inch Si process technology, 2 inch SiC

substrates were placed on a Si carrier wafers that required extra alignment steps for higher

accuracy. Based on the process step, different photo-resists such as positive 1813, 1818 and 712

and negative resist AZ5214 [81] were applied.

Page 52: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

36

Fig. ‎3.6 Karl Suss MA6/BA6 1:1 mask aligner (left) and DSW 8500/2035 g-line 5:1 stepper (right) [82]

3.5 Ion Implantation

In standard fabrication process of electronic devices, ion implantation or thermal diffusion with

appropriate masking films are used for selective-area doping of the material. However for SiC

structures, due to the high thermal stability, extremely high temperatures are required for

diffusion of the dopant elements. Therefore, ion implantation is the only viable option for

introducing dopants into the SiC substrates. This technique involves irradiation of high energetic

ions into the SiC material followed by high temperature anneal for activation of the implanted

ions and reducing implantation-induced lattice damage. Unlike Si, which has a mature fabrication

technology, ion implantation and specifically optimized post implantation anneal in SiC is a major

scientific challenge to avoid structural defects while preserving surface morphology. Nitrogen (N)

and phosphorous (P) are the typical donors for n–type doping of the SiC substrate while

aluminum (Al) and boron (B) are used as p-type acceptors. High temperature anneal (~1400°C -

~1800°C) is needed for activation of implanted atoms and annealing of implantation induced

crystal damage. However during high temperature anneal and due to evaporation of Si, the

surface morphology can deteriorate. It has been shown that graphite [83] (Fig. ‎3.7) or AlN [84]

capping layers can effectively protect the morphology of the surface during post-implantation

anneal.

Page 53: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 3

37

Fig. ‎3.7 Surface morphology of SiC before annealing (left), after annealing without surface protection (center) and after annealing

using a graphite cap (right) [84]

For fabrication of SiC PiN diodes and bipolar transistors, ion implantation can be used for

formation of P-N junctions, highly doped layers for ohmic contacts [85] [86] and junction

terminations [87] - [88]. However complete dopant activation is difficult to achieve even after

high temperature annealing and additionally ion implantation induced lifetime-killing defects are

not fully annealed out and can affect the performance of the device. Therefore in this thesis, SiC

bipolar transistors and PiN diodes in SiC are fabricated in an implantation-free process (Papers I,

II, VI) in which a linearly graded base layer and etched Junction termination extension (JTE) are

used for achieving a highly doped layer for ohmic contacts and terminations respectively (see ‎4.3

and ‎4.4).

3.6 Surface Passivation

Inherited from Si technology, silicon dioxide (SiO2) is an attractive dielectric for passivation of

SiC surfaces, for the gate dielectric layer of MOS structures and also as the masking layer for

etching and ion implantation. This layer can be thermally grown in diffusion furnaces in dry or

wet ambient or deposited on the surface. Due to the strong bond between Si and C, thermal

oxidation of SiC needs higher temperature and shows lower oxidation growth rate. The oxidation

process involves in-diffusion of oxygen atom through the already formed oxide layer and out-

diffusion of C in form of CO or CO2 from the oxide [89]. However, unlike Si, this process can

leave C atoms at the interface between the oxide and SiC which complicates the situation and

affects the properties of the interface between the SiC and the SiO2 layers [90]. Carbon clusters

along with dangling bonds and near interface traps (NITs) [91] compose interface state defects

between SiO2 and SiC and affect the electron transport through field termination, carrier trapping

and Coulomb scattering. Compared to Si thermal oxidation (with trap density of 1010 cm-2) the

interface trap density in SiC is in the order of 1012-1013 cm-2 and that leads to poor field effect

mobility values. These interface defects have been characterized with an energy level of 2.9 eV

above the valence band in 4H- and 6H-SiC [92] and they can significantly affect the electron

transport in 4H-SiC (with Eg = 3.3 eV) while 6H-SiC (with Eg = 3 eV) is less affected due to

Page 54: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

38

smaller bandgap.

During recent years significant progress has been made on improving the quality of the SiC/SiO2

interface, but interface trap density and also fixed oxide charge are still main challenges for

fabrication of SiC devices. It has been shown that incorporation of nitrogen (N) at the interface

between oxide and SiC can improve interface trap density through passivation of interface traps.

N incorporation can be through oxidation or post-oxidation anneal in NO [93]- [94] or N2O

ambient [95]- [96] and deposited oxide combined with N2O anneal [97]. Also it has been shown

that high temperature anneal in hydrogen [98] or phosphoryl chloride (POCl3) [99] can further

reduce the SiC/SiO2 interface state density in 4H-SiC. The recent reported values for interface

trap densities are summarized in Table ‎3-2. Epitaxial growth of AlN [100] and atomic layer

deposited Al2O3 layer (CVD) over nitrided oxide [101] have recently been pointed out as possible

alternative for SiC devices that require further improvement on the growth and characterization.

As discussed earlier, improving the SiC/SiO2 interface is one of the main objectives for

fabrication of 4H-SiC MOSFETs with improved channel mobility. For 4H-SiC BJTs, it is

expected that oxidation technologies that give good results for MOSFETs can also lead to

improved interface properties and thereby BJTs with higher current gain. Therefore in 4H-SiC

BJTs, thermal oxidation in N2O or post oxide anneal in N2O are used to form state-of-the-art

surface passivation. An improved passivation layer in terms of lower interface state density can

decrease surface recombination current at the exposed base surface and along base-emitter

junction sidewall thus resulting in higher current gain. However, the passivation layer can affect

the blocking performance of the BJT through introducing additional charge in the junction

termination region. In Paper IV different surface passivation for 4H-SiC BJTs have been

compared and optimized etched JTEs have been discussed.

Table ‎3-2 Summery of recent reported interface trap densities for 4H-SiC under different process conditions.

Process condition Interface trap density (cm-2/eV) Ref

Dry Oxidation 1.3 × 1013 Paper IV

Dry + NO anneal 3.5 × 1012 [102]

TEOS+N2O anneal 2.8 × 1012 Paper IV

Growth in N2O 2.3 × 1012 Paper IV

Dry + H2 anneal 1.0 × 1012 [98]

PECVD+N2O anneal 4.25 × 1011 Paper IV

Growth in NO 3 × 1011 [103]

Dry + POCl3 anneal 9 × 1010 [99]

Page 55: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 3

39

3.7 Metallization

Based on the application of SiC devices, different metallization approaches are adopted for metal

contacts in SiC process technology. These processes are divided into three types; Metallization

for Schottky and ohmic contacts and overlayer metallization. Generally, the metallization process

involves cleaning of the surface and deposition of the metal followed by patterning, or patterning

followed by etching and deposition (in a lift-off process). High temperature annealing is

necessary for the ohmic contact formation. For the optimum contact, it is desired that the metal

is placed in intimate contact with the semiconductor. Therefore the surface of the semiconductor

should be free from organic and metal contaminations, photoresist residues and native oxide

layer. Also the roughness of the surface can affect the performance of the contact. Sacrificial

oxidation, cleaning the surface using standard surface preparation techniques (see section ‎3.2) and

HF dip followed by in-situ pre-deposition etch can level the surface, remove the contaminations

or other residual and remove the native oxide layer respectively. There are different deposition

techniques for metallization process. Sputtering is the most common way of metallization that

shows a good adhesion of the metal to the substrate and provides the possibility of compound

metallization. However this technique can be problematic for patterning the contact in the lift-off

process. Thermal or electron beam evaporation is another technique that provides higher

deposition rate in an ultra-clean vacuum system. But in some cases, evaporation suffers from

poor adhesion of the metal to the substrate. The other technique is CVD that provides the

possibility of epitaxial growth of different metallic compounds for better contacts to SiC.

However the deposition is lower compared to other techniques and maintaining the quality of the

layer is difficult. Lift-off and metal etch are regarded as the main techniques for patterning the

metal contacts. In SiC, Schottky contacts are annealed at moderate temperatures (~500°C) for

breaking-up of oxide leftover at the interface and passivation of interface states to improve the

ideality factor and reduce the leakage current. However, ohmic contacts are normally annealed at

higher temperatures (~800°C - ~1000°C) in oxygen free ambient to form a reaction between the

metal and SiC forming silicide for the case of Ni contacts to SiC. But high temperature annealing

of the ohmic contacts can cause roughening of the layer that may be problematic for reliability of

the contact and adhesion of overlay metal. Also high temperature annealing can affect the

passivation layer of the device. Therefore it is desired to decrease the annealing temperature as

low as possible and also divide the metallization into two steps: first, a thin metal film is

deposited on the SiC substrate and annealed to form a silicide layer. Then an additional thick

metal overlayer (normally Al) is deposited after annealing to reduce the metallization series

Page 56: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

40

resistance and to provide an appropriate condition for wire-bonding. The quality of the ohmic

contact is strongly important in the device performance and total power loss, and it is normally

evaluated by specific contact resistance (ρC) and measured in Ωcm2. This value is strongly

dependent on the doping level of the semiconductor, metal type and annealing condition.

Different metals have reported for n- and p-type SiC devices. For n-type 4H-SiC, Ni is the most

commonly used metal that has showed the specific contact resistance in the range of ~10-5 - 10-6

Ωcm2 [51]- [104]. For p–type 4H-SiC, Ti [105], Ti/Al [47] and Ni/Ti/Al [53] have been reported

with specific contact resistances in the range of ~10-4-10-5 Ωcm2.

Page 57: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

41

Chapter 4

4 Bipolar Junction Transistors in 4H-SiC,

Fabrication and Characterization

In this chapter, design, fabrication and characterization of different types of 4H-SiC bipolar

junction transistors are discussed. Also optimizations of the design and process in terms of

junction termination extension (in correlation with fabrication of 4H-SiC PiN diodes) and surface

passivation effects on the performance of devices are described. Monolithic Darlington

configurations based on the BJT technology are also demonstrated as a potential solution for the

fairly low current gain of 4H-SiC BJTs. Finally, high temperature measurements, tests of long-

term stability and switching characteristics are shown and discussed.

