à Æå¢b4 / I ölibrary.jsce.or.jp/jsce/open/00906/2015/21-0349.pdf1= e ] /¡1= e7 '¨ s º v ö%...

6
ᇶ┙ᆅ┙≉ᛶ࡞␗ࡀἙᕝሐ㜵㧗Ỉ⥅⥆స⏝₃Ỉࡢࢢ㐍⾜≉ᛶ WATER LEAK - PIPING BEHAVIORS OF RIVER LEVEES WITH DIFFERENT FOUNDATION GROUND PROPERTIES UNDER LONG DURATION OF HIGH WATER LEVEL Hiroshi SAITO, Kenichi MAEDA, Norihiro IZUMI and Zhaoqing LI A river levee of the Yabe River was breached due to piping failure induced by prolonged high water levels following heavy rains in Northern Kyushu in 2012. The piping failure was caused by water infiltration into the highly permeable sand and gravel foundation under the clay levee body. However, some levees with similar foundations were deformed but did not fail. This study used models to investigate the influences of the soil-stratum conditions on the properties of pore water pressure propagation and water leakage and the piping failure behavior. The test results revealed that the piping could not be viewed as a single homogeneous foundation ground with leakage of clean water, according to Darcy's law. Rather, the piping failure progressed with a large water leakage including sand in a two- layer foundation ground consisting of gravel below fine sand, even under a low hydraulic gradient. We propose a new criterion for piping based on the foundation ground strata configuration, average hydraulic gradient, and flow velocity. Key Words : piping, hydraulic gradient, critical velocity ࡌࡣ N N ⢓ᛶᅵ ◁♟㉁ᅵ ◁㉁ᅵ ⢓ᅵ㉁♟ΰ㉁◁ ሐෆഃ ሐእഃ 5.0m T.P+9.4m T.P+8.3m ィ⏬㧗ỈT.P+7.3m 2.0m 2.0m 1 Ἑᕝᢏ⾡ㄽ㞟, ' 21s , 2015 6 - 349 -

Transcript of à Æå¢b4 / I ölibrary.jsce.or.jp/jsce/open/00906/2015/21-0349.pdf1= e ] /¡1= e7 '¨ s º v ö%...

Page 1: à Æå¢b4 / I ölibrary.jsce.or.jp/jsce/open/00906/2015/21-0349.pdf1= e ] /¡1= e7 '¨ s º v ö% b % "I ö@$ ^ ] 75b9× È )b )E)F 8#Ý_| È\à Æå¢b4 / "I ö:$7(5/($. 3,3,1*%(+$9,2562)5,9(5/(9((6

WATER LEAK - PIPING BEHAVIORS OF RIVER LEVEES WITH DIFFERENT FOUNDATION GROUND PROPERTIES

UNDER LONG DURATION OF HIGH WATER LEVEL

Hiroshi SAITO, Kenichi MAEDA, Norihiro IZUMI and Zhaoqing LI

A river levee of the Yabe River was breached due to piping failure induced by prolonged high water levels following heavy rains in Northern Kyushu in 2012. The piping failure was caused by water infiltration into the highly permeable sand and gravel foundation under the clay levee body. However, some levees with similar foundations were deformed but did not fail. This study used models to investigate the influences of the soil-stratum conditions on the properties of pore water pressure propagation and water leakage and the piping failure behavior. The test results revealed that the piping could not be viewed as a single homogeneous foundation ground with leakage of clean water, according to Darcy's law. Rather, the piping failure progressed with a large water leakage including sand in a two-layer foundation ground consisting of gravel below fine sand, even under a low hydraulic gradient. We propose a new criterion for piping based on the foundation ground strata configuration, average hydraulic gradient, and flow velocity.

Key Words : piping, hydraulic gradient, critical velocity

5.0mT.P+9.4mT.P+8.3mT.P+7.3m 2.0m

2.0m

, 21 , 2015 6

- 349 -

Page 2: à Æå¢b4 / I ölibrary.jsce.or.jp/jsce/open/00906/2015/21-0349.pdf1= e ] /¡1= e7 '¨ s º v ö% b % "I ö@$ ^ ] 75b9× È )b )E)F 8#Ý_| È\à Æå¢b4 / "I ö:$7(5/($. 3,3,1*%(+$9,2562)5,9(5/(9((6

[ 7 2 ] [ ]

1.0m45 2700 45 2700

45 2700 45 2700

d=300 (0.300)

Water side

Land side

Fujinomori clay

81

700 (0.700)

