FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY...

25
FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY-ALUMINA MIXTURE MUHAMAD NURIZAD BIN ROSLI UNIVERSITI TEKNOLOGI MALAYSIA

Transcript of FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY...

Page 1: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY-ALUMINA

MIXTURE

MUHAMAD NURIZAD BIN ROSLI

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY-ALUMINA

MIXTURE

MUHAMAD NURIZAD BIN ROSLI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Mechanical)

Faculty of Mechanical Engineering

Universiti Teknologi Malaysia

MAY 2014

Page 3: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

iii

Dengan Nama Allah yang Maha Pengasih lagi Maha Penyayang

Buat ibu dan ayah yang tersayang, Jariah Binti Darus dan Rosli bin Yusof. Begitu

juga Norezma,Norshalida,Norshaliza,Fatin dan Siti Nurhayati. Tidak dilupakan

Along, Farhan, Kapten Ismadi, Kapten Yusran, BFT serta sahabat-sahabat yang

mengenali diri ini

‘Terima kasih atas sokongan dan berkat doa kalian’ .

Page 4: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

iv

ACKNOWLEDGEMENTS

All praises are due to Allah S.W.T. for bestowing me with health and

opportunity to gain this treasure of knowledge and experience to complete this thesis

project. The road to the accomplishment of this project has been a challenging and

time consuming. The lessons learned and experiences gained during the entire

process have been invaluable. There are a number of people who have been

instrumental in the completion of my graduate work and I would like to formally

thank all those people and express my gratitude for the contributions they have

offered.

I wish to express my sincere appreciation to my supervisors, Prof. Ir. Dr. Wan

Khairuddin Bin Wan Ali for guidance, advices and motivation. Without his

continued support and interest, this thesis would not have been the same as presented

here. I would also convey my gratitude to Dr Jahangir Mirza and wife as their

assistance in completing this thesis.

In addition, I would like to thank Malaysia Space Agency and Universiti

Teknologi Malaysia (UTM) for funding my research and scholarship. Finally, I want

to express my appreciation and love to my parents, Rosli bin Yusuf and Jariyah binti

Darus and my family members, who have been my constant sources of inspiration and

encourage me throughout the completion of the project.

Page 5: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

v

ABSTRACT

Heat transfer from hot gases to the chamber and nozzle walls, can result in

weakening the rocket casing. Thus proper and complete insulation is needed to protect

the casing material from reaching melting temperature or become damaged at

elevated temperature. Typical solution to this problem would be to thicken the casing

walls which in effect would increase the total weight. To reduce the total weight, a

new material that can withstand high temperature and is lightweight was studied.

Ceramic is one of the materials that can withstand high temperature and at the same

time is much lighter than normal metal. There are several developments using ceramic

as a hot section component. In this study, ceramic was used as a replacement for

typical metal component of rocket motor. Traditional clay called Sayong clay and

refractories material, namely, alumina were used. A suitable material for rocket motor

development would be one that has good mechanical strength, minimum shrinkage

and low thermal conductivity. Three different composition sets were prepared and

characterized according to shrinkage reduction, compressive strength and thermal

conductivity. Composition A which contains only clay mixed with water as a binder

shows high degree of shrinkage during drying and firing at temperature ranging from

700 oC to 1500

oC. Thus, by introducing alumina to the tune of 30% and 50%, the

shrinkage of clay was reduced significantly. Furthermore, high compressive strength

was achieved for the mixed composition of 50% alumina-clay (composition C) at

firing temperature of 1500 oC, about 29.2 kN. Thermal conductivity test was

conducted on composition C, and it was observed that as the firing temperature

increases the value of thermal conductivity, k also increases due to the densification

of ceramic particles. To verify the real potential of this ceramic material, Ballistic

Research Motor (BRM) test was performed. Since composition C was found to be

superior to others, a nozzle made from it was fabricated. The nozzle with throat

measuring 30 mm in diameter was loaded into the existing rocket motor with solid

propellant and combustion chamber. The firing of BRM took about 5 seconds with

average chamber pressure reaching 0.124 Mpa. Calculations showed that the ceramic

nozzle produced 42.47 N of thrust. The experiment proved the potential of ceramic as

a suitable material for rocket motor design.

