Extended Abstract 48803

download Extended Abstract 48803

of 10

Transcript of Extended Abstract 48803

  • 7/29/2019 Extended Abstract 48803

    1/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    Physical Modelling of an Artificial Surf Reef in S. Pedrodo Estoril.

    D. F. Antunes

    Eng. Mecnica

    Instituto Superior Tcnico,

    1049-001 Lisboa, Portugal

    [email protected]

    ABSTRACT:

    In one of the tanks with beaters for waves of the LNEC, a reduced scale physical model with

    30mx30m, was built for the study of the sea agitation in an artificial surf reef . The model reproduces

    the bathymetry of the place, the topography of costal cliffs, and also the reef drawing.

    The objective is to test the reef drawing in the physical model, in order to optimize it according to the

    respective drawing parameters. It also intends to secure that the physical model is loyal to the

    agitation in the place, since the model will be an object of a public consultation in the context of the

    evaluation process of the environmental impact.

    This physical model culminates one year of data and numerical studies gathering on the reef model,

    including the establishment of the climatology, the waviness in the place, and the test of several reef

    drawings. The drawing introduced in the model is the one, that according to the numerical

    simulations, produces better quality waves for the surf practice. For this, it will be necessary to measure the wave

    quality with 5 parameters: - speed of the wave (peel angle), - form of the tube (Number of Irribarren), - wave height, -

    wall (ramp for manoeuvres), - wave quality and regularity along the reef. The wave parameters will be valued for each

    series of per-specified conditions, of the wave height , of the tide height, of the incident angle of the waviness and of the

    wave period, being enough for the analysis to study monochromatic waves. These 5 parameters will also be compared

    with the measurements effectuated in the LNEC waves tank.

    Key words: Surf Parameters, Peel Angle, Evaluation, Wave Quality Evaluation methodology, Distortion, Perspective

    geometry, Coordinate transformation, Unit to score conversion, Photogrammetry.

    1.Introduction.

    This theory main subject is the Physical Modelling of

    an artificial surf reef, in So Pedro do Estoril, Portugal.

    This work intends to study the quality of the sea

    agitation on an artificial reef using the physical existent

    model in the National Laboratory of Civil Engineering

    (L.N.E.C.), located in Lisbon, Portugal. This project is

    financially supported by the Cascais Town Hall.

    Figure 1-S. Pedro ASR Perfect Wave in the wave tank during a test on the LNEC, in Lisbon, Portugal

    mailto:[email protected]:[email protected]
  • 7/29/2019 Extended Abstract 48803

    2/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    2. Application in the Main Project.

    A protocol amongst the CMC, LNEC, IST and FCUL

    was signed on the 16th

    of November of 2006, in order

    to provide S. Pedro do Estoril, a 300m long World

    Class Wave, using big solid rock blocks as raw

    Material. This Theory intends to study the results onthe best waves to Surf in the S. Pedro ASR, according

    to the tests[ made in L.N.E.C.

    3. Product Development and

    Entrepreneurship (PDE).

    As an Introduction to the central subject of this theory,

    a theoretical base is presented, as well as the framing

    of this dissertation in the extend of the PDEsubject. A

    Study was taken based on the perspective of the ASR

    seen as a Product, and the Costumer explicit and

    hidden needs were identified.

    This study contains the enormous set of entities who

    directly and indirectly exist and are rising up in the surf

    Market. If all of these entities are gathered, they

    actually make part of a important piece in the

    Economy.

    Figure 2- Indirect users on an ASR.

    Is S. Pedro a good Spot for the implementation of

    an ASR?

    The answer lies on this PDE study, and is based on

    the fact that this coast band is very consistent in terms

    of swell, and has a favourable geographical disposal

    but the main problem lies on the crowd. The need of aWorld Class wave in this spot is also an important

    need.

    The big amount of medium quality waves is shown in

    Figure3.

    Figure 3- Big amount of Surf Spots in the Estoril Coast region

    This Sport is Booming, and this statement taken from

    the EUROSIMA after an Inquiry to a set of young

    persons, aged between 15 and 25 year Old, about

    the next Sport to try, 90% answered SURF confirms it.

    The Relation between the good and bad aspects about

    the existing waves is shown in the next diagram.

    Figure 4- Good versus Bad aspects on the existing waves.