70 (0.070)

169Upper sand layer

Lower sand layer

45 (0.045)

45 (0.045)2 3 4 5 6 7

10 11 12 13 14 15

60 (0.060)

h=60 (0.060)

50 (0.050)

Pore water pressure meter

10 (0.010)

Depth 250 (0.250)

Overflow

unit : mm (m)

Scale

045)

0.001 0.01 0.1 1 100

20

40

60

80

100

Fujinomori clay, k=3.0 10-8m/s Silica#7, k=1.4 10-5m/s Silica#4, k=1.6 10-3m/s Silica#2, k=1.8 10-2m/s

Perc

enta

ge p

assin

g by

wei

ght (

%)

Grain size, d(mm) (d 10-3 (m))

- 350 -

Page 3: à Æå¢b4 / I ölibrary.jsce.or.jp/jsce/open/00906/2015/21-0349.pdf1= e ] /¡1= e7 '¨ s º v ö% b % "I ö@$ ^ ] 75b9× È )b )E)F 8#Ý_| È\à Æå¢b4 / "I ö:$7(5/($. 3,3,1*%(+$9,2562)5,9(5/(9((6

(a)44 37 (2677 )

(b)45 09 (2709 )

(c)45 38 (2738 )

(d)45 42 (2742 )

0 0.06 0.12 0.18 0.24 0.30 0.36 0.420

0.05

0.10

0.15

0.20

Width direction (m)

Wat

er h

ead

, H (m

)

0(0) 3(180) 30(1800) 35(2100) 41(2460)46(2760) 52(3120) 57(3420) unit : min (sec)

0 0.06 0.12 0.18 0.24 0.30 0.36 0.420

0.05

0.10

0.15

0.20

Width direction (m)

Wat

er h

ead

, H (m

)

0(0) 3(180) 30(1800) 35(2100) 41(2460)46(2760) 52(3120) 57(3420) unit : min (sec)

0 0.06 0.12 0.18 0.24 0.30 0.36 0.420

0.05

0.10

0.15

0.20

Width direction (m)

Wat

er h

ead

, H (m

)

0(0) 3(180) 30(1800) 35(2100) 41(2460)46(2760) 52(3120) 57(3420) unit : min (sec)

0 0.06 0.12 0.18 0.24 0.30 0.36 0.420

0.05

0.10

0.15

0.20

Wat

er h

ead

, H (m

)

Width direction (m)

0(0) 3(180) 30(1800) 35(2100) 41(2460)46(2760) 52(3120) 57(3420) unit : min (sec)

0 0.06 0.12 0.18 0.24 0.30 0.36 0.420

0.05

0.10

0.15

0.20

Wat

er h

ead

, H (m

)

Width direction (m)

0(0) 3(180) 30(1800) 35(2100) 41(2460)46(2760) 52(3120) 57(3420) unit : min (sec)

0 0.06 0.12 0.18 0.24 0.30 0.36 0.420

0.05

0.10

0.15

0.20

Wat

er h

ead

, H (m

)

Width direction (m)

0(0) 3(180) 30(1800) 35(2100) 41(2460)46(2760) 52(3120) 57(3420) unit : min (sec)

- 351 -

Page 4: à Æå¢b4 / I ölibrary.jsce.or.jp/jsce/open/00906/2015/21-0349.pdf1= e ] /¡1= e7 '¨ s º v ö% b % "I ö@$ ^ ] 75b9× È )b )E)F 8#Ý_| È\à Æå¢b4 / "I ö:$7(5/($. 3,3,1*%(+$9,2562)5,9(5/(9((6

W.L.0.06m

W.L.0.11m

W.L.0.16m

W.L.0.21m

W.L.0.26m

W.L.0.06m

W.L.0.11m

W.L.0.16m

W.L.0.21m

W.L.0.26m

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

No.9-10 No.10-11 No.11-12 No.12-13No.13-14 No.14-15 No.15-16

Duration time , t (min)

Hyd

raul

ic g

radi

ent,

iW.L.0.06m

W.L.0.11m

W.L.0.16m

W.L.0.21m

W.L.0.26m

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

No.9-10 No.10-11 No.11-12 No.12-13No.13-14 No.14-15 No.15-16

Duration time , t (min)

Hyd

raul

ic g

radi

ent,

i

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

Duration time , t (min)

