Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO ·...

30
Carnegie Mellon Salvador Research Group, h2p://neon.materials.cmu.edu/salvador/ 1 Extrinsic Factors that Control Oxygen Exchange in (La,Sr)MnO 3 Paul Salvador Department of Materials Science and Engineering Carnegie Mellon University Pi2sburgh, PA 15206 Lu Yan Robin Chao Miaolei Yan Pei Hsuan (Pa2y) Lee K. R. Balasubramaniam Hui Du Shanling Wang Lam Helmick Sarthak Havelia Oleg Maksimov Joanna Meador Funded by DOE SECA, Thanks to L. Wilson, W. Surdoval, B. White, P. Burke, Shailesh Vora

Transcript of Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO ·...

Page 1: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   1  

Extrinsic  Factors  that  Control  Oxygen  Exchange  in  (La,Sr)MnO3  

Paul  Salvador    Department  of  Materials  Science  and  Engineering  Carnegie  Mellon  University  Pi2sburgh,  PA  15206      Lu  Yan      Robin  Chao    Miaolei  Yan      Pei  Hsuan  (Pa2y)  Lee  K.  R.  Balasubramaniam  Hui  Du  Shanling  Wang    Lam  Helmick      Sarthak  Havelia    Oleg  Maksimov              Joanna  Meador    

Funded  by  DOE  -­‐  SECA,  Thanks  to  L.  Wilson,  W.  Surdoval,  B.  White,  P.  Burke,  Shailesh  Vora  

Page 2: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   2  

Surface  Chemistry  and  Ac[vity  of  (La,Sr)MnO3  

Surface activity of thin films: Electrical Conductivity Relaxation Epitaxial, Thick Films: Orientation of Relaxed Films Epitaxial, Thin Films: Orientation, Strain, Dislocations Textured Films: Orientation, Extended Boundaries

Mesoporous infiltrates: Performance and Stability Infiltration Reduction in Polarization Resistance SOFC Performance Improvements

Page 3: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   3  

Thin  films  to  measure  surface  exchange  Schematic Processes in Oxygen Exchange

Isolation of Surfaces with thin Films

Electrical Conductivity Relaxation

0

0.2

0.4

0.8

0.6

1.0

1.2

Nor

mal

ized

con

duct

ivity

g(t

)

0 200 400 600

Time / s

600 C - oxidation ECR data

slow process data fitting

fast process data fitting

0

0.2

0.4

0.8

0.6

1.0

1.2

Time / s

800 C - oxidation

0 200 400 600

0

0.2

0.4

0.8

0.6

1.0

1.2

0 10 20 30

Time / s

800 C - oxidation

ECR data

Data fitting ECR data Data fitting

•  Verify Electrical Properties •  Correct for gas flush times •  Average several runs •  Confirm reversibility •  Fit to 1 or 2 time constants •  Verify surface affect not diffusion

g( t) =σ t −σ final

σ final −σ initial

=1− Aexp(−K1,chemtL

) − (1− A)exp(−K2,chemtL

)

Page 4: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   4  

Surface  exchange  proper[es  of  (La,  Sr)MnO3  :  Experimental  studies  

Page 5: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   5  

Surface  exchange  proper[es  of  (La,  Sr)MnO3  :  Computa[onal  studies  

Page 6: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   6  

Crystallographic  Anisotropy  in  Apparent  EA  

L. Yan et al., Solid State Ionics, 194, 9-16 (2011). "

18

LSM (621)

Ea (eV) � 0.82 1.16 0.83 0.95

Summary of the orientation effect on kchem of La0.7Sr0.3MnO3

•  kchem (621) is not proportional to the ratio of low index orientations exposed to the surface

•  Ea(621) is an average value of activation energies of the low index surfaces

•  Increase in surface roughness has little effect on enhancing kchem (621)

(100) (110) (111) (621)

(621): a generic surface

(110)!

(100)!

(111)!

Pt(621) chiral surface!

(621): a generic surface

u  (111) is most active at low-T u  (110) is most active at high-T u  (110) has largest EA u  Generic (621) is intermediate

(111)  is  fastest  at  low  temperatures.    (110)  is  fastest  at  high  temperatures.    Ac[va[on  energies  vary  from  ≈  0.8  to  ≈  1.2  eV.      General  high  index  surfaces  are  intermediate  with  low  index  surfaces.    

Observa/ons   Relaxed  Films  

Page 7: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   7  

Ac[va[on  energy  vs  thickness  and  substrate  Thick Films

on Different Substrates Thin Films

on Different Substrates

•   Two  different  ac[va[on  Energies:  two  different  processes  

•   Thick  Films  are  more  similar  to  one  another  and  are  generally  more  ac[ve  

•   at  higher  temperature,  thinnest  film  on  STO  is  most  ac[ve  

•   for  thin  films,  values  are  almost  and  order  of  magnitude  different  

L. Yan and P. A. Salvador, ACS Applied Materials and Interfaces, online (2012). doi: 10.1021/am300194n"

Page 8: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   8  

Relaxed  Surfaces  :  Substrate  and  Orienta[on  

Page 9: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   9  

Strained  surfaces  :  Substrate  and  Orienta[on  

Page 10: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   10  

Crossover  behavior  also  observed  

•   High  T  data  on  STO  and  Low  T  data  on  NGO  are  more  complex  

•   Crossover  between  two  mechanisms  

•    At  high-­‐T  surface  takes  over  owing  the  EA  

•   At  low-­‐T  surface  takes  over  because  other  process  freezes  out  source/sink  to/from  defects  

Page 11: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   11  

Temperature  dependence  of  two  mechanisms  

Our data agree with literature: Kchem is on the order of 10-5cm/s.1-5

Ea1: 1.48 eV for microelectrode1, 1.32 eV dense pellet2, Ea2: 0.8 eV (100) and (111) on STO3, 0.07-0.8 eV powder4.