    The set of needs is shown in the following diagram:

    Figure 5- Explicit and Hidden needs on S. Pedro ASR.

    Since the origins of Man History, Sports have a very

    important paper in the Society, and giant support

    ASR

    A.Surf

    Session

    Management

    Whats GOODabout the

    existent Waves?

    Whats BADabout the

    existent Waves?

    Explicit Needs Hidden Needs

    -To protect the Costal Belt.

    -Overcoming the Crowd.

    -The need of a World ClassWave.

    -The spot needs an interactiveattraction.

    -Develop the spot maintainingits natural Beauty and

    environment.

    -Development of the Fauna and Floraon this lifeless spot .

    -Its a great way to suppot the Sports, motto of the Cascais Town Hall.

    -Its a way to show up Portugals

    creative and Techneological Spirit .-Makes of this Spot a Potential

    investments centre.

    -Strong Turistic Attractive. To pointout places that were developed on an

    exemplary form thanks to have aWorld class wave:In Portugal

    (Peniche, Sagres and Ericeira) andalso in the rest of the World

    (Mundaka in the Basque Country,Kirra in the Australian Gold Coast,J.Bay in South Africa, and also the

    Landaise Region in France)

  • 7/29/2019 Extended Abstract 48803

    3/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    infrastructures were created in order to improve its

    quality.

    The surf problem is based on its extreme dependency

    on Natural conditions, such as the Waves, the Wind,

    and for last, a factor where Human intervention is

    Possible the, the Bathymetry.If Human intervention is possible, to improve the

    bottoms of the sea, the creation of an artificial Surf

    Reef, is a project that reduces the dependency of the

    natural conditions for a Sport, and therefore can be

    compared to the construction of a Football stadium.

    In order to understand the ASR, and having theoretical

    basis of the variables on demand, a short description

    is done about what is the surf and the ASRs, as well

    as the several ways to take advantage and enjoying

    playfully and economically the ASRs.

    The main activities taken on an ASR are several such

    as:

    -Bodysurf

    -Bodyboard

    -Kneeboard-

    -Kayaksurf

    -Windsurf

    -Longboard

    -Paddlesurf

    -Shortboard

    -Tow in

    -Spearfishing

    -Snorkeling.

    -Fishing

    There is also given a little of the surf and ASRs

    historical framing, which points to the fishing ASR in

    the Algarve, on the south region of Portugal, as well

    as the first ASRs in the world, used in the Punic war by

    the Romans for costal territorial defence.

    4. The Physical Model:

    In this chapter, here is let know the physical model, his

    functioning, as well as aspects that might bring him

    eventually improvements.

    It is set in the LNEC, and was built in a 1:30 Scale. In

    this model it is possible to control the tides, and the

    wave beater can produce waves from 1 to 4 meters,

    and Wave period of 11, 15 and 19 seconds.

    The tests equipments are mainly:

    Figure 3-A-Hydraulic wave Beater; B-Wave Height sensors;

    C-Plate and guides set:

    The two plates were assembled in order to eliminate

    major wave diffraction.

    The reef is 6,66m long, 1,33m wide, and has a 4,3

    slope.

    Figure 6- Reef dimensions.

    The entire set can reproduce swell from two directions,

    but the reef is located on a 30 peel angle and is

    positioned always in this position.

    The top view of the entire set is show in Figure 4

    Figure 7- Total set top view and wave beater disposals.

  • 7/29/2019 Extended Abstract 48803

    4/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    5. Technical Procedure:

    The technical data is obtained photographically, and

    also from the control Tower, connected to the wave

    height sensors and wave beaters.

    The investigators chose a spot over the reef on aladder, and take sequential pictures over the different

    test as shown in Figure 5. A video Camera is also

    recording the whole tests, for subsequent reviews.

    Figure 8- Investigators physical disposal.

    The collected data is later analysed and treated

    according to a theoretical evaluation method for the

    various tests.

    6. The theoretical Evaluation Method

    MTMAQO:

    According to this evaluation method, there were

    created evaluation parameters, described, scheduled,

    and valued in the form to be able to be quantified.

    Therefore was created an analysis mechanism for the

    parameters obtained experimentally. This mechanism,

    was created by the author, whom it allows through a

    quality evaluation theoretical model, to obtain a wave

    quality quantification.