Page 6: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

vi

ABSTRAK

Pemindahan haba dari gas panas ke dinding kebuk dan muncung boleh

melemahkan sarung roket. Oleh demikian, penebat haba yang baik dan menyeluruh

diperlukan untuk melindungi bahan sarung dari mencapai suhu cair atau

melemahkanya pada suhu tertentu. Kebiasaannya dinding sarung ditebalkan bagi

menangani masalah ini seterusnya menyebabkan peningkatan berat. Bahan yang

ringan dan mempunyai kebolehan untuk menahan suhu yang tinggi dikaji untuk

mengurangkan jumlah berat. Seramik merupakan salah satu bahan yang berkebolehan

menahan suhu tinggi dan lebih ringan berbanding logam. Terdapat beberapa

pembangunan telah dilakukan ke atas bahan seramik sebagai komponen sektor

panas. Di dalam kajian ini, seramik digunakan sebagai pengganti logam yang

kebiasaannya digunakan dalam pembuatan komponen roket motor. Tanah liat

tradisional yang dinamakan sebagai tanah liat Sayong dan bahan refraktori, alumina

digunakan dalam kajian ini. Bahan yang sesuai untuk digunakan dalam pembangunan

roket motor mestilah mempunyai kekuatan mekanikal yang baik, pengecutan yang

minimum dan kekonduksian terma yang rendah. Tiga set campuran/komposisi

disediakan dan dicirikan berdasarkan pengurangan pengecutan, tegasan mampatan

dan kekonduksian terma. Komposisi A yang mengandungi hanya tanah liat dicampur

bersama air yang bertindak sebagai pengikat mempamerkan jumlah pengecutan yang

tinggi semasa proses pengeringan dan pembakaran pada suhu 700 oC hingga 1500

oC.

Pengecutan tanah liat berjaya dikurangkan dengan cara menambah alumina sebanyak

30% dan 50%. Nilai kekuatan mampatan tertinggi dicapai oleh komposisi C yang

mengandungi 50% alumina- tanah liat pada suhu pembakaran 1500 oC iaitu sebanyak

29.2 kN. Ujian kekonduksian terma dilakukan terhadap komposisi C menunjukkan

nilai kekonduksian terma, k meningkat bersama peningkatan suhu pembakaran,

disebabkan oleh pemadatan zarah seramik. Untuk menguji kebolehan sebenar seramik

ini, ujian balistik roket motor (BRM) dilaksanakan dalam kajian ini. Disebabkan

komposisi C menunjukkan ciri-ciri yang baik dan sesuai berbanding komposisi lain,

muncung roket direka dan dibina daripada komposisi ini. Muncung yang mempunyai

garis pusat tekak 30 mm dimasukkan ke dalam roket motor yang sedia ada bersama-

sama bahan dorongan pepejal dan kebuk pembakaran. Pembakaran BRM mengambil

masa selama 5 saat menghasilkan purata tekanan kebuk sebanyak 0.124 Mpa.

Pengiraan dibuat menunjukkan muncung seramik menghasilkan daya tujah sebanyak

42.47 N. Ini membuktikan bahawa bahan seramik ini mempunyai potensi yang sesuai

digunakan dalan rekaan roket motor.