Page 12: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   12  

Rela[ve  Contribu[on  to  Responses    

Temp / K 884 936 987 1090 1141 A 0.23 0.4 0.78 1 1

110 Surfaces

100 Surfaces

Page 13: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   13  

Comparison  of  all  Values  for  La0.7Sr0.3MnO3  

3.5 Order Magnitude Spread

Page 14: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   14  

Summary  Two apparent processes occuring on the surface (Ea) for Kchem for both epitaxial and textured films. These were interpreted as belonging to: (1) the native surface response of individual grains/variants and (2) the extended defects (dislocations / grain boundaries) intersecting surface of the films. Epitaxial Films: the first (native surface) process : EA,1 ≈ 1.5 eV and 1.9 eV the second (extended defect) process EA,2 ≈ 0.75 eV and 1.2 eV Textured Films: the Kchem,2 values are almost 2 orders of magnitude higher than the Kchem,1 values at low temperatures (< 700°C)

at high T the native surface dominates all films

All films have orientation dependences to the values / activation energies. One composition shows 3 ORDERS OF MAGNITUDE differences in exchange coefficients.

Widely varying surface reactivity possible in the microstructures. The native surface processes are strong functions of :

Strain Orientation Extended Defects Temperature

Understanding the utility of this data will come with improved modeling of electrochemical systems

Page 15: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   15  

Surface  Chemistry  and  Ac[vity  of  (La,Sr)MnO3  

Surface activity of thin films: Electrical Conductivity Relaxation Epitaxial, Thick Films: Orientation of Relaxed Films Epitaxial, Thin Films: Orientation, Strain, Dislocations Textured Films: Orientation, Extended Boundaries

Mesoporous infiltrates: Performance and Stability Infiltration Reduction in Polarization Resistance SOFC Performance Improvements

Page 16: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   16  

Infiltra[on:  Surface  Ac[ve  nanopar[cles  for  SOFCs  Ac[va[on  

What  are  the  op[mal  materials  to  use  for  infiltra[on?    What  are  the  surface  proper[es  of  cathode  materials?    What  are  the  mechanisms  of  enhanced  performance  /  degrada[on?      What  are  the  proper[es  of  nanosized  par[cles?  What  are  the  effects  of  the  support  on  the  proper[es  of  cathodes?    

Scholklapper et al. (LBL), Electrochem. Solid-State Lett., 9, A376 (2006)

W. Wang et al. (Penn) J. Electrochemical Society, 154, B439-B445 (2007).

Chao, Gerdes, Kitchin, Salvador (CMU) Electrochemical Society Trans, 35, 2387-2399, (2011).

LSM on YSZ LBL

LSCF on YSZ Penn

LSM on LSCF CMU

Page 17: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

Project  Goal  

q To improve the power density of the SOFC cathodes by coating pore surfaces with mesoporous electrocatalysts

Cathode Surface Cathode Surface

Electrocatalyst Nanoparticles

Mesopores / Exposed Cathode

Exposed Cathode

Electrocatalyst

Catalysts: La0.8Sr0.2MnO3 Depending on mechanism, one may be preferable to other

17  

Page 18: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

Evapora[on-­‐induced  Self-­‐assembly  (EISA)  q Developed by Mobil Researchers in 1991

q Self-assembly of surfactants provides controlled mesopore formation

q Parameters  that  control  outcome  q Drying  rate  

q Aging  temperature  q Calcina[on  temperature  

[6]

q Sol  composi[on  q Rela[ve  humidity  q Templa[ng  agents  

18  

Page 19: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

Infiltra[on  Using  2  M  Precursor  Solu[on    with  60  °C  Prehea[ng  Step  

q A preheating stage at 60 C was added prior to infiltration step

q A uniform distribution of LSM particles is observed in functional layer

q The solution viscosity is reduced without dilution

19  

Page 20: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

Mesoporous  Coa[ngs  in  Cathodes  

20  

Page 21: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

Homemade  Cells  Tes[ng  

•  Test Conditions:

•  Used gold paste and gold wire for current collection

•  The cell is suspended in a sealed chamber

•  700, 750, and 800 °C

•  Controlled pO2 at 0.2 atm using 100 sccm O2 + N2 mixed flow

•  Impedance data is collected by Gamry REF600 (1MHz-0.5Hz)