    This model is called by Theoretical Model of wave

    quality Evaluation Mechanism and its Portuguese

    minor name is MTMAQO.

    In a first phase of the model MTMAQO application, it

    is possible to obtain an evaluation, based on the

    conjugation of several evaluated parameters. Theselevel one parameters are in this ASR specific case, 11

    surf Parameters. The collected data analysis, sets on

    converting measured parameter values into parameter

    SCORES on each test.

    So, the first step on the MTMAQO, is to convert the

    values of the parameters into SCORES. The SCORE

    has a 0 to 10 Scale of importance.

    In a more advanced phase application of the

    theoretical model, the several SCORE parameters, are

    valued to a specific Level two evaluation. The

    importance of each level one parameter is set on a

    table, and a conjugated SCORE is obtained according

    to the importance weight of each level one parameter

    SCORE. in the second phase, a Specific subject

    evaluation is defined.

    On the same basis, and managing, the several level

    two evaluations, the importance weight of each, is set,and on a conjugation of these level two evaluations, a

    level tree evaluation is obtained, in a way that

    translates the final quality of the wave

    On this last application of study, there are presented

    analogies to several levels of evaluation of the model,

    that all combined in the end, provide a final Evaluation

    for waves produced on the tests as shown on Figure 6.

    Figure 9- The MTMAQO evaluation Pyramid. Level one, twoand three.

    7. Level One Surf Parameters:

    Several problems show up when intending to SCORE

    the eleven level one parameters.

    -PA: Peel Angle, is the angle between the wave line

    and the foam line. It sets the speed of the wave.

    Figure 10- Variable peel Angles in a Natural Surf Reef , inGland, Indonesia.

    -TUBO: Tube, It provides an evaluation of the tube

    type.

    -HEIGHT or H: Provides the height of the wave

    Figure 11- Measuring Wave height

    http://coconutgirlwireless.files.wordpress.com/2007/08/wave-height.gif
  • 7/29/2019 Extended Abstract 48803

    5/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    -WALL: Means the available surface for manoeuvres.

    -Q&R: It provides a measurement of the wave Quality

    and Regularity along the ASR.

    -BW: Back Wash, is a wave collision phenomenal.

    -CF: Collision on the reef. This parameter presents the

    danger of crashing.-START: It represents the beginning of the wave, and

    the difficulty on the drop.

    -MOVE: It describes the comfort and mobility inside

    the surf spot.

    -P. Wave Period, is the time gap between two waves.

    -TIDE: The tide has effects on the waves

    8.Data Analysis:

    8.1 Unit to SCORE conversion

    The results obtained from the tests, hold, the

    respective physical units, namely HEIGHT in meter

    and PA in degrees.

    In order to be able to attribute these parameters an

    evaluation (SCORE) on a 0 to 10 scale, it is necessary

    to convert his physical unity (UNIT) value into the

    SCORE scale, and this way it is possible to use the

    MTMQAO.

    This conversion method, consists in expressing a

    function, which defines a value of classification

    (SCORE), on basis of the value of the physicist (UNIT)

    unity. Therefore:

    SCORE=f(unit) [eq.1]

    with the intention of obtaining the conversion function

    f, the method of the polynomial interpolation is used

    on basis of some reference values. These reference

    values, are initially defined by the maximum physical

    unity of note SCORE=10, the minimum value

    SCORE=0, as well as the limit for acceptable value

    SCORE=5.

    Afterwards, other intermediate values, are defined to

    translate a more refined behaviour of the function.

    Depending on the values, so can be possible to define

    the conversion in one single polynomial function, or a

    on a set of functions divided by regions defined by as

    many interpolation polynomial of ordern as possible,

    depending on the values. A graphical display is carried

    out with polynomial functions, and an analogical

    SCORE function is obtained.

    8.1.1 HEIGHT SCORE

    For the height score, a single polynomial Function isenough to define the behaviour of this unit conversion.

    The reference values are:

    - Maximum SCORE=10, H=3 m, this value is

    attributed on basis of the initial objective, in what it

    takes this ASR objective on the production of a World

    Class Wave, in which the ideal size for professional

    surfers is 3 m high waves.- Minimum SCORE=0, H=0m logically, as there are

    no waves, the classification is null.

    - Acceptable limit SCORE=5, H=0,5m the least size

    in order to exist the minimum conditions for the

    practice of this surf sports is the half meter.