Page 7: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiii

LIST OF APPENDICES xv

1 INTRODUCTION 1

1.1 Problem statement 2

1.2 Objective 3

1.3 Scope of the study 3

1.4 Limitation of Study 4

2 LITERATURE REVIEW 5

2.1 Application 6

2.2 Application of ceramic in rocket system 8

2.3 Ceramic 11

2.3.1 Clay 12

2.3.2 Alumina 13

2.4 Rocket motor 14

2.5 Solid Propellant Rocket Motor Components 15

Page 8: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

viii

2.5.1 Propellant grains 16

2.5.2 Igniter 17

2.5.3 Motor Casing 17

2.5.4 Nozzle 17

3 METHDOLOGY 24

3.1 Material Selection 24

3.1.1 Clay 25

3.1.2 Alumina 26

3.2 Material Processing 26

3.2.1 Ceramic processing 27

3.2.2 Samples preparation 29

3.3 Tests 35

3.3.1 Shrinkage test 35

3.3.2 Compression test 37

3.3.3 Thermal conductivity test 39

3.4 Fabrication of Nozzle 41

3.4.1 300N Ballistic Research Motor (BRM) 41

3.4.2 The Mould and Ceramic nozzle 44

3.5 Static Thrust Facilities 46

4 RESULTS AND DISCUSSION 53

4.1 Drying and Firing Shrinkage 53

4.2 Compressive Strength Test 58

4.3 Thermal Conductivity Test 60

4.4 Ceramic Nozzle 61

4.5 Pressure Meter System 63

4.6 Chamber Pressure Measurement 71

4.7 Thrust calculation 76

5 CONCLUSIONS AND RECOMMENDATIONS 80

5.1 Conclusions 80

5.2 Recommendations 81

Page 9: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

ix

REFERENCES 83

APPENDICES A-H 88-127

Page 10: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Current and future ceramic products 7