4.1 Design of 4H-SiC BJTs

As discussed earlier, epitaxial 4H-SiC, npn BJTs are the preferred structure of bipolar transistors

for high power applications. The epitaxial growth of different layers of the device is normally

carried out in high temperature CVD reactors on 2-4 inch 4H-SiC substrates. The quality of the

Page 58: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

42

substrate and the epitaxial growth has important effects on the performance of transistors. The

devices discussed in this chapter are fabricated on 2-inch 4H-SiC substrates fabricated by CREE

[75] with epitaxy grown by Acreo [106] or CREE. In this part, some design issues for optimum

performance of the SiC BJT in terms of doping and thickness of the epitaxial layers are discussed.

4.1.1. Collector layer

The collector layer plays an important role in the performance of the bipolar transistors. During

blocking mode, the breakdown voltage is supported by the collector layer while the resistance of

the collector layer determines the on-resistance of the BJT in the forward mode. Unlike Si, and

due to the absence of conductivity modulation in the lightly doped collector layer, the on-

resistance of the BJT is close to the unipolar drift resistance. Therefore it is desired to design the

collector layer in a way that not only supports the desired breakdown voltage but also provides as

low resistance as possible for the optimum performance. Fig. ‎4.1 shows the electric field

distribution for a punch-through collector design. It has been shown that for this design, the

optimum thickness of the collector layer (toptimum) for a desired breakdown voltage with minimum

resistance can be calculated as:

4-1

where BVCBO is open-emitter breakdown voltage and EC is the critical electric field of 4H-SiC

[68]. Therefore, the drift layer for high breakdown voltage (>3 kV) SiC BJTs in this thesis were

designed with more than 20 µm in thickness.

Fig. ‎4.1 Electric field distribution during blocking mode for punch-through collector design

n+n+ p (Base) n (Collector)

Elec

tric

Fie

ld

Distance

EC

t

1/3EC

Page 59: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

43

The minimum value of the specific on-resistance of the collector for this case is given by:

4-2

where µn is the bulk electron mobility and εs is permittivity of SiC. Also it can be seen that in this

design, the specific on-resistance is 15% less than the non-punch through design (sequation 2-1).

4.1.2. Base layer

The doping profile and thickness of the base layer affect the current gain of 4H-SiC BJT through

the emitter injection efficiency and base transport factor. A lightly doped thin base layer improves

the emitter injection efficiency and a thin base improves the base transport factor of the BJT.

However, during the blocking mode, the base layer should be designed to provide the required

charge to avoid emitter-collector punch-through in which the depletion regions of reverse biased

emitter-base and collector-base diodes reach each other. This minimum sheet charge density

depends on the required breakdown voltage and the collector doping.

In this work implantation free BJTs were fabricated with a linearly graded base layer (see section

‎4.3). This design provides a p-doped layer with sufficiently high surface doping concentration for

ohmic contacts to the base. Also high voltage BJTs in this work were terminated with etched-

JTE, that requires optimum charge density in the base layer during blocking mode for an

efficient etched JTE (see section ‎4.4.2).

4.1.3. Emitter Layer

The emitter layer of the 4H-SiC BJT should be highly n-doped to obtain low contact resistance.

However, the emitter injection efficiency can be degraded by a too highly doped emitter layer due

to doping induced bandgap narrowing [107]. For the optimum injection efficiency, the emitter

layer is designed with doping concentration of ~mid 1018 -1019 cm-3 followed by a thin n+ cap

layer with higher doping of 3×1019 cm-3 for improved contact resistance.

4.1.4. BJT Layout

To fully implement the performance of power BJTs, special care must be taken for designing the

layout of these devices. For vertical BJTs and due to the emitter current crowding, the current

capability does not scale with increasing emitter area and instead it scales with increase in emitter

periphery (for the fixed collector doping profile) [52]. Therefore, the emitter and base contacts

are designed inter-digitated for the maximum emitter periphery (Fig 4.2)

Page 60: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

44

Fig. ‎4.2 Example of inter-digitated emitter and base contacts to avoid the emitter size effect for the maximum current capability.

Also it has been shown that minimum distance of 2-3 µm is required between the emitter mesa

and the base contact implant (Wp+) to avoid the effect of implantation-induced defects on the

maximum current gain [52] (see Fig. ‎4.3).

Fig. ‎4.3 Schematic view of minimum distance (Wp+) between the base contact and base-emitter junction (paper I)

In Paper I we have shown that for non-implanted BJTs the base contact can be placed closer to

the emitter edge with smaller reduction of the maximum current gain compared to the case with

base contact implantation (Fig. ‎4.4). This approach can reduce the base resistance significantly.

Fig. ‎4.4 Normalized value of the maximum current gain versus emitter base distance for implanted and non-implanted transistors

(Paper I).

Emitter

Base

Emitter Contact

Base Contact

Collector Contact

WP+

Emitter

Base

Collector

0,2

0,4

0,6

0,8

1

0 1 2 3 4

No

rmalized

Cu

rren

t G

ain

β/β

ma

x

Emitter Base distance WP+ (μm)

Non Ion-Implanetd

Ion-Impanted

Page 61: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

45

4.2 Bipolar Transistors with regrown extrinsic base and etched JTE

One problem with ion implantation in SiC is that complete dopant activation is difficult to

achieve even after high-temperature annealing. As discussed earlier, ion implantation generates

lifetime-killing defects that can decrease the current gain and this enforces a design limitation in

the minimum distance (Wp+) between the base contact implant and the base–emitter junction

[52]. To avoid these effects, SiC BJTs with a p+ epitaxially regrown extrinsic base layer has

previously been reported [108], [59]. However, the current gain of SiC BJTs with epitaxially

regrown base has been relatively low, which is associated with the difficulty of removal of the p+

regrown layer from the base–emitter junction. Efficient removal of the remaining p+ regrown

layer from the surface of the emitter–base junction using combined dry etching and thermal

oxidation can increase the maximum current gain (Paper VII). A cross section view and I-V

characteristics of a large bipolar transistor 1.8 × 1.8 mm (with an active area of 3.24 mm2,

including metal pads) with regrown extrinsic base and etched JTE is shown in Fig. ‎4.5. A

maximum current gain of 42 was measured at Jc = 258 A/cm2 and VCE = 3.7 V. The specific on-

resistance is also recorded as RSP_ON =9 mΩcm2. A stable open-base breakdown of 1750 V at Jc =

2.5 mA/cm2 was obtained. However, there is an isolation trenching which is about 170 nm deep

in this structure, due to over-etching of the p+ regrown layer. This trenching increases the base

resistance; furthermore, process optimization is necessary to reduce the isolation trench depth.

Fig. ‎4.5 Cross Section view and IV characteristics of 4H-SiC BJT with regrown extrinsic base and etched JTE (paper VII)

4.3 Bipolar Transistors with linearly graded base layer and epitaxial JTE

To avoid problems related to the regrown base layer, implantation free 4H-SiC BJTs with linearly

graded base layer have been demonstrated (Paper I). Fig. ‎4.6 displays the cross section view and

SIMS profile of the base layer that is 730 nm linearly graded Al doped with a peak concentration

Page 62: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

46

of 3.5×1017 cm−3 at the interface to the emitter. This design provides a p-doped layer with

sufficiently high surface doping concentration for ohmic contacts to the base [109] and a sheet

charge density of about 1.6×1013 cm−2 remaining after emitter mesa etching to form an efficient

JTE. Room temperature I-V characteristics of a small area BJT (Fig. ‎4.7) shows a common-

emitter current gain as high as 50, an open-base breakdown voltage of 2700 V and an on-

resistance of 12 mΩcm2. Also, this design shows improvement in a reduced emitter-size effect

and allows placing the base contact closer to the emitter edge, resulting in a lower base resistance.

This structure provides high breakdown voltage utilizing a simple type of etched JTE without

additional mask steps. However achieving an optimum dose of remaining JTE charge using

additional mask steps to obtain a number of etched-steps for a fully efficient JTE needs more

analysis.

Fig. ‎4.6 Cross section view of and Al SIMS profile of the base epilayer indicating the position of the base contact and the dose of the etched epitaxial JTE (The JTE length is not to scale) (paper I)

Fig. ‎4.7 Room-temperature IC versus VCE characteristics and open base blocking characteristics of the SiC BJTs with graded

profile base layer (Paper I).

0

20

40

60

80

0 500 1000 1500 2000 2500 3000

0

0,02

0,04

0,06

0,08

0,1

0,12

0 5 10 15 20

Ic(μ

A)

Ic(A

)

Collector-emitter Voltage VCE(V)

Ron= 12 mΩ‎cm2

β=50 IB=0.5 mA/Step

BVCEO= 2.7 kV

Ron= 12 mΩ‎cm2

β=50 IB=0.5 mA/Step

BVCEO= 2.7 kV

Page 63: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

47

4.4 Etched Junction Termination Extension for High Power Devices

To utilize the high breakdown field in a high-voltage device, an efficient junction termination is

needed. Among different high-voltage junction termination techniques, multistep junction

termination extensions (MJTEs) and mesa-JTE termination provided by ion implantation have

been considered as applicable methods due to their simple design and processing techniques [88],

[110]. The key step is to achieve an accurate dose of implanted charge that becomes completely

depleted close to the surface at the desired breakdown voltage, thereby reducing the maximum

electric field in the edge region. However, any implantation step is strongly dependent on the

activation of implanted dopants that can differ with annealing temperature and time.

Furthermore, defect generation during implantation and surface degradation during post

implantation anneal affect the device performance. In the following sections, two types of high

power devices (PiN diode and BJT) are reported utilizing single and double etched JTEs. Also to

study the effect of different JTE doses on breakdown voltage and to optimize the design, 2-D

device simulations were carried out (using Sentaurus TCAD) and compared with experimental

results.

4.4.1. High-Voltage 4H-SiC PiN Diodes with Etched JTE

In this design, mesa-etched single- and double-zone JTEs with different doses have been formed

by controlled etching into the epitaxially grown p-doped layer as a modification to the implanted

etched JTE termination. This method is based on a precise etch-depth control and it is therefore

affected by variation in thickness and doping profile of the base epitaxial layer. This sensitivity

can, however, be significantly reduced by introducing a double-zone JTE that can act as a

controlling tool for compensation of possible variations in processing conditions (Paper II). Fig.

