Extremum seeking control

47
Extremum seeking control Dragan Nešić The University of Melbourne ledgements: , I. Mareels, A. Astolfi, G. Bastin, C. Manzie; A. Mohammadi; W. Mo lian Research Council.

description

Extremum seeking control. Dragan Ne š i ć The University of Melbourne. Acknowledgements: Y. Tan, I. Mareels, A. Astolfi, G. Bastin, C. Manzie; A. Mohammadi; W. Moas Australian Research Council. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A. - PowerPoint PPT Presentation

Transcript of Extremum seeking control

Page 1: Extremum seeking control

Extremum seeking control

Dragan Nešić

The University of Melbourne

Acknowledgements: Y. Tan, I. Mareels, A. Astolfi, G. Bastin, C. Manzie; A. Mohammadi; W. Moas Australian Research Council.

Page 2: Extremum seeking control

Outline

Motivating examples Background Ad hoc designs Black box:

- Problem formulation- Systematic design

Gray box:- Problem formulation- Systematic design

Conclusions & future directions

Page 3: Extremum seeking control

A Prelude

This is an approach for online optimisation of the steady-state system behaviour.

A standing assumption is that the plant model or the cost is not known.

The controller finds the extremum in closed-loop fashion.

Page 4: Extremum seeking control

Motivating examples

Page 5: Extremum seeking control

Continuously Stirred Tank (CST) Reactor

Substrate Product

u=Vol. flow rate Performance output y:

Productivity JP

Yield JY

Inflow Outflow

Overall JT

J T := ¸J P +(1¡ ¸)J Y ; ¸ 2 (0;1)

Page 6: Extremum seeking control

Single enzymatic reactionMichaelis-Menten Kinetics

Productivity and yield Total cost

is typically unknown!!

In steady-state, we would typically want to operate around u¤J T (¹u)

G. Bastin, D. Nešić, Y. Tan and I. Mareels, “On extremum seeking in bioprocesses with multivalued cost functions”, Biotechnology Progress, 2009.

Page 7: Extremum seeking control

Raman amplifiers

Fibre span

Power sensors

Pump lasers

u=laser power

P.M. Dower, P. Farrell and D. Nešić, “Extremum seeking control of cascaded optical Raman amplifiers”, IEEE Trans. Contr. Syst. Tech., 2008.

CostPerformance output y:

•Spectral flatness (equalization)• Desired power

¸

p

Pi (pi ¡ pd)2

Page 8: Extremum seeking control

Other engineering examples

Plant Performance output

Turbine Generated power

Solar cell Generated power

Variable cam timing Fuel consumption

Tokamak Reflected power during Lower Hybrid (LH) plasma heating experiments

Non-holonomic vehicles Distance from a source of a signal

Paper machine Retention of fines and fibers in the sheet

Ultrasonic/Sonic Driller/Corer Distance from resonance

Human Exercise Machine The user’s power output

ABS Magnitude of friction force

Page 9: Extremum seeking control

Examples from biology

E. Coli bacteria search for food in a similar manner to an extremum seeking algorithm (M. Krstic et al).

Some fish search for food in a similar manner to extremum seeking (M. Krstic et al).

k

kv

Page 10: Extremum seeking control

Background

Page 11: Extremum seeking control

Classification of approaches

NLP based ESC [Popović, Teel,…]

Adaptive ESC [Krstić, Ariyur, Guay, Tan, Nešić,…]

Deterministic Stochastic

Adaptive ESC [Krstić, Manzie,…]

NLP based ESC[Spall,..]

Also continuous-time versus discrete-time.

Page 12: Extremum seeking control

Brief history (deterministic):

1922 1950 2000

Firs

t ESC

?

1960 1970 2009

Vibra

nt re

sear

ch a

rea

Man

y ne

w s

chem

es p

ropo

sed

Espec

ially

Ada

ptiv

e

Firs

t loc

al s

tabi

lity

resu

lt fo

r ada

ptiv

e ESC

Syste

mat

ic d

esig

n di

scre

te-ti

me

NLP

.

Syste

mat

ic d

esig

n ad

aptiv

e

Schem

es.

Beginning Ad-hoc designs Rigorous analysis and design

Åströ

m &

Witt

enm

ark:

“one

of t

he m

ost

prom

isin

g ad

aptiv

e co

ntro

l tec

hniq

ues”

.

1995

Page 13: Extremum seeking control

Ad hoc adaptive designs

Page 14: Extremum seeking control

Adaptive ESC [Krstić & Wang 2000]

µ

asin(! t)

Ks

_x = f (x;u)

y = h(x)

y

+ x

asin(! t)

Extremum seeking controller

Wh(s)Wl(s)

u

Parameters:

a; K ; !