21  

Symmetric  Cell  Gold  Paste  

Gold  wire  

Hea

ting

Stag

e

In  Sealed  Chamber  

Mixed  Gas  

Page 22: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

LSM  Infiltrate  Morphologies  Comparison  in  LSM  Cells  

q All cells were infiltrated with 10 wt% LSM

q Pechini infiltration (a-b)

-  generates a thin layer of LSM nanoparticles

-  isolated or agglomerate

q EISA infiltration (c-d)

-  generates thicker LSM coatings

-  3-D mesoporous network

22  

Page 23: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

EIS  –  Symmetric  Cells  at  750  °C  

•  Total Polarization Reductions Nano-LSM: 57% Meso-LSM: 68%

•  Comparing Meso-LSM and Nano-LSM infiltration o  High frequency ( > 10 kHz) : both infiltration are similar è Similar interface polarization resistance o  Mid-frequency (1 kHz – 10 Hz) : Meso-LSM is further reduced è faster changer transfer rate o  Low frequency ( < 1 Hz) : very small RP observed è improved dissociative adsorption/diffusion of oxygen

•  Major improvement is seen in surface reaction processes

23  

LSM  

Baseline LSM‐CA LSM‐EISA 

0.3 

0.1 

0 0.4  0.8 0.2 0 

Zreal (ohm cm2) 

Zim

ag (ohm cm

2) 

0.2 

0.6 

R1  R2  R3 

1.0 

Page 24: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

Literature  Model  of  Three  Arcs  

24  

Page 25: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

EIS  –  Mesoporous  vs.  Nanopar[cle  Infiltra[on  

Both infiltrations were at 10 wt%

q In LSM infiltration, mesoporous coating infiltration led to 20% further RP reduction than nanoparticle infiltration for all temperatures (700-800 °C)

q The RP reduction at each frequency range are consistent at 700-800 °C

25  

Base NP MESO

Page 26: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

Commercial  SOFC  Bu2on  Cells  

MSRI  Anode  Supported  SOFC  buBon  cell  with  a  La0.8Sr0.4Co0.2Fe0.8  O3  Cathode  

NiO/YSZ

Anode

LSCF

LSCF Current

Collection Layer

LSCF/SDC Functional

Layer Dense YSZ Electrolyte NiO/YSZ

Anode

50 μm

26  

Page 27: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

EIS  –  Mesoporous  LSM  vs.  Nanopar[cle  LSM  

•  Both infiltrations were at 10 wt% Meso-LSM: 28% Nano-LSM: 15%

•  In LSM infiltration, mesoporous coating infiltration led to larger electrode polarization reduction than nanoparticle infiltration

!"#$%&'$((

)$%%(

*"'+,-./(/$#+,-./(

0123(

0103(

0(014( 015(012(0(

67$"%(8+9:(;:4<(

6&:

"=(8+9:(;:

4<(

0120(

01>( 013(

"<(

27  

Page 28: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

EIS  –  Mesoporous  LSC  vs.  Nanopar[cle  LSC  

•  LSC (La0.8Sr0.2CoO3) infiltrations showed higher RP reduction than LSM Meso-LSC: 37% Nano-LSC: 38% Meso-LSM: 28% Nano-LSM: 15%

•  Nanoparticle LSC shows similar / lower polarization resistance

reduction than mesoporous LSC

!"#$%&'$((

)$%%(

*+,-(

*+*-(

*(*+.( *+/(*+,(*(

01$"%(2345(65.7(

0&5

"8(2345(65

.7(

*+,*(

*+9( *+-(

:$#3;<=)(>"'3;<=)(

?7(

28  

Page 29: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/  

Different  Effects  of  Mesoporous  LSC  and  LSM:  Oxygen  Transport  

Cathode Surface

Cathode Surface

Cathode Surface

Cathode Surface

LSM

LSC

O2-­‐  

O2-­‐  

O2-­‐   O2-­‐   O2-­‐  

O2-­‐  

q  LSM  –  Fast  surface  diffusion  –  Need  to  pass  along  interconnected  surface  –  No  effects  from  grain  boundaries  –  Transport  of  oxygen  adsorbed  away  from  the  

phase  boundaries  is  FAST  

q LSC  -­‐  Fast  bulk  diffusion  -­‐  Need  to  pass  through  tortuous  pore  walls  -­‐  Need  to  cross  over  mul[ple  grain  boundaries  -­‐  Transport  of  oxygen  species  adsorbed  away  from  

 the  phase  boundaries  is  SLOW  

29  

Page 30: Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO · Extrinsic(Factors(thatControl(Oxygen(Exchange(in((La,Sr)MnO 3 PaulSalvador % ... J. Electrochemical Society, 154, B439-B445

Carnegie Mellon Salvador  Research  Group,  h2p://neon.materials.cmu.edu/salvador/   30  

Summary  

One-step EISA process yields high surface area, well-dispersed mesoporous nanoscale coatings as infiltrates. Mesoporous infiltrates are comparable to or better than “standard” nanoparticle infiltrates. LSM mesoporous infiltrates are much improved owing to reduction in all surface polarizations: half cells and commercially available MSRI cells

LSC coatings are less sensitive to microstructure in commercially available MSRI cells.