‎4.8 shows a cross-sectional view and the I–V characteristics of a fabricated circular PiN diode

with a 200-μm diameter anode contact. Inductively coupled plasma etching with an oxide mask

was used to isolate the devices and to define the JTE zones. Different depths (D1 = D2) for a

single-zone JTE and D1 (JTE1) < D2 (JTE2) for a double-zone JTE with the same JTE length of

100 μm were etched into the p-doped epilayer to find an optimum dose of the remaining dopants

for maximizing the breakdown voltage. I–V curves of this diode show a forward-voltage drop of

3.25 V at 100 A/cm2 and a breakdown voltage of 4.3 kV for the optimized double-zone JTE

structure.

Page 64: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

48

Fig. ‎4.8 Cross-sectional view (top) and measured I–V characteristics (bottom) of a fabricated circular optimally dosed double-

zone JTE PiN diode BJT (Paper II)

Fig. ‎4.9 shows simulated and measured breakdown voltage of fabricated PiN diodes as a function

of remaining dose in the etched p-doped layer. In this figure, the x-axis refers to the dose for

single-zone JTE and to the dose in the JTE1 (the inner JTE zone) for the double-zone JTE. Our

results indicate that the dose of ~1.2×1013 cm-2 is an optimum point for the single-zone JTE,

which yields a stable breakdown voltage of 4.0 kV. However the optimum dose range is very

narrow since the single-zone JTE suffers from an abrupt reduction of breakdown voltage for

doses higher than optimum. Being in good agreement with simulation and comparing to single-

zone JTE, improved and more stable breakdown performance is achieved by applying a double-

zone JTE. In this design, the dose in JTE2 was tuned in the range of 30-70% of JTE1 with step-

Page 65: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

49

by-step etching of D2 while keeping the total JTE length constant. Although this design does not

improve the breakdown voltage for lower doses in JTE1, it improves the breakdown voltage to

4.3 kV for higher doses (indicated by the arrows in the picture). This breakdown voltage is 80%

of the theoretical value and corresponds to a JTE1 dose of 1.5×1013 cm-2 (D1= 1.2 µm) and a

JTE2 dose of 1×1013 cm-2 (D2= 1.35 µm). The results in Fig. ‎4.9 indicate that a double-zone JTE

can decrease the sensitivity of the breakdown voltage to the dose of remaining dopants compared

to a single-zone JTE while keeping the total JTE length constant. Therefore, the introduction of

a second JTE zone reduces the sensitivity to variations in processing conditions such as RIE

etch-rate as well for a non-uniform thickness and doping profile in the epitaxial layer.

Fig. ‎4.9 Simulated and experimental breakdown voltage as a function of remaining dose in the JTE. The x-axis refers to the dose

for single-zone JTE and the dose in JTE1 for the double-zone JTE (Paper II).

Fig. ‎4.10 shows a localized avalanche breakdown that is visible as a bright spot in

electroluminescence. There is a transfer of the maximum electric field from the outer edge of the

single-zone JTE with a high dose of 2.2×1013 cm-2 to the inner edge with lower dose of 5×1012

cm-2. The location of the electric field peak was also confirmed by device simulation. Electric

field distributions were simulated for the different JTE doses in Fig. ‎4.11. It can be shown that

for the optimum dose of dopants, the single-zone JTE is fully depleted at avalanche breakdown

and acts as a highly resistive layer. Compared with non-optimum doses, this case provides a

balanced electric field distribution both at the inner and outer edge of the diode which results in a

stable breakdown voltage of 4 kV. For the double-zone JTE, where the JTE2 is fully depleted at

lower voltage compared to JTE1, the electric field peak at the outer JTE edge was reduced and a

higher breakdown voltage of 4.3 kV was obtained.

0

1

2

3

4

5

6

0 0,5 1 1,5 2 2,5

BV

(kV

)

Dose in JTE (cm-2)

Simulation (Single-JTE)

Simulation (Double-JTE)

Measurement (Single-JTE)

Measurement (Double-JTE)

Upper Bound

× 1013

Upper Bound

Page 66: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

50

Fig. ‎4.10 Electroluminescence (visible and near infrared wavelength) for single-zone JTE at low breakdown of 1.5 kV (Paper II).

a)

b)

Fig. ‎4.11 Electric field distribution for a) single-zone JTE at breakdown. The high, optimum and low doses were 2.2x1013,

1.2x1013 and 5x1012 cm-2 respectively. (b) A comparison of the electric field distribution for single-zone JTE (D1=D2=1.2 µm) and

double-zone JTE (D1=1.2 µm and D2=1.33 µm) at 3kV (Paper II).

Page 67: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

51

4.4.2. High Voltage 4H-SiC BJT with Etched JTE

After successful demonstration of implantation free PiN diodes with etched-JTE, the same type

of termination was implemented in bipolar transistors. Therefore, in this step BJTs with etched

JTE were fabricated and simulated to determine the optimum dose of dopants in the etched JTE

area and optimize the open-base breakdown voltage. Fig. ‎4.12 shows a cross sectional view of the

fabricated 4H-SiC BJTs with the etched JTE. In this work, inductively coupled plasma (ICP)

etching with an oxide mask was used to form emitter and base mesas. Step-height controlled ICP

etching into the p-doped base layer with different etch depths corresponding to different doses

of dopants in the JTE for each die was applied on the same wafer using 100µm JTE length.

Fig. ‎4.12 Cross sectional view of the fabricated 4H-SiC BJTs with etched-JTE.

Simulated and measured open-base breakdown voltage of non-passivated 4H-SiC BJTs with

etched JTE as function of remaining dose in the etched p-doped layer is shown in Fig. ‎4.13. Our

experimental results that are in agreement with simulation indicate that the dose of 1.2-1.3×1013

cm-2 is an optimum point for the single-zone JTE, which yields a stable breakdown voltage of 3.2

kV which is 67% of theoretical value of 4.8 kV. However an abrupt reduction of breakdown

voltage for non-optimum doses was observed that can be explained by a non-uniform electric

field distribution in the JTE area during blocking.

An overlay of electroluminescence and un-biased optical imaging of BJTs with etched JTE at the

breakdown are shown in Fig. ‎4.14 (a-b). These images illustrate the transfer of maximum electric

field, that is confirmed by localized luminescence, from the outer edge of the JTE with a high

dose of 1.65×1013 cm-2 to the inner edge with the lower dose of 1×1013 cm-2. This transfer is also

confirmed from an un-balanced electric field distribution at the edges for non-optimum JTE

doses in device simulation (Fig. ‎4.14c).

1300 nm

200 nm

N+ Substrate

ND = 3 . 1015 cm-3

NA ≈‎9‎. 1017 cm-3 (graded)

ND = 1 . 1019 cm-3

ND = 3 . 1019 cm-3

25μm

600 nm

Etched-JTE

Page 68: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

52

Fig. ‎4.13 The simulated and measured open-base breakdown voltage of fabricated 4H-SiC BJTs with etched JTE as a function of

remaining dose of dopants in the etched p-doped layer.

(a)

(b)

(c)

Fig. ‎4.14 An overlay of electroluminescence and un-biased optical imaging of a) low-dose (1×1013 cm-2) and b) high-dose

(1.65×1013 cm-2) BJTs with etched-JTE at avalanche breakdown. c) Simulation of electric field distribution at the edges for non-

optimum JTE doses (Paper IV).

1,5

2

2,5

3

3,5

4

4,5

5

0,90 1,00 1,10 1,20 1,30 1,40 1,50 1,60 1,70

BV

(kV

)

Dose ( x1013 cm -2)

Simulation

Measurement

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Ele

ctri

c Fi

eld

(M

V/c

m)

high dose

low dose

P

N

N

Page 69: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

53

4.5 Surface Passivation Influence on the Performance of 4H-SiC BJTs

It was discussed earlier that since BJTs are current controlled devices, achieving high current gain

(β = IC/IB) while maintaining the high voltage blocking capability is a critical issue for practical

applications. Minimizing the surface recombination current by improving the surface passivation

is a key step for improving the maximum current gain [52]. The surface recombination current

can be correlated with the interface trap density that depends on the quality of the SiC/SiO2

interface in the base-emitter region [111]. It has been experimentally shown that oxidation or

post-oxidation anneal in NO or N2O ambient can improve the quality of the SiO2/SiC interface

and thereby decrease the trap density at the base-emitter junction sidewall [112] - [113] and along

the exposed base surface between the emitter edge and the base contact. However a comparative

study of the influence of different passivation layers on the performance of 4H-SiC BJTs

fabricated from the same wafer is still missing. Investigations performed on the same wafer

strengthen the experimental study because the carrier lifetime can vary considerably for wafers

with different epitaxial material quality, and this, together with variations in base and emitter

doping and thickness, can influence the current gain. In this part the electrical performance of the

BJTs with SiO2 surface passivation layers fabricated under different conditions are analyzed. In

order to understand the effective influence of the interface traps on electrical performance of

4H-SiC BJTs including the maximum current gain and breakdown voltage, two dimensional

device simulations have been performed and compared with experimental results. Interface trap

charges and fixed oxide charges were evaluated through MOS structures on n-type 4H-SiC

substrate that have the same passivation as the SiC BJTs. The process conditions for different

surface passivations aiming for 50 nm oxide thickness are summarized in Table ‎4-1.

Table ‎4-1 Processing parameters of passivation layers fabricated with different oxidation processes.