2.2 “Rules of thumb" in ceramic design 22

3.1 Example of ceramic forming method 27

3.2 Composition for test sample 29

3.3 Specification of Propellant Grain 47

4.1 Shrinkage of different compositions during drying process 50

4.2 Shrinkage of samples at different firing temperatures 51

4.3 Variation in colors of samples after firing process 54

4.4 Maximum load and compressive stress at different firing

temperature 56

4.5 Thermal conductivity of composition C at different firing

temperature 57

4.6 Throat diameter and roundness 59

4.7 Recorded Pressure -Voltage 67

4.8 Parameter generated by GUIPEP program 75

5.1 Characteristic of composition C 79

Page 11: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Chinese arrows 1

2.1 Solid Propellant Rocket Motor 15

2.2 Pressure –Time characteristic 16

2.3 Flow through a varying area 17

2.4 Convergence –divergence nozzle 20

3.1 Structural changes in ceramic process 28

3.2 Roller Grinder 28

3.3 Pressing method working scheme 30

3.4 Firing temperature at 700oC 31

3.5 Firing temperature at 900oC 32

3.6 Firing Temperature at 1500oC 33

3.7 Test samples to measure shrinkage 34

3.8 Cylindrical steel mould and hydraulic pressing machine 36

3.9 Arrangement of compressive test sample 36

3.10 Sample dimension for thermal conductivity test 38

3.11 Schematic diagram of Cusson Thermal Conductivity Test 38

3.12 Rocket Motor 39

3.13 Ceramic Nozzle 40

3.14 Firing sequence of 300N rocket motor 41

3.15 Schematic drawing of the mould 43

3.16 Arrangement of ballistic research motor, BRM 44

3.17 Rocket Motor with U shape steel bracket 45

3.18 Copper tube connected to bulkhead 45

Page 12: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

xii

3.19 Igniter 46

3.20 Solid propellant grain 47

3.21 Schematic arrangement of static thrust test rig 48

3.22 Flow chart of research methods 49

4.1 Maximum load of each composition at different firing

temperature 56

4.2 Variation of thermal conductivity (k) and mechanical

strength (σ) with density (ρ) in composition C 58

4.3 Profile Projector 59

4.4 Illustrated shrinkage of ceramic nozzle 60

4.5 Signals before noise reduction 61

4.6 Modified circuit for pressure meter 61

4.7 Signals after noise reduction with offset 62

4.8 Previous LabVIEW block diagram 64

4.9 Arrangement of pressure calibration 65

4.10 Air pump 65

4.11 Control valve 66

4.12 Arrangement of manometer and pressure transducer 66

4.13 Linear relationship between Pressure and Voltage 67

4.14 Recorded Pressure (Psi) vs Time(s) 69

4.15 Firing sequence and flame shape 70

4.16 Firing sequence and flame shape 71

4.17 Solid precipitate at nozzle inlet 72

4.18 Nozzle exit 72

A1 Dimension of propellant 92

Page 13: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

13

Page 14: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

xiii

LIST OF ABBREVIATIONS

AP - Ammonium perchlorate

ATR - Air Turbo Ramjet

Al - Aluminium

Al2O3 - Aluminium Oxide

SiC - Silicon Carbide

Si3N4 - Silicon Nitride

k - Thermal Conductivity

ke - free electron thermal conductivity

kl - lattice vibration thermal conductivity

A - Cross sectional area

V Velocity

ρ - Density of the fluid

K - Ratio of specific heat

HP - Hot Pressing

HIP - Hot Isostatic pressing

DCC - Direct coagulation casting

CIP - Cold isostatic pressing

PE - Polyethylene

UTM - Universiti Teknologi Malaysia

BRM - Ballistic Research Motor

DAQ - Data acquisition

DC - Direct current

OEM - Original equipment manufacturer

RTV - Room Temperature Vulcanizing

- Temperature gradient with respect to thickness,L

Page 15: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

xiv

Fx - Force in x direction

Vn - Velocity in normal plane

a - Speed of sound

- Mass flow rate

Ae - Exit area

At - Throat area

Me - Mach number at exit

Ro - Universal Gas Constant

Mt - Mach number at throat

Pc - Combustion chamber pressure

Pt - Throat pressure

Page 16: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Sample calculation for nozzle and rocket motor dimension

(300N) 88

B Drawing of 300N rocket motor 95

C Drawing of 300 N nozzle mould 102

D Ceramic nozzle preparation 109

E Drawing of 100N nozzle mould 110

F Modified block diagram 117

G Drawing of 100N rocket motor 118

H Guide for GUIPEP program and samples result 125

Page 17: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

CHAPTER 1

INTRODUCTION

The world of rocketry has expanded rapidly. According to written history,

China was the first country to introduce a rocket system as shown in figure1.1 [1] In

the year 1232, during the first recorded battle between Chinese and Mongol true form

rockets were utilized. In this battle, an arrow was attached with open ended tube that

contained gunpowder. As the gunpowder ignited, the combustion inside the open

ended tube produced thrust that sent the arrow flying.

Figure 1.1: Chinese Arrows [1]

Page 18: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

2

From then on, the technology of rocket spread throughout the world. The

usage of rocket system has been deployed into various fields such as weapon, space

travel, weather modification and more. It is a challenge for scientists and engineers to

design and fabricate a rocket system that fulfills the various required specifications.

Scientists and engineers often face the problem of selecting suitable materials that are

appropriate for the operation or mission of the rocket.

Part of the challenge which must be overcome is choosing suitable material

that can withstand the harsh environment in the rocket motor. The material must be

able to withstand high mechanical and thermal stresses at high temperature, resist

oxidation and corrosion that result from high velocity gases. Furthermore, the material

must withstand the chemical reaction with adjacent component, be stable in high and

low cycle vibration conditions and have acceptable creep and stress rapture life.

Previously, various type of materials had been proposed and tested in the

development of rocket motor and one of them was ceramic material. This material is

capable of withstanding high temperature and inert to chemical reaction. However,

ceramic materials are brittle and cannot survive certain stresses or impacts.

Nevertheless, with the right procedures in fabrication process, these disadvantages can

be reduced or even eliminated.

1.1 Problem statement

Heat transfer from hot gases in the combustion to the chamber and nozzle

walls can cause the rocket motor casing to be weakened. Insulation is needed to

protect the casing material from reaching melting temperature or weaken the material

properties. A typical solution would be to thicken the casing wall but this caused the

total weight of the rocket motor to increase. Other solutions would be to use new

material that can withstand high temperature. Ceramic is one of the materials that can

Page 19: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

3

withstand high temperature. However, ceramic has several disadvantages such as

being brittle, porous and shrinkable. In this research, ceramic material was chosen as

an alternative replacement to typical metal material which has been used currently in

solid propellant rocket nozzle. The weakness of ceramic material such as mechanical

strength, shrinkage during firing, and thermal conductivity were studied and solution

was proposed.

1.2 Objective

To design and fabricate a solid propellant rocket nozzle utilizing clay-alumina

mixture.

1.3 Scope of the study

This research study was carried out on the properties of ceramic materials

importance in the development of rocket nozzle. An experimental test was conducted

to select a suitable material that can be used in the construction of rocket nozzle.