    Adding some more values to improve the function

    behaviour, a values table is obtained, and the

    interpolation is taken on the basis of this values as

    show in the following Table1 and Figure 7.

    Table 1- HEIGHT reference and function SCORES.

    Figure 12- Wave HEIGHT Score plot.

    According to this results, the order 5 polynomial

    Function obtained for Wave HEIGHT SCORE is:

    F(H)=SCORE= 0,0487(H)5 - 0,6591(H)4 + 3,3812(H)3- 9,2585(H)2 + 14,677(H) - 0,9725 [eq. 2]

    8.1.2 PA SCORE.

    The same reasoning is taken upon the peel angle, but

    this function has a more variable behaviour, what

    makes it a function divided by 3 polynomial functions.

    - Maximum SCORE=10, PA=30 this value was

    attributed on basis of the ASR objective: the

    construction of a world class Wave, in which the ideal

    angle for professional surfers is of 30 , and is also the

    limit angle. Below this value it is very hard to surf.

    H, Altura da onda real

    (m)

    SCORE atribudo

    (0 a 10)

    SCORE dado pela

    funo aproximada f(H)

    SCORE =

    erro mximo

    0 0 -0,97 0,97

    0,1 0,1 0,41 0,31

    0,2 0,5 1,62 1,12

    0,3 2 2,68 0,68

    0,4 4 3,62 0,38

    0,5 5 4,43 0,57

    1 7,8 7,22 0,58

    1,5 8,5 8,66 0,16

    2 9 9,41 0,41

    2,5 9,5 9,70 0,20

    3 10 9,47 0,53

    4 7 7,14 0,14

    5 4 3,85 0,15

    1,12

  • 7/29/2019 Extended Abstract 48803

    6/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    - Minimum SCORE=0, PA=0 logically, if the wave

    bursts all at the same time, the classification is null.

    - Acceptable limit SCORE=5, PA=60 the acceptable

    is 60 , since for more than that the wave becomes

    very slow.

    The reference Values, as well as the 3 function plots,are shown on Table 2 and Figure 8.

    Table 2- PA reference and function SCORES.

    Figure 13- PA SCORE plot.

    According to this results, the 3 polynomial Functions

    obtained for Peel Angle PA is:

    SCORE=f1(PA) if 23>PA>0 ,

    SCORE=f2(PA) if 30>PA>23 ,

    SCORE=f3(PA) if 30>PA>90

    f(PA)=

    f1(PA)= 0,0012*(PA)^2 - 0,0126*(PA) + 0,1053

    if 23>PA>0

    f2(PA)=(-0,0378*(PA)^3)+(3,1691*(PA) 2)-

    (86,54*(PA)+774,38 if 30>PA>23

    f3(PA) = (0,0015*(PA) 2)-0,3561*(PA) +19,675)

    if 30>PA>90 [eq.3]

    8.2 Importance of each parameter on the Level two

    evaluation.

    In this level two evaluation, there was given a specific

    evaluation for the:

    -Security S

    -Beginner surfer level NA

    -Regular surfer level NM

    -Professional surfer level NP

    -Visual Impact an Touristic investment potential POT

    In order to provide a level two SCORE, weights are

    attributed to each parameter, with the intention of

    gather the influence of each level one parameter on

    the level two evaluation. This weights were attributed

    by the author, but the MTMAQO, has flexibility, for any

    investigator values attribution.The Values, and equation for each level two

    evaluation are shown in Tables 3, 4, 5, 6 and 7.

    Table 3- Security analysis.

    S=((10-PA)*0,1)+((10-TUBO)*0,1)+((10-HEIGHT)*0,12)+((10-WALL)*0,05)+Q&R*0,05)

    +(BW*0,07)+(CF*0,19)+(START*0,1)+(MOVE*0,05)+(P*0,02)+(TIDE*0,15) [eq.4]

    Table 4- Learning level analysis.

    NA=((10-PA)*0,05)+((10-TUBO)*0,2)+((10-HEIGHT)*0,13)+((10-WALL)*0,1+(Q&R*0,1)

    +(BW*0,05)+(CF*0,1)+(START*0,15)+(MOVE*0,05)+(P*0,02)+(TIDE*0,05) [eq.5]

    Table 5- Professional level analysis.