Sample

Oxidation/Deposition Annealing

gas species T(°C)

gas species T(°C) Time

(Hours)

1 N2O N2O 1250 - - -

2 NO NO 1200 - - -

3 O2 O2 1100 - - -

4 TEOS-N2O Si(OC2H5)4 680 N2O 1100 3

5 TEOS-Wet Si(OC2H5)4 680 H2O:O2 950 3

6 PECVD-N2O SiH4:N2O 300 N2O 1100 3

Page 70: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

54

Fig. ‎4.15 shows forward and reverse normalized C-V and G-V curves for n-type 4H-SiC MOS

capacitors passivated with oxide layers fabricated under four different process conditions. The

solid gray curve represents the ideal MOS capacitor with no interface or oxide charges. It can be

seen that in comparison of different passivation layers, the PECVD-N2O sample has no

hysteresis behaviour and a small flat-band voltage shift. The G-V plot displays a sharp and low

intensity peak that corresponds to minimal surface potential fluctuations and a low Dit value at

the SiO2/SiC interface (Table ‎4-2). The TEOS-N2O sample with more flat-band voltage shift and

the N2O sample with hysteresis behaviour indicate higher values of interface trap densities

compared to the PECVD-N2O sample, as confirmed also from larger conductance peaks. The O2

sample has a pronounced stretched out C-V curve, a larger flat-band voltage and an intense

conductance peak resulting in higher effective oxide charge and higher interface traps. Table ‎4-2

summarizes the extracted values of oxide charge (Qeff/q), and interface trap density (Dit) for

different layers. It can be seen that the PECVD-N2O sample has the lowest interface trap density

of 4.25×1011 cm-2 as determined at 0.35 eV below the conduction band.

Fig. ‎4.15 Forward and reverse normalized C-V (a) and G-V (b) curves taken on n-type 4H-SiC MOS capacitors fabricated by

different processing conditions (Paper IV).

Table ‎4-2 Effective oxide charge (Qeff/q), and interface traps density (Dit) of selected passivation layers fabricated with

different oxidation processes using C-G-V method.

sample

Qeff/q Dit*

(1011 cm-2) (1011 cm-2eV-1)

N2O -7.5 23.1

O2 -26.7 129.2

TEOS-N2O -9.1 28.7

PECVD-N2O 4.6 4.25

Voltage (V)

-20 -10 0 10

No

rm. C

ap

acita

nce

C/C

ox

0,0

0,2

0,4

0,6

0,8

1,0 PECVD-N2O

N2O

TEOS-N2O

O2

Ideal curve

T = 295 K

= 10 kHz

Voltage (V)

-20 -10 0 10

Norm

. C

onducta

nce G

/(

Co

x)

0,0

0,2

0,4

0,6

0,8 PECVD-N2O

N2O

TEOS-N2O

O2

T = 295 K

= 10 kHz

Page 71: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

55

A statistical comparison of maximum current gain for the fabricated 4H-SiC BJTs passivated

with different layers is shown in Fig. ‎4.16. The provided data has been extracted from ten

transistors for each type of passivation to enable an accurate comparison. It can be seen that the

PECVD-N2O sample has the highest current gain of 40 in comparison with other passivation

layers such as TEOS-N2O, TEOS-Wet, N2O, NO and O2 with average current gains of 30, 26,

24, 23 and 17 respectively. This higher value is likely related to a higher quality of the surface

passivation with a lower interface trap density near the conduction band resulting in less surface

recombination current at the base-emitter junction sidewall and along the exposed base surface.

Therefore, our results indicate that the new type of BJT surface passivation layer consisting of a

PECVD deposited oxide layer followed by post-deposition anneal in N2O ambient can offer 60%

increase in the maximum current gain compared to silicon dioxide layers that are thermally grown

in N2O or NO ambient.

Fig. ‎4.16 Statistical comparison of maximum measured current gain for 4H-SiC BJTs passivated with SiO2 layers fabricated using

different techniques (Paper IV).

The average open-base breakdown voltage values in Fig. ‎4.17 demonstrate a pronounced

dependence of the breakdown voltage on the type of surface passivation layer. The O2 and

PECVD-N2O samples show the lowest breakdown voltage of 2kV and 2.3kV compared to N2O

and TEOS-Wet samples with a breakdown voltage of 3kV. It is suggested that breakdown

voltage variation depends on variation in surface charge for the different passivation layers that

changes the optimum dose of implanted and activated dopants in the JTE area.

15

20

25

30

35

40

45

TEOS-N2O TEOS-Wet N2O O2 NO PECVD-N2O

Gai

n

Page 72: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

56

Fig. ‎4.17 Measured average open-base breakdown voltage values for five BJTs with different passivation layers (Paper IV).

The effect of passivation oxide charge on the optimum dose of the JTE according to device

simulation is shown in Fig. ‎4.18. This simulation was based on extracted charge data in Table ‎4-2

and indicates a pronounced variation in the optimum JTE dose when the oxide charge is

significant compared to the JTE dose (>10%). Therefore, the reduction of breakdown voltage

for the PECVD-N2O and the O2 passivation oxides can be attributed to a different effective

oxide charge that affects the optimum JTE dose in the implanted transistors. Consequently,

applying new surface passivation layers can reduce the interface state density but potentially

degrade the blocking performance if the junction termination is not re-designed.

Fig. ‎4.18 Simulated optimum dose of the etched JTE vs. effective oxide charge. Simulations were performed using the extracted

values of surface charge for the different passivation layers as specified in Table ‎4-2 (Paper IV).

0

0,5

1

1,5

2

2,5

3

3,5

4

TEOS-N2O TEOS-Wet N2O O2 NO PECVD-N2O

Open

Bas

e B

reak

dow

n (

kV

)

8

9

10

11

12

13

14

-3 -2 -1 0 1

Opti

mum

JT

E d

ose

( ×

10

12 cm

-2)

Effective Oxide charge (×1012 cm-2)

PECVD-N2O

N2O

O2

Page 73: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

57

4.6 Influence of Crystal Orientation on the Current Gain of 4H-SiC BJTs

Conventionally, vertical 4H-SiC BJTs are fabricated along the [1100] or [1120] direction on

(0001) Si-face. However due to anisotropic properties of 8° off-axis 4H-SiC, different

orientations on Si-face can also affect the base current of the BJT through variation of mobility

and interface traps density distribution along each direction. Therefore single finger BJTs with

emitter fingers oriented the [1210], [0110], [1120] and [1100] directions were fabricated in the

same processing steps and compared before and after surface passivation (Paper V). Fig. ‎4.19

shows a perspective view of fabricated BJTs with different orientations that were labeled from 0°

to 180° relative to the conventional [1100] direction.

Fig. ‎4.19 Perspective view of single-finger BJTs along with different directions

Fig. ‎4.20 shows a comparison of the maximum current gain of BJTs with different orientations

relative to the [1100] direction (0°) before and after surface passivation and contact metallization.

The results indicate that the maximum current gain before passivation is orientation-dependent

and has a maximum value for BJTs with the emitter edge aligned to the [1120] direction (90°) and

shows the lowest value for the BJTs with emitter edge aligned to the [1210] direction (30°).

However, after surface passivation the current gain is improved to a similar value for all

directions. The variation of the current gain for different directions before surface passivation

could be caused by a different distribution of interface traps between the native oxide and emitter

sidewall for each direction. However uniform behavior of the current gain in all directions

indicates that surface passivation minimizes the interface traps on the area between base contact

and the emitter mesa sidewall and improves the current gain to higher values.

Page 74: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

58

(a)

(b)

Fig. ‎4.20 Comparison of the maximum current gain for different orientations a) before and b) after surface passivation (9

transistors measured per direction) (Paper V).

Based on the these results we can speculate that similar to small area BJTs, the performance of

large area multi-finger BJTs in term of maximum current gain is not orientation dependant and

designers can align emitter fingers to any direction on 4H-SiC substrates.

4.7 2.8 kV Bipolar Transistors with Improved Junction Termination

In section ‎4.3 the bipolar transistor with graded base layer was reported. In this section the

modified version of this type of transistor aiming for higher breakdown voltage and improved

performance of large area devices is revealed. A cross sectional view of a fabricated 4H-SiC BJT

with four epitaxial layers grown in one continuous run on is shown in Fig. ‎4.21.

0

10

20

30

40

50

60

70

0 30 60 90 120 150 180

Cu

rre

nt

Ga

in

Degree

Max Avg+σ Avg. Avg-σ Min

0

10

20

30

40

50

60

70

0 30 60 90 120 150 180

Cu

rre

nt

Gai

n

Degree

Max Avg+σ Avg. Avg-σ Min

Page 75: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

59

Fig. ‎4.21 A cross-sectional view of 2.8kV 4H-SiC BJTs with two-zone JTE (Paper VI).

Inductively coupled plasma (ICP) etching with an oxide mask was used to form emitter and base

mesas and also a well controlled two-zone etched JTE. It was previously reported that two-zone

JTE can improve the blocking performance of the PiN diode to 75% of the parallel-plane

breakdown voltage, and the optimum remaining dose in JTE for the maximum breakdown is

around 1.2-1.3×1013 cm-2. Also the passivation layer introduces extra charge close to the interface

and this charge can affect the optimum dose in the JTE. Therefore the performance of the device

in the blocking mode with and without additional charges from the surface passivation layer was

simulated using physical device simulation software Sentaurus TCAD (Fig. ‎4.22). The simulation

shows that for the passivated surface without extra charges and for the single-JTE, the

breakdown voltage is optimal for the dose of 1.45×1013 cm-2 in the JTE while the passivated

layer with the extra charge shows an optimum breakdown for the dose of 1.5×1013 cm-2.

Implementation of a two-zone etched-JTE has the advantage of showing less sensitivity for the

breakdown voltage to the JTE dose. Therefore in this design, the devices were terminated with

controlled etching into the base layer aiming for two-zone etched JTE with the dose of 1.5×1013

cm-2 in the JTE1 and dose of 9 ×1012 cm-2 in JTE2 to obtain maximum blocking capability.

Fig. ‎4.22 Simulation of breakdown voltage vs. remaining dose in the etched JTE1 (Paper VI).

N+ Substrate

ND = 6 . 1015 cm-3, 25 μm

NA = 4.3 . 1017 cm-3, 0.65 μm

ND = 8 . 1018 cm-3 , 1.35 μm

ND = 2 . 1019 cm-3, 0.2 μm

JTE1JTE2

JTE1JTE2

0

500

1000

1500

2000

2500

3000

3500

4000

1,2 1,3 1,4 1,5 1,6 1,7

Bre

akd

ow

n V

olt

age

(V)

Dose ( 1013 cm -2)

Single JTE No extra Charge

Single JTE, Extra Charge

Double JTE, Extra Charge

Page 76: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

60

The surface passivation was fabricated by 50 nm PEVCD SiO2 followed by a post deposition

anneal in N2O ambient at 1100 °C for 3 hours to minimize the interface charges at the SiC/SiO2

interface. Also a 2µm-thick oxide layer was deposited to protect the passivation layer. Ni was

used for emitter and collector contacts while a triple layer of Ni/Ti/Al was deposited for the base

contacts. The metals were annealed in Ar ambient at 950 °C and 800 °C respectively, to provide

low resistive ohmic contacts to the emitter and base layers. The fabrication process of the devices

was then followed by two layers Al metallization to connect the interdigitated emitter and base

fingers to overlying pads for wire bonding.

a)

b)

Fig. ‎4.23 Room temperature IV characteristics of a) 0.04 mm2 and b) 3.0 mm2 BJT (Paper VI).