Page 15: Extremum seeking control

Static scalar case (gradient descent)

µ

u= µ+asin(! t)

asin(! t)

Ks

y

+ xµ

sin(! t)

Extremum seeking controller

a; K ;!Parameters:

Y. Tan, D. Nešić and I. Mareels, “On non-local stability properties of

extremum seeking control”, Automatica, 2006.

_x = f (x;u)

y = h(x)

Page 16: Extremum seeking control

Comments

Many similar adaptive algorithms proposed. Case-by-case convergence analysis. No clear relationship with optimization.

A unifying design approach is unavailable. A unifying convergence analysis is missing.

A unifying approach exists for another class of schemes [Teel and Popovic, 2000].

Page 17: Extremum seeking control

Black Box Approach

Page 18: Extremum seeking control

Problem formulation (black box)

Extremum Seeking

Controller

Assumption 1:

- Q(.) has an extremum (max)

- Q(.) is unknowny=Q(u) yu _x = f (x;u)

y = h(x)Dynamic case:

Problem:

Design ESC so that limsupt! 1 jy(t) ¡ y¤j ¼0

y¤ := Q(u¤) ¸ Q(u); 8u

9 (̀¢) ) 0 = f ( (̀u);u)

Q(u) := h± (̀u)

Assumption: u(t) ´ ¹u =) y(t) ! Q(¹u)

Page 19: Extremum seeking control

Systematic design(derivatives estimation)

D. Nešić, Y. Tan, W. Moas and C. Manzie, “A unifying approach to extremum seeking:adaptive schemes based on derivatives estimation”, IEEE Conf. Dec. Contr. 2010.

Page 20: Extremum seeking control

Continuous optimization (offline)

y=Q(u)

• No inputs & outputs

• Q(.) is known, so all derivatives of Q(.) are known

_µ= F (DN (µ)) limt! 1 jµ(t) ¡ u¤j = 0

DN (u) := [Q(u) DQ(u) D2Q(u) :: : DNQ(u)]

Page 21: Extremum seeking control

Examples

Gradient method

Continuous Newton method

_µ=DQ(µ) :

_µ= ¡ DQ(µ)D 2Q(µ) :

Page 22: Extremum seeking control

Extremum seeking (online)

y=Q(u)y

• Inputs & outputs available

• Q(.) is unknown

=µ+asin(t)

_µ= ²F (dDN (µ))

limsupt! 1 jµ(t) ¡ u¤j ¼0

dDN Derivativesestimator

asin(t)

+

• a, !L, ² are positive controller parameters

! L

u

Page 23: Extremum seeking control

Systematic design (use the previous block diagram)

Step 1: Choose an optimization scheme.

Step 2: Use an estimator for DN Q(¢).

Step 3: Adjust the controller parameters.

Page 24: Extremum seeking control

Estimator design

Page 25: Extremum seeking control

Estimating DQ(µ)

y=Q(u)yu= µ+asin(t)

! Ls+! L

£sin(t)

limt! 1 »1(t) ¼ a2DQ(µ)

»1

dDQ(µ) = 2a»1

Page 26: Extremum seeking control

Analysis

Q(µ+asin(t)) sin(t) ¼Q(µ) sin(t) +aDQ(µ) sin2(t) + a2

2 D2Q(µ) sin3(t)

where µ is assumed constant.

Average the right hand side of the model.

_»1 ¼¡ ! Lh»1 ¡ DQ(µ)a2

i

Model of the system:

_»1 = ¡ ! Lh»1 ¡ Q(µ+asin(t)) sin(t)

i

limt! 1 »1(t) ¼ a2DQ(µ)

Page 27: Extremum seeking control

Estimating D2Q(µ)

y=Q(u)yu= µ+asin(t)

! Ls+! L

£sin2(t)

limt! 1 »2(t) ¼ 12Q(µ) +

3a2

16 D2Q(µ)

»2

! Ls+! L

»0

limt! 1 »0(t) ¼Q(µ) + a2

4 D2Q(µ)

dD2Q(µ) = 8a2 (2»2 ¡ »0)

Page 28: Extremum seeking control

Higher order derivatives

y=Q(u)yu= µ+asin(t)

! Ls+! L

£sin(t)

! Ls+! L

g(a;»0; : : :;»N )

...

dDN (µ)

! Ls+! L

£sin(t)

......

»0

»1

»N

Page 29: Extremum seeking control

Convergence analysis

Page 30: Extremum seeking control

Model of the overall system

_̂µ = ²! L F (g(a;»0; : : : ;»N ))_»i = ¡ ! L (»i ¡ ³i (t;µ;a)); i = 0;1;: : : ;N

µ = µ̂+asin(t)

³i (t;µ;a) = Q(µ+asin(t)) sini (t)

!L, ² and a are controller parameters that need to be tuned to achieve appropriate convergence properties.