    NP=(PA*0,15)+(TUBO*0,25)+(HEIGHT*0,21)+(WALL*0,1)+(Q&R*0,08)+(BW*0,02)+

    (CF*0,05)+(START*0,02)+(MOVE*0,02)+(P*0,05)+(TIDE*0,05) [eq. 6]

    Table 6- Medium level analysisThis table contains averagevalues on tables 4 and 5.

    NM=(PA*0,1)+(TUBO*0,225)+(HEIGHT*0,17)+(WALL*0,1)+(Q&R*0,09)+(BW*0,035)+

    (CF*0,075)+(START*0,085)+(MOVE*0,035)+(P*0,035)+(TIDE*0,05) [eq.7]

    Peel Angle ( )

    SCORE atribudo

    (0 a 10)

    SCORE dado pela funo

    aproximada f(PA)

    score = erro

    mximo

    0 0,1 -0,013 0,087

    10 0,12 0,107 0,013

    15 0,2 0,257 0,057

    20 0,3 0,467 0,167

    23 0,5 0,501 0,001

    24 0,8 0,274 0,526

    25 1 0,942 0,058

    28 6 6,049 0,049

    29 9 8,029 0,971

    30 10 10,342 0,342

    35 9 9,049 0,049

    40 8 7,831 0,169

    50 6 5,620 0,380

    60 5 3,709 1,291

    65 2 2,866 0,866

    70 1 2,098 1,098

    90 0,1 -0,224 0,124

    y = 0,0012x2 -

    0,0126x + 0,1053

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0 10 20 30

    y = -0,0378x3 + 3,1691x2 -

    86,546x + 774,38

    0

    2

    4

    6

    8

    10

    12

    0 20 40

    y = 0,0015x2 - 0,3561x

    + 19,675

    -2

    0

    2

    4

    6

    8

    10

    12

    0 50 100

    Weight %

    1 10-PA 0,10 10,00

    2 10-TUBO 0,10 10,00

    3 10-HEIGHT 0,12 12,00

    4 10-WALL 0,05 5,00

    5 Q&R 0,05 5,00

    6 BW 0,07 7,00

    7 10-CF 0,19 19,00

    8 START 0,10 10,00

    9 MOVE 0,05 5,00

    10 P 0,02 2,00

    11 10-TIDE 0,15 15,00

    SUM= 1,00 100,00

    Quality on Security

    weight %

    1 10-PA 0,05 5

    2 10-TUBO 0,2 20

    3 10-HEIGHT 0,13 13

    4 10-WALL 0,1 10

    5 Q&R 0,1 10

    6 BW 0,05 5

    7 CF 0,1 10

    8 START 0,15 15

    9 MOVE 0,05 5

    10 P 0,02 2

    11 10-TIDE 0,05 5

    SUM= 1,00 100

    Quality level Aprendizagem

    Weight %

    1 PA 0,15 15

    2 TUBO 0,25 25

    3 HEIGHT 0,21 21

    4 WALL 0,1 10

    5 Q&R 0,08 8

    6 BW 0,02 2

    7 CF 0,05 5

    8 START 0,02 2

    9 MOVE 0,02 2

    10 P 0,05 5

    11 TIDE 0,05 5

    SUM= 1,00 100

    Quality level Profissional

    Weight %

    1 PA 0,225 22,5

    2 TUBO 0,17 17

    3 HEIGHT 0,1 10

    4 WALL 0,09 9

    5 Q&R 0,035 3,5

    6 BW 0,075 7,5

    7 CF 0,085 8,5

    8 START 0,035 3,5

    9 MOVE 0,035 3,5

    10 P 0,05 5

    11 TIDE 1 100

    SUM= 1,90 190

    Quality level Mdio

  • 7/29/2019 Extended Abstract 48803

    7/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    Table 7- POT analysis.

    POT=(PA*0,02)+(TUBO*0,18)+(HEIGHT*0,2)+(WALL*0,12)+(Q&R*0,3)+(BW*0,02)+

    (CF*0,02)+(START*0,02)+(MOVE*0,02)+(P*0,05)+(TIDE*0,05) [eq. 8]

    8.3 RAW analysis

    The values on this last 5 tables are used to a Raw

    evaluation. It is also important to point out the fact

    that, this last table7, as well as all the other four, have

    been characterized by parameter weights stipulated by

    the author, to make the Raw evaluation, where it is

    reasonable to use this values, but in a more refined

    evaluation, this values will change, for improvement.