Room temperature IV characteristics using Tektronix 370B curve tracer for small and large area

devices are shown in Fig. ‎4.23. The small area BJT with the die size of 0.3 × 0.3 mm and active

0

20

40

60

80

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 5 10 15 20Ic

(uA

)

Ic(A

)

Collector-emitter Voltage VCE(V)

Ron= 4 mΩ‎cm2

β=55

IB=1 mA/Step

BVCEO= 2,8 kV

0

20

40

60

80

100

120

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Ic(u

A)

Ic(A

)

Collector-emitter Voltage VCE(V)

β=52

IB=20 mA/Step BVCEO= 2,8 kV

RON=6.8 mΩ·cm2

Page 77: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

61

area of 0.04 mm2 (excluding the contact pads) shows a maximum dc current gain of 55 and RON

= 4 mΩcm2. The large area device with the die size of 1.8 × 1.8 mm and active area of 3.0 mm2

shows a maximum dc current gain of 52 and RON = 6.8 mΩcm2. The open-base breakdown

voltages for both small and large area devices are 2.8 kV which is 75% of the parallel-plane

breakdown voltage. The high breakdown voltage is achieved utilizing a controlled two-zone

etched JTE that provides an accurate dose in the base layer that becomes completely depleted

close to the surface for higher breakdown voltages, thereby reducing the maximum electric field

in the edge region.

4.7.1. Degradation

As discussed earlier, bipolar degradation and current gain degradation are regarded as major

challenges for the commercialization of 4H-SiC BJTs. Fig. ‎4.24 is the I-V characteristics of small

and large are BJTs (see section ‎4.7). The small area BJT shows low current gain degradation after

150 Hrs stress of the base-emitter diode with a current level of 0.2A while the large are BJT

shows significant bipolar and current gain degradation after 10 Hrs of stress (Ib=0.2 A and

Ic=4A). These results indicate the possibility of reducing bipolar degradation for smaller area

BJTs that can be due to the lower chance of presence of basal plane dislocations (BPDs) in the

substrate and epitaxial layers while for large area BJTs, the probability of presence of BPDs is

higher.

Fig. ‎4.24 I-V characteristics of 4H-SiC BJTs before and after stress a)small are BJT (stress of Ib= 0.2 A) and b) large area BJT

(stress of Ib=0.2A and Ic=4A)

4.7.2. Switching Characteristics

Switching measurement for a large area BJT with active area of 3 mm2 was carried out with a

driver circuit that is schematically demonstrated in Fig. ‎4.25. In this topology the passive network

composed of a resistance R2 for DC biasing and a series connection of R1 and C1 for dynamic

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 1 2 3 4 5 6 7 8 9

Ic

VCE

Before Stress

Ib200mA_40Hrs

Ib200mA_150Hrs

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8

Ic

VCE

Before

Ib0.3AIc4A_30min

Ib0,3AIc4A_10Hrs

Page 78: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

62

overshoot of the base current during turn on and off. A double pulse is fed to the gate driver of

IXDN509 to ramp up the inductor current. The BJT acts as a switch for a 5 mH inductive load

with a 1200V 8A Schottky diode from Infineon (IDH08S120) as a freewheeling diode.

Fig. ‎4.25 Schematic of the test circuit for switching high voltage BJT.

The turn-on and turn-off transients for 400V switching are shown in Fig. ‎4.26. The large area

BJT shows a VCE fall time of 18 ns during turn-on and a VCE rise time of 10 ns during turn-off.

The fast switching without the current tail shows the potential for significantly smaller power

losses compared to a Si IGBT.

a)

b)

Fig. ‎4.26 Transient characteristics of large area BJT for 400V switch during a) Turn-on and b) Turn-off

-100

0

100

200

300

400

500

-2

0

2

4

6

8

10

12

14

-0,1 -0,05 0 0,05 0,1

V C

E (V

)

Ic (A

)

Time(µS)

Ic

Vce

0

100

200

300

400

500

-2

0

2

4

6

8

10

12

-0,1 -0,05 0 0,05 0,1

V C

E (V

)

Ic (A

)

Time(µS)

Ic

Vce

Page 79: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

63

4.8 Monolithic Darlington Transistors

As discussed earlier, increasing the current gain by two cascaded BJTs in Darlington

configuration is a potential solution for high power applications at the expense of higher forward

voltage drop. In this section, implantation-free Darlington transistors in two configurations are

reported. Cross section views of a fabricated Darlington with isolated (D1) and non-isolated base

layers (D2) are shown in Fig. ‎4.27. The non-isolated base layer affects the forward conduction by

higher base resistance that decreases the maximum current gain and it also introduces a base

current-offset for triggering the driver BJT. Fig. ‎4.28.a is room temperature I-V characteristics of

the Darlington transistor with isolated base layer (D1). The device shows a maximum current

gain of 2900 and on-resistance of 20 mΩcm2 at 3.5 V in forward conduction. The high current

gain is attributed to a well- designed ratio of the active area of the driver BJT to the output BJT

(1:10). The measured open-base breakdown voltage of 1kV is well below the ideal value and this

is due to the absence of junction termination. Fabrication of a junction termination is more

complicated for the isolated Darlington due to its isolation trench between driver and output BJT

that can result in electric field crowding at the trench corner.

The forward characteristic of the Darlington transistor with non-isolated base layer (D2) is

shown in Fig. ‎4.28.b. This device shows a maximum current gain of 1000 (at JC = 475 A/cm2 and

VCE = 10V). In this design, the non-isolated base layer can be modeled as a resistance between

the base and emitter of the driver BJT that consumes some percentage of the base current.

Therefore the maximum current gain is lower than D1 and 1mA is aquired as threshold base

current to forward bias the base-emitter diode of the driver BJT. However, this device shows

higher open-base breakdown voltage of 2.8 kV which is 75% of the parallel–plane breakdown

voltage. Increasing the resistance between base and emitter by increasing the distance between

driver and output BJT or by making a narrower connection can be beneficial to achieve higher

current gain and reduced threshold base current.

The forward characteristic of the Darlington transistor with non-isolated base layer (D2) is

shown in Fig. ‎4.28.b. This device shows a maximum current gain of 1000 (at JC = 475 A/cm2 and

VCE = 10V). In this design, the non-isolated base layer can be modeled as a resistance between

the base and emitter of the driver BJT that consumes some percentage of the base current.

Therefore the maximum current gain is lower than D1 and 1mA is aquired as threshold base

current to forward bias the base-emitter diode of the driver BJT. However, this device shows

Page 80: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

64

a)

b)

Fig. ‎4.27 Cross section view of fabricated Darlington a) with isolated base layer (D1) and b) with non-isolated base layers (D2)

(Paper III).

a)

b)

Fig. ‎4.28 Room temperature I-V characteristics of the Darlington transistor a) with isolated base layer (D1) and b) with non-

isolated base layers (D2) (Paper III).

Emitter

Base Base

Emitter

Collector

1.2 µm

7 µm

Base

Emitter

Collector

Emitter

2-step etched-JTE

150 µm

0

20

40

60

80

-100 100 300 500 700 900 1100

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5 10 15 20

Ic(u

A)

Ic(A

)

Collector-emitter Voltage VCE(V)

Ron= 20 mΩ‎cm2

β=2900BVCEO= 1 kV

IB=50 µA

IB=100 µA

IB=150 µA

IB=200 µA

0

20

40

60

80

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

0

0,5

1

1,5

2

2,5

3

3,5

0 5 10 15 20 25 30

Ic(u

A)

Ic(A

)

Collector-emitter Voltage VCE(V)

Ron= 20 mΩ‎cm2

β=1000

IB=1 mA

BVCEO= 2.8 kV

IB=2.5 mA

IB=2 mA

IB=1.5 mA

IB=3 mA

Page 81: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 4

65

higher open-base breakdown voltage of 2.8 kV which is 75% of the parallel–plane breakdown

voltage. Increasing the resistance between base and emitter by increasing the distance between

driver and output BJT or by making a narrower connection can be beneficial to achieve higher

current gain and reduced threshold base current.

4.9 High Temperature Characteristics

For high temperature applications, bipolar transistors are preferred devices due to the negative

temperature coefficient of the current gain and positive temperature coefficient of the on-

resistance. This feature enhances the parallel connection capability of these types of devices by

decreasing the risk for thermal runaway in which the current increases in a positive feedback with

temperature. For the current gain, it is believed based on device simulations that at higher

temperatures, the ionization of deep level acceptors (Al) in the base layer increases which results

in a reduction of the emitter injection efficiency. Also decrease in the mobility of the drift layer at

higher temperature results in the increase of the on-resistance in the BJTs. High temperature

performance of the small and large area transistors (see section ‎4.7) are demonstrated in Fig. ‎4.29.

The small area device shows a negative temperature coefficient of the maximum current gain that

decreases from 55 at room temperature to 26 at 200 °C while the on-resistance increases from 4

mΩcm2 to 10.2 mΩcm2 at 200 °C. Also, the large area BJT performs in a similar way and shows a

decrease of maximum current gain from 52 to 24 and increase of on-resistance from 6.8 mΩcm2

to 27 mΩcm2 at 200 °C. The resistance of the drift layer is calculated as 3 mΩcm2 indicating that

there is no significant conductivity modulation in these devices.

The negative temperature coefficient of the current gain for the Darlington transistor with

isolated base layer (D1) and the driver BJT is shown in Fig. ‎4.30. It can be seen that both the

driver BJT and the Darlington pair follow the β Darlington = β (Driver BJT) × β (Output BJT) formula at

elevated temperatures and the Darlington device shows a second order negative temperature

coefficient of the current gain. The maximum current gain for the Darlington is measured as high

as 640 at 200 °C that corresponds to the current gain of 25 for the driver BJT.