Hyd

raul

ic g

radi

ent,

i

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

No.9-10 No.10-11 No.11-12 No.12-13No.13-14 No.14-15 No.15-16

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

No.1-2 No.2-3 No.3-4 No.4-5No.5-6 No.6-7 No.7-8

Duration time , t (min)

Hyd

raul

ic g

radi

ent,

i

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

No.1-2 No.2-3 No.3-4 No.4-5No.5-6 No.6-7 No.7-8

Duration time , t (min)H

ydra

ulic

gra

dien

t, i

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

Duration time , t (min)

Hyd

raul

ic g

radi

ent,

i

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

No.1-2 No.2-3 No.3-4 No.4-5No.5-6 No.6-7 No.7-8

W.L.0.06m

W.L.0.11m

W.L.0.16m

W.L.0.21m

W.L.0.26m

W.L.0.06m

W.L.0.11m

W.L.0.16m

W.L.0.21m

W.L.0.26m

W.L.0.06m

W.L.0.11m

W.L.0.16m

W.L.0.21m

W.L.0.26m

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

Duration time , t (min)

Hyd

raul

ic g

radi

ent,

i

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

No.1-9 No.2-10 No.3-11 No.4-12No.5-13 No.6-14 No.7-15 No.8-16

Duration time , t (min)

Hyd

raul

ic g

radi

ent,

i

0 10 20 30 40 50 60 70 80-1.0

-0.5

0

0.5

1.0

No.1-9 No.2-10 No.3-11 No.4-12No.5-13 No.6-14 No.7-15 No.8-16

Duration time , t (min)

Hyd

raul

ic g

radi

ent,

i

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

No.1-9 No.2-10 No.3-11 No.4-12No.5-13 No.6-14 No.7-15 No.8-16

30 31 32 33 34 350.02

0.03

0.04

0.05

Wat

er h

ead

, H (m

)

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8

Duration time , t min (sec)

min(1800) (1860) (1920) (1980) (2040) (2100) sec

33min56sec (2036sec)

↓Dike body33min56sec (2036sec) 67min (4020sec)

- 352 -

Page 5: à Æå¢b4 / I ölibrary.jsce.or.jp/jsce/open/00906/2015/21-0349.pdf1= e ] /¡1= e7 '¨ s º v ö% b % "I ö@$ ^ ] 75b9× È )b )E)F 8#Ý_| È\à Æå¢b4 / "I ö:$7(5/($. 3,3,1*%(+$9,2562)5,9(5/(9((6

0 10 20 30 40 50 60 70 800

10

20

30

40

50

60

case1-1 case2-1 case2-2

Duration time , t (min)

Dra

inag

e flo

w, q

(cm

3 /s)

W.L.0.06m

W.L.0.11m

W.L.0.16m

W.L.0.21m

W.L.0.26m

(m3 /s

)

( 10-6)

Duration time , t min (sec)

min(0) (600) (1200) (1800) (2400) (3000) (3600) (4200) (4800) sec

Silica 7

case2-2 case2-1case1-1 (m/sec)

(m)

( 10-2 )

( 10-3)

k1

y1 y2 y2 y1y3

k2

k1

k2

k1k2

y1

y2

q

Water side

Land side

Fujinomori clay

yykykk )( 2211112232211 kykykykyky

dk

kk

y

d

0 0.1 0.2 0.30

0.1

0.2

0.3

Measurement permeability, km (m/s)

Theo

ry p

erm

eabi

lity,

kt (

m/s

)

MonolayerBilayer

( 10-2)

( 10-2)

- 353 -

Page 6: à Æå¢b4 / I ölibrary.jsce.or.jp/jsce/open/00906/2015/21-0349.pdf1= e ] /¡1= e7 '¨ s º v ö% b % "I ö@$ ^ ] 75b9× È )b )E)F 8#Ý_| È\à Æå¢b4 / "I ö:$7(5/($. 3,3,1*%(+$9,2562)5,9(5/(9((6

(B)23360203 24

1)

2)

3)

4)

5)

6)

7)

Piping area

Non-piping area

0 0.05 0.1 0.15 0.20

0.2

0.4

0.6

0.8

1.0

Mean velocity , v (m/s)

Hyd

raul

ic g

radi

ent,

i

case1-1

case1-2

case1-3

case2-1

case2-3case2-4

case2-11

case2-2

case2-9

case2-5

case2-6

case2-7

case2-8case2-10

Monolayer Bilayer

( 10-2)

Uplift pressure

Weight of the soil

Piping hole

Scouring Deposition

Dike body

Dike bodyDike body

- 354 -