    This raw evaluation, was made to both wave directions

    of220, and 235, and provides good results as shown

    in Tables 8 and 9.

    The results were very similar for both wave direction,and those are show, in the following plots.

    On the 220 RAW analysis, the 3 best wave SCOREs

    obtained per major order were:

    1st 220 MB 19 2

    2nd

    220 MB 11 2

    3rd

    220 MB 15 1

    On the 235 RAW analysis, the 3 best wave SCOREs

    obtained per major order were the same as in the 220

    analysis.

    Table 8- Raw evaluation values for 220.

    Table 9- Raw evaluation values for 235.

    Weight %

    1 PA 0,02 2

    2 TUBO 0,18 18

    3 HEIGHT 0,2 20

    4 WALL 0,12 12

    5 Q&R 0,3 30

    6 BW 0,02 2

    7 CF 0,02 2

    8 START 0,02 2

    9 MOVE 0,02 2

    10 P 0,05 5

    11 TIDE 0,05 5

    SUM= 1,00 100

    Quality leve l POT

    NIVEL 1

    Segurana

    Qualidade

    Aprendizagem

    Qualidade

    Profissional

    Qualidade nivel

    Mdio

    Qualidade a nivel de

    impacto Visual

    Qualidade

    Final

    1 2 3 4 5 6 7 8 9 10 11

    N Mar condio PERIODO ALTURA PA TUBO HEIGHT WALL Q&R BW CF START MOVE P TIDE SCORE

    1 MB 11 1 1 10 6 6 7,5 9,5 10 7 5 9 7 8 4,14 5,16 7,35 7,235 7,6 6,297

    2 MB 11 2 2 10 8 7 8 9,5 10 6,7 7 8,5 7 8 4,027 4,825 8,125 8,035 8,244 6,6512

    3 MB 11 3 3 10 6 8 8,5 7 10 6,7 8 7 7 8 3,982 4,87 7,675 7,6125 7,384 6,3047

    4 MB 11 4 4 10 1 8,5 6,5 5,5 10 6 8,3 6 7 8 4,56 5,78 6,161 6,1755 5,866 5,7085

    5 MB 15 1 1 10 9 6 8 9 10 6 6 9 8 8 4,1 4,53 8,13 7,96 8,1 6,564

    6 MB 15 2 2 10 8 7 8 8,5 10 6,3 7 8 8 8 4,048 4,68 8,065 7,9325 7,976 6,5403

    7 MB 15 3 3 10 1 8 2 1,5 10 6 6 7 8 8 4,485 5,62 5,31 5,155 4,05 4,924

    8 MB 19 1 1 10 9 6 7 ,5 9,5 10 6 5 8 ,7 9 8 4,055 4,485 8,144 7,8945 8,214 6,5585

    9 MB 19 2 2 10 8,5 7 8 9 10 6 7,5 8 9 8 4,15 4,695 8,275 8,145 8,27 6,707

    10 MB 19 3 3 10 6 8 7 ,5 7,5 10 6 9 ,5 7,8 9 8 4,42 5,255 7,726 7,7305 7,546 6,5355

    11 MM 11 1 1 0 0 0 0 0 0 0 10 10 7 7 7,69 7,09 1,1 1,795 1,1 3,755

    12 MM 11 2 2 10 6 7 1,5 3 10 7 7,2 9,4 7 7 4,385 5,38 6,442 6,371 5,132 5,542

    13 MM 11 3 3 10 3 8 6 2 10 7 3 6 7 7 3,7 4,5 6,12 5,75 4,88 4,99

    14 MM 11 4 4 10 2 8 2,5 1,5 10 7 6 4 7 7 4,15 5,35 5,5 5,315 4,15 4,893

    15 MM 15 1 1 0 0 0 0 0,5 10 0 10 10 8 7 8,435 7,66 1,39 2,225 1,5 4,242

    16 MM 15 2 2 10 2 7 5,5 5 10 7 7 7 8 7 4,565 5,85 6 5,985 5,49 5,578

    17 MM 15 3 3 10 3 8 6,5 4 10 7 6 6 8 7 4,095 5,12 6,44 6,27 5,65 5,515

    18 MM 15 4 4 10 1 8,5 1 1 10 7 4 4 8 7 4,06 5,305 5,175 4,845 3,75 4,627

    19 MM 19 1 1 10 0 6 0,5 0 10 7 9,8 9,8 9 7 5,325 6,96 4,552 4,786 2,992 4,923

    20 MM 19 2 2 10 2 7 3 1 10 7 6 8,8 9 7 4,5 5,66 5,496 5,388 4,056 5,02