After the selection of material, a design and fabrication process were studied and

implemented to produce a ceramic rocket nozzle. Finally, the ceramic rocket nozzle

was tested using typical Ammonium perchlorate (AP) + Aluminium (Al) propellant

[2]. In summary, the scope of this project can be listed as follows:-

To study the properties of ceramic material.

To study the characteristic of a solid propellant rocket motor.

To design and fabricate ceramic rocket nozzle.

Page 20: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

4

To test the newly developed ceramic rocket nozzle.

1.4 Limitation of Study

Several limitations have to be accepted in this study due to cost and time

constraints and availability of materials. These limitations are as follows:

1. The study only focuses on the fabrication of rocket nozzle.

2. The materials used were easily available in local market.

3. Focus only on easy method of fabrication and low end equipment.

4. There was no detailed study on micro or macro structure changes of ceramic

material.

Page 21: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

REFERENCES

1. N.A.S.A (1996). "Brief History of Rocket. Rockets: A Teacher's Guide with

Activities in Science." Mathematic and Technology.

2. Aziz, A. and Wan Ali, W. K. (2011 ). "The Study of Burning Characteristics

of AP/HTPB/AL Basic Component Of A Composite Propellant." Journal of

Aerospace Engineering & Technology 1(1): 21-26.

3. Worrall, W. E. ( 1986 ). Clays and ceramic raw materials. London Elsevier

Applied Science.

4. Callister, W. D. (2003). Material Science and Engineering an Introduction.

USA, John Wiley & Sons,Inc.

5. Katz, R. N. (1985). "Application of High Performance Ceramic in Heat

Engine Design." Material Science and Engineering 71: 227- 249.

6. Franklin, J. E. (22 May 1991). "Lightweight Ceramic Component For

Propulsion Appication." Americam Institute of Aeronautics Astronautic,.

7. Lin , H. T. ( 2002). "Mechanical reliability evaluation of silicon nitride

ceramic component after exposure in industrialga turbine." Journal of the

European Ceramic Society 22: 2789-2797.

8. Liang, Y. (2001). "Application Trend in Advance Ceramic Technologies."

Technovation 21: 61-65.

9. Renganatham, K., Nageswasara Rao, B.Jana,M.K., (1999). "Failure pressure

estimations on a solid propellant rocket circular perforated grain."

International Journal Of Pressure Vessels and Piping 76: 955-963.

10. Sutton, G. P. (1992). Rocket Propulsion Element an Introduction to

Engineering of Rocket, John Wiley & Sons, Inc.

11. Bachrach, W. E. (1987). Material development and solis rocket motor.

AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference. San

Diego,California, American Institue of Aeronautic and Astronautics, AIAA; .

87: 1819.

Page 22: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

84

12. Hoffman, G. A. (1959). "Design of Large -Area Astronautical Objects "

Aero/Space Engineering 18: 48-52.

13. Wong, E. Y. (1968). Solid rocket nozzle design summary. AIAA 4th

Propulsion Joint Specialist Conference. Cleveland,Ohio: 10-14.

14. Robinson, E. "Limited testing of Precracked Ceramic Rocket Nozzle." Journal

of Spacecraft 5(12).

15. Fischer, M. J. (1973). "Nozzle Material and manufacturing Process."

American Institute of Aeronautic Astronautic 72(1192).

16. Michael, M. M. and Franck, J. (2011). Mechanical design of rocket motor,

Dansk Amator Raket Klub, D.A.R.K.

17. Ryan, W. (1978). Properties of Ceramic Raw Material New York, Pergamon

Press.

18. Celik, H. (2010). "Technological characterization and industrial application

of two Turkish clays for the ceramic industry." Applied Clay Science 50(2):

245-254.

19. Davis, M. P., Ghazali, M.,Nordin,N.A., (2008). Thermal Comfort Honeycomb

Housing The Affordable Alternative to Terrace Housing.

Serdang,Selangor,Malaysia, Institute of Advanced Technology,Universiti

Putra Malaysia.

20. Yilbas, B. S. (2013). "Laser cutting of rectangular geometry into alumina

tiles." Optics and Lasers in Engineering 55: 35-43.