Page 82: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

66

a)

b)

Fig. ‎4.29 High temperature performance of a) small and b) large area devices

Fig. ‎4.30 Temperature dependence of the current gain for the Darlington transistor with isolated base layer and the driver BJT.

0

2

4

6

8

10

12

0

10

20

30

40

50

60

0 50 100 150 200 250

RO

N(m

Ω.c

m2)

Max

imu

m C

urr

en

t G

ain

Temperature (°C)

0

5

10

15

20

25

30

0

10

20

30

40

50

60

0 50 100 150 200 250

RO

N(m

Ω.c

m2)

Max

imu

m C

urr

en

t G

ain

Temperature (°C)

0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250

BJT

Max

imu

m C

urr

en

t G

ain

Dar

lin

ton

Max

imu

m C

urr

ent

Gai

n

Temperature (°C)

Page 83: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

67

Chapter 5

5 Summary and Future Outlook

The SiC BJTs is one candidate for high power applications due to its low power on-state loss and

fast switching capability. A SiC BJT shows negative temperature coefficient of the current gain

and also positive temperature coefficient of the specific ON-resistance that are desired for

paralleling in the power circuits. Also for a SiC BJT, second breakdown occurs at a very high

current density which is well outside the normal operation area of the device. However to

compete with other switching devices, it is necessary for a power SiC BJT to provide higher

current gain for more efficient power switching and for high voltages they should also

demonstrate conductivity modulation in the saturation region for the lowest ON-resistance. The

main obstacle for commercialization of 4H-SiC BJTs is degradation of the forward voltage drop

(VCESAT) and of the current gain, under forward bias stress. Degradation of VCESAT is mainly

attributed to carrier trapping and recombination in the base and/or collector due to the SSFs, but

the reason for gain degradation is not clear and different possible mechanisms have been

proposed.

To avoid problems associated with ion implantation, SiC BJTs with a p+ epitaxially regrown

extrinsic base layer are reported. Also it was shown that efficient removal of the remaining p+

Page 84: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

68

regrown layer from the surface of the emitter–base junction using combined dry etching and

thermal oxidation can increase the maximum current gain. Furthermore, implantation free 4H-

SiC BJTs with linearly graded base layer have been demonstrated with common-emitter current

gain of 50 and an open-base breakdown voltage of 2700 V and on-resistance of 12 mΩcm2. In

this design, high breakdown voltage was obtained using a simple type of etched JTE without

additional mask steps. High voltage PiN diodes were fabricated, characterized and analyzed to

determine an optimum dose of remaining JTE charge and the number of required etch steps for

a fully efficient JTE. Physical device simulation and experimental results indicate that for a high

voltage PiN diode, a double-zone JTE can decrease the sensitivity of the breakdown voltage to

the dose of remaining dopants compared to a single-zone JTE while keeping the total JTE length

constant and, consequently, PiN diodes with a near-ideal breakdown voltage of 4.3 kV (about

80% of the theoretical value) were fabricated with double-zone JTE. The dependence of open-

base breakdown voltage of 4H-SiC BJTs to the dose of remaining dopants in the etched JTE

indicate that the dose of 1.2-1.3×1013 cm-2 is an optimum point for the single-zone JTE, which

yields a stable breakdown voltage that is about 67% of theoretical value.

Surface passivation of 4H-SiC BJT is an essential factor for efficient power BJTs. Therefore

different passivation techniques were compared and showed that around 60% higher maximum

current gain can be achieved by a new surface passivation layer with low interface trap density.

This layer consists of a PECVD deposited SiO2 layer followed by post-deposition anneal in N2O

ambient. However, for conventional BJTs with implanted JTE, this passivation can provide

different effective oxide charge compared to other passivation layers and this can affect the

optimum doses of implanted dopants in the JTE area, resulting in reduced breakdown voltage.

Therefore, modification of JTE implantation dose may be needed when applying new passivation

layers to high voltage SiC devices.

The new surface passivation along with double-zone JTE were used for fabrication of high

power BJTs. Consequently, we successfully demonstrated 2800 V small and large area BJTs with

a maximum dc current gain of 55 and 52, respectively. The small area BJT showed RON =4

mΩcm2 while for the large are BJT RON = 6.8 mΩcm2.

Finally, the Darlington transistor with a maximum current gain of 2900 at room temperature and

640 at 200 °C is reported. The high current gain is related to the optimum design for the ratio of

the active area of the driver BJT to the output BJT (approximately 1:10). However to avoid

premature breakdown at the isolation trench between driver and output BJT, a Darlington

transistor with non-isolated base layer is reported. The non-isolated Darlington pair shows an

Page 85: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Chapter 5

69

open-base breakdown voltage of 2.8 kV which is 75% of the parallel–plane breakdown voltage

but shows lower current gain and 1 mA as the threshold current for triggering the driver BJT.

Finally, it is important to address some major issues for the future research on 4H-SiC BJTs:

(1) Higher material quality is required for performance improvement of the device. It has

been shown that fabricated devices on BPD-free substrate, exhibit superior

characteristics in terms of long term stability. Also epitaxial growth of the SiC layers with

lower densities of defects increases the carrier life-time in the base and collector layers

which is required for higher current gain and conductivity modulation.

(2) Although the current gain has been increased through the improved surface passivation

during these years, it is likely that even higher quality passivation layers in terms of lower

interface state densities can be achieved. Therefore it is recommended to continue the

research on SiC passivation aiming to reduce interface state densities.

(3) Simulation of the 4H-SiC BJTs shows that new designs of the base layer in terms of

modified doping profile in the extrinsic base layer can also enhance the performance of

the device by providing higher current gain [114] and also possibility of collector

conductivity modulation. Therefore we recommend to consider various design

modifications for better performance of high voltage BJTs.

(4) One major advantage of SiC BJTs compare to MOSFETs is high temperature robustness.

No device can be fully exploited unless it has a reliable packaging that can handle high

temperatures. Although extensive development has been carried out on more reliable

packages but it seems that more investigation is needed for high temperature packages.

Page 86: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%
Page 87: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

71

Bibliography

[1] United Nations Global Issues. [Online]. http://www.un.org/en/globalissues/index.shtml

[2] M. Ostling, "Silicon Carbide Based Power Devices," in IEEE International Electron Devices Meeting,

IEDM , 2010.

[3] S.-M. Koo, "Design and process issues of junction- and Ferroelectric- Field Effect Transistors in

Silicon Carbide," Ph.D Thesis, KTH, Royal Institute of Technology, Sweden, 2003.

[4] B.J. Baliga,.: PWS Publishing Company, 1996, ch. 4.

[5] P. Brosselard et al., "3.3 kV-10A 4H-SiC PiN diodes," Materials Science Forum, vol. 600-603, pp. 991-

994, 2009.

[6] P Brosselard et al., "Low loss, large area 4.5 kV 4H-SiC PIN diodes with reduced forward voltage

drift," Semiconductor Science and Technology, vol. 24, no. 9, p. 095004, 2009.

[7] D. Peters, W. Bartsch, and B. Thomas, "6.5 kV SiC PiN Diodes with Improved Forward

Characteristics," Materials Science Forum, vol. 645-648, pp. 901-904, 2010.

[8] B.A. Hulla, J. J. Sumakeris, M. K. Das, J. T. Richmond, and J. Palmour, "20 A/10 kV 4H-SiC PiN ,

Progress on the Development of 10 kV 4H-SiC PiN Diodes for HighCurrent/High Voltage Power

Handling Applications," Materials Science Forum, vol. 556-557, pp. 895-900, 2007.

[9] Y. Sugawara et al., "12-19 kV 4H-SiC pin diodes with low power loss," Power Semiconductor Devices and

ICs, 2001. ISPSD '01. Proceedings of the 13th International Symposium on, pp. 27-30, 2001.

[10] J.J. Sumakeris, M. J. O’Loughlin, Q. Zhang, J. Richmond, Adrian Powell, Mike Paisley, V. Tsvetkov,

A. Hefner, A. Rivera B.A. Hull, "Development of Large Area (up to 1.5 cm2) 4H-SiC 10 kV

Junction Barrier Schottky Rectifiers," Materials Science Forum, vol. 600-603, pp. 931-934, 2009.

[11] T. Yamamoto et al., "1200-V JBS Diodes with Low Threshold Voltage and Low Leakage Current,"

Page 88: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

72

Materials Science Forum, vol. 600-603, pp. 939-942, 2009.

[12] J. Hu, L. X. Li, P. Alexandrov, and X. Wang, "5 kV, 9.5 A SiC JBS Diodes with Non-uniform Guard

Ring Edge Termination for High Power Switching Application," Materials Science Forum, vol. 600-603,

pp. 947-950, 2009.

[13] Infinion Technologies. [Online]. http://www.infineon.com/

[14] J.W. Palmour, H.S. Kong, and and R.F. Davis, "Vertical Power Devices in Silicon carbide," in Proc.

Silicon Carbide and Related Materials, 1994, pp. 119-122.

[15] H. Matsunami, G. Pensl W.J. Choyke, Ed., Silicon Carbide Recent Major Advances.: Springer, 2004.

[16] K. Matochaa, Z. Stumb, S. Arthurc, and G. Dunned and L. Stevanovic, Materials Science Forum, vol.

600-603, pp. 1131-1134, 2009.

[17] B. A. Hull et al., Materials Science Forum, vol. 615-617, pp. 749-752, 2009.

[18] J. Tan, Jr. Cooper, J.A., and M.R. Melloch, "High-voltage accumulation-layer UMOSFET's in 4H-

SiC," Electron Device Letters, IEEE, vol. 19, no. 12, pp. 487-489, 1998.

[19] M. Noborio, J. Suda, and T. Kimoto, "1580-V-40 mΩ•cm2 double-RESURF MOSFETs on 4H-SiC

(0001)," IEEE Electron Device Letters, vol. 30, no. 8, pp. 831-833, 2009.

[20] S.-H. Ryu et al., Materials Science Forum, vol. 389-393, pp. 1195-1198, 2002.