    21 MM 19 3 3 10 4 8 5,5 5,5 10 7 5 6 9 7 4,04 5,04 6,74 6,48 6,19 5,698

    22 MM 19 4 4 10 6 8,5 7 6,5 10 7 6,5 5,8 9 7 3,895 4,74 7,601 7,3755 7,156 6,1535

    23 MC 11 1 1 10 0 0 0 0 10 8 10 10 7 6 6,02 7,94 3,15 3,695 1,61 4,483

    24 MC 11 2 2 10 1 7 0,5 0,5 10 8 9,7 9,7 7 6 5,035 6,77 4,948 5,169 3,388 5,062

    25 MC 11 3 3 10 2 8 3 5,5 10 8 7 7 7 6 4,535 6,15 5,95 5,94 5,46 5,607

    26 MC 11 4 4 10 5 8 6 5 10 8 8 4 7 6 4,01 5,2 6,92 6,85 6,17 5,83

    27 MC 15 1 1 10 0 0,5 0,5 0 10 8 10 10 8 6 5,955 7,845 3,355 3,865 1,82 4,568

    28 MC 15 2 2 10 5 7 2,5 6,5 10 8 9,3 9,3 8 6 4,795 6,31 6,662 6,796 6,182 6,149

    29 MC 15 3 3 10 4 8 1,5 2 10 8 8,4 7 8 6 4,395 5,78 6,098 6,079 4,668 5,404

    30 MC 15 4 4 10 0 8 0 0,5 10 8 6 4 8 6 4,405 6,07 4,72 4,585 3,21 4,598

    31 MC 19 1 1 10 0 0 0 0 10 0 10 10 9 6 7,58 7,18 2,85 3,165 1,55 4,465

    32 MC 19 2 2 10 2 4 2 0,5 10 8 8,5 7,5 9 6 5,03 6,56 4,75 4,925 3,18 4,889

    33 MC 19 3 3 10 7 8 5 7,5 10 8 9 7,3 9 6 4,29 5,505 7,706 7,6955 7,346 6,5085

    34 MC 19 4 4 10 7 8,1 6 7 10 8 9,2 7 9 6 4,208 5,357 7,785 7,774 7,334 6,4916

    19

    11

    ANEXO V /1.1

    Direco 220

    15

    NIVEL 2

    MEIA

    CHEIA

    NIVEL 3

    SECUNDARIOS

    BAIXA

    19

    11

    15

    19

    PRINCIPAIS

    11

    15

    NIVEL 1

    Segurana

    Qualidade

    Aprendizagem

    Qualidade

    Profissional

    Qualidade nivel

    Mdio

    Qualidade a nivel de

    impacto Visual

    Qualidade

    Final

    1 2 3 4 5 6 7 8 9 10 11

    N Mar condio PERIODO ALTURA PA TUBO HEIGHT WALL Q&R BW CF START MOVE P TIDE SCORE

    1 MB 11 1 1 10 6 6 7 ,5 9,5 10 6,7 5,5 9,2 7 8 4,257 5,215 7,349 7,262 7,608 6,3382

    2 MB 11 2 2 10 8 7 8 9,5 10 6,5 7,5 8,7 7 8 4,125 4,89 8,129 8,0695 8,254 6,6935

    3 MB 11 3 3 10 6 8 8,5 7 10 6,4 8,5 7,2 7 8 4,099 4,925 7,674 7,6395 7,392 6,3459

    4 MB 15 1 1 10 9 6 8 9 10 5,7 6,5 9 8 8 4,207 4,575 8,125 7,98 8,104 6,5982

    5 MB 15 2 2 10 8 7 8 8,5 10 6,1 7,5 8,3 8 8 4,151 4,75 8,071 7,9705 7,988 6,5861

    6 MB 15 3 3 10 1 8 2 1,5 10 5,8 6,4 7 8 8 4,563 5,66 5,308 5,174 4,054 4,9518

    7 MB 19 1 1 10 9 6 7,5 9,5 10 5,7 5,5 8,8 9 8 4,167 4,535 8,141 7,918 8,22 6,5962

    8 MB 19 2 2 10 8,5 7 8 9 10 5,8 8 8,5 9 8 4,263 4,775 8,285 8,19 8,286 6,7598

    9 MB 19 3 3 10 6 8 7,5 7,5 10 5,7 10 8 9 8 4,537 5,31 7,725 7,7575 7,554 6,5767

    10 MM 11 1 1 10 8 0 0 0 0 0 10 10 7 7 5,89 4,99 4,6 4,595 2,74 4,563

    11 MM 11 2 2 10 1 7 1,5 3 10 6,8 7,7 9,6 7 7 4,983 6,445 5,196 5,2805 4,242 5,2293

    12 MM 11 3 3 10 3 8 6 2 10 6,7 3,5 6,2 7 7 3,817 4,555 6,119 5,777 4,888 5,0312

    13 MM 15 2 2 10 2 7 5,5 5 10 6,8 7,5 7,3 8 7 4,668 5,92 6,006 6,023 5,502 5,6238

    14 MM 15 3 3 10 3 8 6,5 4 10 6,7 6,5 6,1 8 7 4,207 5,17 6,437 6,2935 5,656 5,5527