21. Boch, P. and Niepce, J. C. (2007). Ceramic Materials: Processes, Properties,

Application USA, Hermes Sciences Publications.

22. Rehim, A. A. A. (2013). "Impact of spark plug number of ground electrodes

on engine stability." Ain Shams Engineering Journal 4(2): 307-316.

23. Shirazi, F. S. (2014). "Mechanical and physical properties of calcium

silicate/alumina composite for biomedical engineering applications." Journal

of the Mechanical Behavior of Biomedical Materials 30: 168-175.

24. Khay Chin, W. (1996) Ceramic Nozzle. Degree Thesis. Universiti Teknologi

Malaysia:

25. Hill, P. G. ( 1970). Mechanics & Thermodynamic of Propulsion. USA,

Addison-Wesley Publishing Company,Inc.

26. Faculty of Education, T. U. o. W. Retrieved 25 November 2011, from

http://www.sciencelearn.org.nz/Contexts/Rockets/Sci-Media/Images/Solid-

rocket-engine.

Page 23: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

85

27. Cengel, Y. A. and Boles, M. A. (2006). Thermodynamic An Engineering

Approach New York, McGraw-Hill Education

28. Mattingly, J. D. and Ohain, H. v. (2006). Element of Propulsion Gas Turbine

and Rockets. Reston,Virginia, American Institute of Aeronautic and

Astronautic,Inc.

29. British Standard Institution (2002) BS EN ISO14688 - 1 Geotechnical

investigation and testing-identification and classification of soil

30. Djangang, C. N. (2008). "Sintering of clay-chamotte ceramic composites for

refractory bricks." Ceramic International 34: 1207-1213.

31. Amrane, B. (2011). "Experimental study of thermo-mechanical behaviour of

alumina-slilicate refractory materials based on mixture of Algerian kaolinitic

clays." Ceramic International 37: 3217-3227.

32. Sarkar, S. (2012). "New clay -alumina porous capilarry support for filtration

application." Journal of membrane science 392-393: 130-136.

33. Viswabaskaran, V. (2003). "Mullite from clay -reactive alumina for insulating

substrate application." Applied Clay Science 25: 29-35.

34. Mohamad, S. ( 2005). The Malay Pottery in Malaysia. Asia Ceramics

Network Conference. Seoul. Korea.

35. Arifin, A., Rahman, M. L. A, (2010). "Warisan Tembikar Labu Sayong di

Kuala Kangsar, Perak : Sejarah , Perkembangan dan Masa Depan."

International Journal Of Malay World and Civilisation 28(2): 131-154.

36. Hassan, Z. A. (1986). "A theoritical Study on Cooling Effect of water in an

earthen water jug." PERTANIKA 9(3).

37. Lee, K.-C. (2008). "Red Clay Composite reinforced with polymeric binders."

Construction and Building Materials 22: 2291-2298.

38. Viswabaskaran, V. (2003). "Mulltisation behaviour of calcined-alumina

mixtures." Ceramic International 29: 561-571.

39. Hbaieb, K. (2010). Shringkage Reduction of Clay Through Addtion of

Alumina. Advanced Processing and Manufacturing Technologies for

Structural and Multifunctional Materials III, John Wiley & Sons, Inc.,

Hoboken, NJ, USA.

40. Toshio, I., Saeharu, S. (1992) U.S patern number 5,585,431

41. Rice, R. W. (April 1990). "Ceramic Processing : An Overview." AIChe

Journal 36(4).

Page 24: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

86

42. Gizowska, M. (2008). Ceramic Materials-forming methods and properties of

final element. Faculty of Chemistry,Warsaw University of Technology,

Inorganic Technology and Ceramic Department.

43. Kendut, F. (2003). Moral Values Through The Malay Traditional Craft -Labu

Sayong. World Conferences on Art Education. UNESCO. Lisbon.

44. C.Rathossi (2010). "Effect of firing temperature and atmosphere on ceramic

made of NW peloponnese." journal of the Eroupean Ceramic Society 30:

1841-1851.

45. Lee, V.-G. and Yeh, T.-H. (2008). "Sintering Effect on the development of

mechanical properties of fired clay ceramic." Material Science and

Engineering 485: 5-13.