Slow:

Fast:

Page 31: Extremum seeking control

Assumption 1 (global max)

There exists a global maximum

DQ(µ) = 0 ( ) µ= µ¤

D2Q(µ¤) < 0

Page 32: Extremum seeking control

Assumption 2 (robust optimizer)

The solutions of

satisfy

for sufficiently small w(t).

_µ= F (DNQ(µ) +w(t))

limsupt! 1 jµ(t) ¡ µ¤j ¼0

Page 33: Extremum seeking control

Theorem

Suppose Assumptions 1-2 hold. Then

8(¢ ;º); 9(! ¤L ;a¤)

+

8! L 2 (0;! ¤L ); a 2 (0;a¤); 9²

+

j(µ(t0) ¡ µ¤;»(t0))j · ¢

+

limsupt! 1 j»(t) ¡ ¹ (µ(t);a)j · º;

limsupt! 1 jµ(t) ¡ µ¤j · º

Tuning guidelines

Page 34: Extremum seeking control

Geometrical interpretation

µ

»(»0;µ0)

Fast transient (estimator)

»= ¹ (µ;a)

Slow transient optimization

» ! L

» ²! L

lim supt! 1

jµ(t) ¡ µ¤j · º =) lim supt! 1

jy(t) ¡ y¤j · º1

Exist !L, ², a

µ¤

For any ¢, º

Page 35: Extremum seeking control

Comments

A systematic design approach proposed. Rigorous convergence analysis provided. Controller tuning proposed in general. Dynamic plants treated in the same way. Multi-input case is treated in a similar way. Averaging and singular perturbations used. Tradeoffs between the domain of attraction,

accuracy and speed of convergence!

Page 36: Extremum seeking control

Bioreactor example

All our assumptions hold – gradient method used.

Page 37: Extremum seeking control

Gray Box Approach

Page 38: Extremum seeking control

Problem formulation (gray box)

Extremum Seeking

Controller

Assumption 1:

- Q(.,p) has an extremum (max)

- Q(.,.) is known; p is unknowny=Q(u;p) yu _x = f (x;u;p)

y = h(x;p)Dynamic case:

Problem:

Design ESC so that limsupt! 1 jy(t) ¡ y¤j ¼0

y¤ := Q(u¤;p) ¸ Q(u;p); 8u

9 (̀¢;p) ) 0 = f ( (̀u);u;p)

Q(u;p) := h( (̀u;p);p)

Assumption: u(t) ´ ¹u =) y(t) ! Q(¹u;p)

Page 39: Extremum seeking control

Systematic design(parameter estimation)

D. Nešić, A. Mohamadi and C. Manzie, “A unifying approach to extremum seeking:adaptive schemes based on parameter estimation”, IEEE Conf. Dec. Contr. 2010.

Page 40: Extremum seeking control

Extremum seeking (online)

yu= µ+asin(t)

• Inputs & outputs available

• p is unknown

y=Q(u;p)

_µ= ²F (DN (µ; p̂))

limsupt! 1 jµ(t) ¡ u¤j ¼0

p̂Parameterestimator

asin(t)

+

• a, !L, ² are controller parameters

Page 41: Extremum seeking control

Comments

Similar systematic framework in this case. Similar convergence analysis holds. Classical adaptive parameter estimation

schemes can be used. Dynamic plants dealt with in the same way. Persistence of excitation is crucial for

convergence. Tradeoffs between domain of attraction,

accuracy and convergence speed.

Page 42: Extremum seeking control

Example

Consider the static plant:

We used the continuous Newton method.

Classical parameter estimation used.

Values p1=9 and p2=8 used in simulations.

y= u21+p1u1+p2u22

Page 43: Extremum seeking control

Simulations

Performance output Control inputs Parameters

Page 44: Extremum seeking control

Final remarks

Several tradeoffs exist; convergence slow. Many degrees of freedom: dither shape,

controller parameters, optimization algorithm, estimators.

Some global convergence results available (similar to simulated annealing).

Page 45: Extremum seeking control

Summary

A systematic design framework presented for two classes of adaptive control schemes.

Precise convergence analysis provided. Controller tuning and various tradeoffs

understood well. Applicable to a range of engineering and non-

engineering fields.

Page 46: Extremum seeking control

Future directions

Tradeoffs: convergence speed, domain of attraction and accuracy.

Various extensions: non-compact sets, global results, non-smooth systems, multi-valued cost functions.

Schemes robust although no formal proofs. Tailor the tools to specific problems. Exciting research area.

Page 47: Extremum seeking control

Thank you!