[21] S.-H. Ryu et al., "10-kV, 123-mΩ•cm2 4H-SiC power DMOSFETs," IEEE Electron Device Letters,

vol. 25, no. 8, pp. 556-558, 2004.

[22] T. Kimoto, "SiC technologies for future energy electronics," VLSI Technology (VLSIT), 2010

Symposium on, pp. 9-14, 2010.

[23] D.C. Sheridan, A. Ritenour, V. Bondarenko, P. Burks, and J.B. Casady, "Record 2.8mΩ-cm2 1.9kV

enhancement-mode SiC VJFETs," Power Semiconductor Devices IC's, 2009. ISPSD 2009. 21st

International Symposium on, pp. 335-338, 2009.

[24] V. Veliadis et al., "Investigation of the Suitability of 1200-V Normally-Off Recessed-Implanted-Gate

SiC VJFETs for Efficient Power-Switching Applications," Electron Device Letters, IEEE, vol. 30, no.

7, pp. 736-738, 2009.

Page 89: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Bibliography

73

[25] L. Cheng et al., Materials Science Forum, vol. 600-603, pp. 1055-1058, 2009.

[26] A. Ritenoura, V. Bondarenko, R. Kelley, and D. C. Sheridan, Materials Science Forum, vol. 615-617, pp.

715-718, 2009.

[27] Y. Li, P. Alexandrov, and J. H. Zhao, "1.88-m · cm2 1650-V normally on 4H-SiC TI-VJFET,"

IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 1880-1886, 2008.

[28] V. Veliadis et al., "A 1680-V (at 1mA/cm2) 54-A (at 780 W/cm2) normally ON 4H-SiC JFET with

0.143-cm2 active area," IEEE Electron Device Letters, vol. 29, no. 10, pp. 1132-1134, 2008.

[29] J.H. Zhao, K. Tone, P. Alexandrov, L. Fursin, and M. Weiner, "1710-V 2.77-m Omega;cm2 4H-SiC

trenched and implanted vertical junction field-effect transistors," Electron Device Letters, IEEE, vol.

24, no. 2, pp. 81-83, 2003.

[30] V. Veliadis et al., "A 2055-V (at 0.7 mA/cm2) 24-A (at 706 W/cm2) normally On 4H-SiC JFET

With 6.8- mm2 active area and blocking-voltage capability reaching the material limit," IEEE

Electron Device Letters, vol. 29, no. 12, pp. 1325-1327, 2008.

[31] C.-F Huang et al., "3510-V 390-m · cm2 4H-SiC lateral JFET on a semi-insulating substrate," IEEE

Electron Device Letters, vol. 30, no. 9, pp. 957-959, 2009.

[32] J.H. Zhao, P. Alexandrov, Jianhui Zhang, and Xueqing Li, "Fabrication and characterization of 11-

kV normally off 4H-SiC trenched-and-implanted vertical junction FET," Electron Device Letters,

IEEE, vol. 25, no. 7, pp. 474-476, 2004.

[33] Mrinal K. D. et al., "A 13 kV 4H-SiC n-channel IGBT with Low Rdiff,on and Fast Switching,"

Materials Science Forum, vol. 600-603, pp. 1183-1186, 2009.

[34] Q. Zhang and A. K. Agarwal, "Design and technology considerations for SiC bipolar devices: BJTs,

IGBTs, and GTOs," phys. stat. sol. (a), vol. 206, no. 10, pp. 2431-2456, 2009.

[35] P.L. Hower and V.G. Krishna Reddi, "Avalanche injection and second breakdown in transistors,"

Electron Devices, IEEE Transactions on, vol. 17, no. 4, pp. 320-335, 1970.

[36] C.-F Huang and J.A. Cooper Jr., "4H-SiC npn Bipolar Junction Transistors with BVCEO > 3200V,"

Proc. of the 14th Intl. Symposium on Power Semiconductor Devices and ICs, pp. 57-60, 2002.

[37] A.K. Agarwal et al., "Large Area, 1.3 kV, 17A, Bipolar Junction Transistors in 4H-SiC," Proc. of the

15th Intl. Symposium on Power Semiconductor Devices and ICs, pp. 105–108, 2003.

Page 90: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

74

[38] R. Perez et al., "Planar edge termination design and technology considerations for 1.7-kV 4H-SiC

PiN diodes," Electron Devices, IEEE Transactions on, vol. 52, no. 10, pp. 2309-2316, 2005.

[39] X. Li et al., "Multistep junction termination extension for SiC power devices," Electronics Letters, vol.

37, no. 6, pp. 392-393, 2001.

[40] W.V. Muench, P. Hoeck, and E. Pettenpaul, "Silicon carbide field-effect and bipolar transistors,"

Electron Devices Meeting, 1977 International, vol. 23, pp. 337-339, 1977.

[41] J. W., Edmond, J. A., Kong, H.-S., C.H. Carter Palmour, "6H-silicon carbide power devices for

aerospace applications," Proceedings of the Intersociety Energy Conversion Engineering Conference, vol. 1, pp.

249-254, 1993.

[42] S.-H. Ryu, A.K. Agarwal, R. Singh, and J.W. Palmour, "1800 V, 3.8 A bipolar junction transistors in

4H-SiC," Device Research Conference, 2000. Conference Digest. 58th DRC, pp. 133-134, 2000.

[43] Y. Tang, J.B. Fedison, and T.P. Chow, "An implanted-emitter 4H-SiC bipolar transistor with high

current gain," Device Research Conference, 2000. Conference Digest. 58th DRC, pp. 131-132, 2000.

[44] Y. Tang, J.B. Fedison, and T.P. Chow, "High-voltage implanted-emitter 4H-SiC BJTs," Electron

Device Letters, IEEE, vol. 23, no. 1, pp. 16-18, 2002.

[45] S.-H. Ryu, A.K. Agarwal, J.W. Palmour, and M.E. Levinshtein, "1.8 kV, 3.8 A bipolar junction

transistors in 4H-SiC," Power Semiconductor Devices and ICs, 2001. ISPSD '01. Proceedings of the 13th

International Symposium on, pp. 37-40, 2001.

[46] C.-F Huang and Cooper, J.A., "4H-SiC power bipolar transistors with common emitter current gain

>50," Device Research Conference, 2002. 60th DRC. Conference Digest, pp. 183-184, 2002.

[47] J. Zhang, Y. Luo, P. Alexandrov, L. Fursin, and J.H. Zhao, "A high current gain 4H-SiC NPN

power bipolar junction transistor," Electron Device Letters, IEEE, vol. 24, no. 5, pp. 327-329, 2003.

[48] S. Krishnaswami et al., "1000-V, 30-A 4H-SiC BJTs with high current gain," Electron Device Letters,

IEEE, vol. 26, no. 3, pp. 175-177, 2005.

[49] J. Zhang, P. Alexandrov, J.H. Zhao, and T. Burke, "1677 V, 5.7 mΩcm2 4H-SiC BJTs," Electron

Device Letters, IEEE, vol. 26, no. 3, pp. 188-190, 2005.

[50] J. Zhang, P. Alexandrov, T. Burke, and J.H. Zhao, "4H-SiC power bipolar junction transistor with a

Page 91: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Bibliography

75

very low specific ON-resistance of 2.9 m Omega; middot;cm2," Electron Device Letters, IEEE, vol. 27,

no. 5, pp. 368-370, 2006.

[51] H.-S Lee et al., "1200-V 5.2 mΩ• cm2 4H-SiC BJTs With a High Common-Emitter Current Gain,"

Electron Device Letters, IEEE, vol. 28, no. 11, pp. 1007-1009, 2007.

[52] M. Domeij et al., "Geometrical effects in high current gain 1100-V 4H-SiC," IEEE Electron Device

Letters, vol. 26, no. 10, pp. 743-745, 2005.

[53] H.-S. Lee, M. Domeij, C.-M. Zetterling, and M. Ostling, "Low-Forward-Voltage-Drop 4H-SiC BJTs

Without Base Contact Implantation," Electron Devices, IEEE Transactions on, vol. 55, no. 8, pp. 1907-

1911, 2008.

[54] J. Zhang, Xueqing Li, P. Alexandrov, and J.H. Zhao, "Implantation-Free 4H-SiC Bipolar Junction

Transistors With Double Base Epilayers," Electron Device Letters, IEEE, vol. 29, no. 5, pp. 471-473,

2008.

[55] A. Horiuchi, Y. Negoro, K. Iwanaga, S. Yokoyama, H. Hashimoto, M. Sato, Y. Maeyama, M.

Shimizu and H. Iwakuro K. Nonaka, Materials Science Forum, vol. 615-617, pp. 821-824, 2009.

[56] J. Zhang et al., Materials Science Forum, vol. 615-617, pp. 829-832, 2009.

[57] C. Cappel, A. Burk, Q. Zhang, R. Callanan, A. Agarwal, B. Geil, and C. Scozzie C. Jonas, Journal of

Electronic Materials, vol. 37, no. 5, pp. 662-665, 2008.

[58] M. Domeij et al., "2 kV SiC BJTs with low VCESAT fast switching and short-circuit capability,"

Materials Science Forum, vol. 645-6648, pp. 1033-1036, 2010.

[59] J. Zhang, P. Alexandrov, and J. H. Zhao, "1600 V 5.1 mΩ·cm2 4H-SiC BJT with a record high

current gain of β = 70," Materials Science Forum, vol. 600-603, pp. 1155-1158, 2009.

[60] Q. Zhang et al., "4H-SiC bipolar junction transistors: From research to development - A case study:

1200 V, 20 A, stable SiC BJTs with high blocking yield," Proceedings of the International Symposium on

Power Semiconductor Devices and ICs, pp. 339-342, 2009.

[61] S. Balachandran, C. Li, P.A. Losee, I.B. Bhat, and T.P. Chow, "6kV 4H-SiC BJTs with specific on-

resistance below the unipolar limit using a selectively grown base contact process," Proceedings of the

International Symposium on Power Semiconductor Devices and ICs, pp. 293-296, 2007.

[62] J. Zhang, J.H. Zhao, P. Alexandrov, and T. Burke, "Demonstration of first 9.2 kV 4H-SiC bipolar

Page 92: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

76

junction transistor," Electronics Letters, vol. 40, no. 21, pp. 1381-1383, 2004.