46. Awaji, H., Watanabe, T, Nagano,Y., (1993). "Compressive Testing of

Ceramic." Ceramic International ,Elsevier Science Limited 20: 159-167.

47. Mirza, S. A. and Johnson, C. D. (1996). "Compressive strength testing of high

performance concrete cylinders using confine caps." Construction and

Building Materials,Elsevier Science Ltd 10(8): 589-595.

48. Davis, H. E. (1982). The Testing Of Engineering Material United State of

America, McGraw-Hill.

49. Wan Ali, W. K. ( 1993). The Chemical Composition and Compression

Strength of Refractory Ceramic, Tested for 3 Curing Temperature. UTM,

Perpustakaan Sultanah Zanariah.

50. British Standard Institution (2006) BS EN 1926:2006 Natural Stone test

methods-Determination of Uniaxial Compressive Strength

51. Aziz, A. (2011) Combustion Characteristics Of Ammonium Perchlorate

Based Solid Rocket Propellant. Master Thesis. Universiti Teknologi Malaysia

52. Nakka, R. A. (1984) Solid Propellant Rocket Motor Design and Testing.

Degree thesis. The University of Manitoba

53. Abdullah, A. F. (2011) Development of ceramic nozzle for 100N rocket motor.

Degree Thesis. Universiti Teknologi Malaysia

54. Bakar, W. M. I. W. A. (2012) Development of pressure meter. Degree Thesis.

Universiti Teknologi Malaysia

55. Augier, F. and Coumans, W. J. (2002). "On the risk of cracking in clay

drying." Chemical Engineering Journal 86: 133-138.

56. Chmelik, F. and Trnik, A. (2011). "Creation of microcracks in porcelainj

during firing." Journal of the Eroupean Ceramic Society 31(13): 2205-2209.

Page 25: FABRICATION OF CERAMIC NOZZLE MADE FROM CLAY …eprints.utm.my/id/eprint/50736/25/MuhamadNurizadRosliMFKM2014.pdf · panas. Di dalam kajian ini, seramik digunakan sebagai pengganti

87

57. Khalfaoui, A., Kacim, S., Hajjaji,M., (2004). "Sintering mechanism and

ceramic phase of an illitic-chloritic raw clay." Journal of the European

Ceramic Society 26: 161-167.

58. Garcia ten, J. and Orts, M. J. (2010). "Thermal Conductivity of traditional

ceramic.Part 1: Influences of bulk density and firing temperature." Ceramic

International 36: 1951-1959.

59. Milheiro, F. A. C. and Feire, M. N. (2005). "Densification behaviour of a red

firing brazilian kaolinitic clay " Ceramic International 31: 757-763.

60. Wang, H. L. (1999). "Temperature Dependence of ceramic hardness."

Ceramic International 25: 267-271.

61. Wattanasiriwech, D., Srijan, K. (2009). "Vitrification of illitic clay from

Malaysia." Applied Clay Science 43: 57-62.

62. Das, S. K., (2005). "Shringkage and strength behaviour of quarzitic and

kaolinitic clays in wall tile compositions." Applied Clay Science 29: 137-143.

63. Valanciene, V. and Siauciunas, R. (2010). "The Influence of mineralogical

composition on the colour of clay body." journal of the Eroupean Ceramic

Society 30: 1609-1617.

64. Bentz, D. P. and Prasad, K. R. (2007). Thermal performance of fire resistive

materials I. Characterization with respect to thermal performance models,

National institute of standard and technology.

65. Wirzberger, H. and Yaniv, S. ( 2005). Prediction of erosion in a solid rocket

motor by alumina particles. Joint Propulsion Conference & Exhibit. A. I. o. A.

Astronautic. Tucson,Arizona: 4496.

66. Perang, M. R. M. (2008) A Development of 100N Thrust Rocket Motor Using

KnO3 -Carbon Propellant. Degree Thesis. Universiti Teknologi Malaysia

67. Amir Aziz, W.K. W. A. (2011 ). "The Study of Burning Characteristics of

AP/HTPB/AL Basic cComponent Of A Composite Propellant." Journal of

Aerospace Engineering & Technology 1(1): 21-26.