[63] Y. Gao et al., "Analysis of SiC BJT RBSOA," in IEEE International Symposium on Power Semiconductor

Devices and IC's, ISPSD, 2006, pp. 1-4.

[64] P. G. Muzykov et al., "Physical phenomena affecting performance and reliability of 4H-SiC bipolar

junction transistors," Microelectronics Reliability, vol. 49, no. 1, pp. 32-37, 2009.

[65] Y. Luo, J. Zhang, P. Alexandrov, L. Fursin, and J.H. Zhao, "Fabrication and characterization of high

current gain ( beta;=430) and high power (23 A-500 V) 4H-SiC hybrid Darlington bipolar

transistor," Electron Devices, IEEE Transactions on, vol. 51, no. 12, pp. 2211-2216, 2004.

[66] Q. Zhang et al., "10 kV, 10 A Bipolar Junction Transistors and Darlington Transistors on 4H-SiC”,"

Materials Science Forum, vol. 645-648, pp. 1025-1028, 2010.

[67] Q. Zhang et al., "A 10-kV Monolithic Darlington Transistor With of 336 in 4H-SiC," Electron Device

Letters, IEEE, vol. 30, no. 2, pp. 142-144, 2009.

[68] S.E. Saddow and A. Agarwal, Eds.,.: Artech House, Inc., 2004, ch. 6.

[69] J.A. Lely, Berichte der Deutschen Keramischen Gesellshaft e.V, vol. 32, p. 229, 1955.

[70] W. F. Knippenberg, Philips Research Reports, vol. 18, no. 3, pp. 161–274, 1963.

[71] Y. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vol. 43, p. 209, 1978.

[72] O. Kordina et al., "High temperature chemical vapor deposition of SiC," Applied Physics Letters, vol.

69, no. 10, pp. 1456-1458, 1996.

[73] O. Kordina et al., "High quality 4H-SiC epitaxial layers grown by chemical vapor deposition,"

Applied Physics Letters, vol. 66, no. 11, pp. 1373-1375, 1995.

[74] A. Ellison et. al., Material Science Forum, vol. 338-342, pp. 131-136, 2000.

[75] CREE Inc. [Online]. www.cree.com

[76] J. P. Bergman, H. Lendenmann, P. Å Nilsson, U. Lindefelt, and P. Skytt, Material Science Forum, vol.

353-356, p. 299, 2001.

[77] L. Farese, G. Malm, M. Domeij, and M. Östling, Materials Science Forum, vol. 645-648, pp. 1037-1040,

Page 93: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Bibliography

77

2010.

[78] C-.M. Zetterling, Ed.,.: INSPEC, 2002, ch. 4.

[79] Surface Technology Systems plc. http://www.stsystems.com.

[80] SÜSS MicroTec AG. [Online]. http://www.suss.com

[81] AZ Electronic Materials. [Online]. www.az-em.com

[82] H.-S. Lee, Fabrication and Characterization of Silicon Carbide Power Bipolar Junction Transistors.: KTH

Doctoral thesis, 2009.

[83] P. Friedrichs, "SiC Power Device Technology - Differences to Silicon and Their Influence on

Device Processing and Performance," ECS Transactions, vol. 25, no. 12, pp. 83-92, 2009.

[84] K. A. Jones et al., "AlN as an encapsulate for annealing SiC," Journal of Applied Physics, vol. 83, no. 12,

pp. 8010-8015, 1998.

[85] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami, "Electronic behaviors of high-dose

phosphorus-ion implanted 4H--SiC (0001)," Journal of Applied Physics, vol. 96, no. 1, pp. 224-228,

2004.

[86] M. V. Rao et al., "Ion-implantation in bulk semi-insulating 4H--SiC," Journal of Applied Physics, vol. 86,

no. 2, pp. 752-758, 1999.

[87] A. Itoh, T. Kimoto, and H. Matsunami, "Excellent reverse blocking characteristics of high-voltage

4H-SiC Schottky rectifiers with boron-implanted edge termination," Electron Device Letters, IEEE,

vol. 17, no. 3, pp. 139-141, 1996.

[88] X. Li et al., "Multistep junction termination extension for SiC power devices," Electronic Letters, vol.

37, no. 6, pp. 392-393, 2001.

[89] Y. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, "Modified Deal Grove model for the

thermal oxidation of silicon carbide," Journal of Applied Physics, vol. 95, no. 9, pp. 4953-4957, 2004.

[90] V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, "Intrinsic SiC/SiO2 Interface States," phys. stat.

sol. (a), vol. 162, no. 1, pp. 321-337, 1997.

[91] G. Pensl et al., "Traps at the SiC/SiO2-interface," in Material Research Symposium, vol. 640, 2001, pp.

H.3.2.1-H.3.2.11.

Page 94: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

78

[92] R. Schomer, P. Friedrichs, D. Peters, and D. Stephani, "Significantly improved performance of

MOSFETs on silicon carbide using the 15R-SiC polytype," Electron Device Letters, IEEE, vol. 20, no.

5, pp. 241-244, 1999.

[93] G.Y. Chung et al., "Improved inversion channel mobility for 4H-SiC MOSFETs following high

temperature anneals in nitric oxide," Electron Device Letters, IEEE, vol. 22, no. 4, pp. 176-178, 2001.

[94] H. F. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman, "Interfacial characteristics of N[sub 2]O

and NO nitrided SiO[sub 2] grown on SiC by rapid thermal processing," Applied Physics Letters, vol.

70, no. 15, pp. 2028-2030, 1997.

[95] L.A. Lipkin, M.K. Das, and J.W. Palmour, "N2o processing improves the 4H-SiC:SiO2 interface,"

Materials Science Forum, vol. 389-393, no. 2, pp. 985-988, 2002.

[96] T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, "Interface properties of metal-

oxide-semiconductor structures on 4H-SiC (0001) and (112 0) formed by N2O oxidation," Japanese

Journal of Applied Physics, vol. 44, no. 3, pp. 1213-1218, 2005.

[97] T. Kimoto, H. Kawano, M. Noborio, J. Suda, and H. Matsunami, "Improved dielectric and interface

properties of 4H-SiC MOS structures processed by oxide deposition and N2O annealing," Materials

Science Forum, vol. 527-529, no. PART 2, pp. 987-990, 2006.

[98] K. Fukuda, S. Suzuki, T. Tanaka, and K. Arai, "Reduction of interface-state density in 4H--SiC n-

type metal--oxide--semiconductor structures using high-temperature hydrogen annealing," Applied

Physics Letters, vol. 76, no. 12, pp. 1585-1587, 2000.

[99] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, "Improved Inversion Channel

Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide," IEEE Electron

Device Letters, vol. 31, no. 7, July 2010.

[100] C.-M. Zetterling et al., Materials Science Forum, vol. 338, p. 1315, 2000.

[101] D. J. Lichtenwalner, V. Misra, S. Dhar, S.-H. Ryu, and A. Agarwal, "High-mobility enhancement-

mode 4H-SiC lateral field-effect transistors utilizing atomic layer deposited Al[sub 2]O[sub 3] gate

dielectric," Applied Physics Letters, vol. 95, no. 15, p. 152113, 2009.

[102] S. Dhar et al., "Effect of nitric oxide annealing on the interface trap density near the conduction

bandedge of 4H--SiC at the oxide/(112-bar 0) 4H--SiC interface," Applied Physics Letters, vol. 84, no.

Page 95: Fabrication Technology for Efficient High Power Silicon ...kth.diva-portal.org/smash/get/diva2:397293/FULLTEXT02.pdfAlso an efficient junction termination extension (JTE) with 80%

Bibliography

79

9, pp. 1498-1500, 2004.

[103] R. Schorner et al., "Enhanced channel mobility of 4H--SiC metal--oxide--semiconductor transistors

fabricated with standard polycrystalline silicon technology and gate-oxide nitridation," Applied Physics

Letters, vol. 80, no. 22, pp. 4253-4255, 2002.

[104] L.G. Fursin, J.H. Zhao, and M. Weiner, "Nickel ohmic contacts to p and n-type 4H-SiC," Electronics

Letters, vol. 37, no. 17, pp. 1092-1093, 2001.

[105] A.K. Agarwal et al., "Large area, 1.3 kV, 17 A, bipolar junction transistors in 4H-SiC," , 2003, pp.

135-138.

[106] Acreo AB. [Online]. www.acreo.se

[107] U. Lindefelt, "Doping-induced band edge displacements and band gap narrowing in 3C--, 4H--, 6H-

-SiC, and Si," Journal of Applied Physics, vol. 84, no. 5, pp. 2628-2637, 1998.

[108] S.-H. Ryu, A. K. Agarwal, R. Singh, and J. W. Palmour, "1800 V NPN bipolar junction transistors in

4H-SiC," IEEE Electron Device Letters, vol. 22, no. 3, pp. 124-126, 2001.

[109] H.-S. Lee, M. Domeij, C.-M. Zetterling, and M. Östling, "Low-forward voltage-drop 4H-SiC BJTs

without base contact implantation," IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 1907-

1911, 2008.

[110] R. Singh, Jr. J. A. Cooper, M. R. Melloch, T. P. Chow, and J. W. Palmour, "SiC power Schottky and

PiN diodes," IEEE Transactions on Electron Devices, vol. 49, no. 4, pp. 665–672, 2002.

[111] A. Galeckas, J. Linnros, M. Frischholz, and V. Grivickas, "Optical characterization of excess carrier

lifetime and surface recombination in 4H/6H–SiC," Applied Physics Letters , vol. 79, no. 3, pp. 365-

367, July 2001.

[112] J. Zhang et al., "1836 V, 4.7 mΩ•cm2 High Power 4H-SiC Bipolar Junction Transistor ," Material

Science Forum , vol. 527-529, pp. 1417-1420, 2006.

[113] H.-S. Lee et al., "Surface passivation oxide effects on the current gain of 4H-SiC bipolar junction

transistors ," Applied Physics Letters , vol. 92, no. 082113, 2008.

[114] B. Buono et al., "Influence of Emitter Width and Emitter–Base Distance on the Current Gain in

4H-SiC Power BJTs," IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2664-2670.