    15 MM 19 1 1 10 0 6 0,5 0 10 6,7 10 10 9 7 5,412 6,97 4,545 4,7875 2,994 4,9417

    16 MM 19 2 2 10 2 7 3 1 10 6,8 6,5 9 9 7 4,598 5,725 5,5 5,4225 4,066 5,0623

    17 MM 19 3 3 10 4 8 5 ,5 5,5 10 6,7 5,5 6,2 9 7 4,157 5,095 6,739 6,507 6,198 5,7392

    18 MM 19 4 4 10 0 0 0 0 0 0 0 0 0 0 6,1 4,8 1,5 1 0,2 2,72

    MEIA

    11

    15

    19

    ANEXO V 2.1

    NIVEL 3

    PRINCIPAIS SECUNDARIOS

    BAIXA

    11

    Direco 235

    15

    19

    NIVEL 2

  • 7/29/2019 Extended Abstract 48803

    8/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    Figure 14- Plots for RAW SCOREs in 220 and 235.

    8.4 REFINED Analysis

    This analysis intends to improve the results obtained

    on the RAW analysis, and the difference between both

    analysis, relays on the scientific and carefully

    measured data and posterior conversion for the PA

    and HEIGHT SCOREs as shown in section 8.1

    8.4.1 POT improvement:

    Another improvement lays on inquiries made to all

    types of potential tourists, and with the gathered

    information acquired in the inquiry, a new table was

    set, and the data on Table 7 was upgraded to a more

    realist evaluation as shown on Table 10.

    Table 10- Weights according to POT inquiries.

    Quality for POT Weight %

    1 TUBO 2,175793 21,75793

    2 ALTURA 1,988473 19,88473

    3 PAREDE 2,161383 21,61383

    4 Q&R 2,04611 20,4611

    5 MAR 1,628242 16,28242

    SUM= 10,00 100

    This Table was obtained by the average on the 18

    realized enquiries.

    For this Refined analysis, before making the

    Parameters SCORE conversion, it has been

    necessary to gather values from the tests data, the

    values of HEIGHT and PA.

    8.4.2 HEIGHT improvement: This values were

    specially analysed separately, and for the wave

    HEIGHT, the Procedure included the wave height

    sensors plots on each test, as shown in Figure

    Figure 15- Wave height plot for the 220 MB 11 2 test.

    A line was plotted over the major wave height values,

    and the average value of the wave along these point

    was considered the HEIGHT to use in SCORE=

    F(HEIGHT) in order to obtain the respective SCORE

    for this test. This procedure was made to all the tests,

    and this way, the HEIGHT SCORES were inserted on

    the REFINED analysis table.

    8.4.3 PA improvement and the Distortion Problem:

    For the Peel Angle, a big problem occurred when

    measuring the angle from the sequential top view

    pictures taken during the tests. This problem is the

    MB 11 1

    MB 11 2

    MB 11 3

    MB 11 4

    MB 15 1

    MB 15 2

    MB 15 3

    MB 19 1

    MB 19 2

    MB 19 3MM 11 1

    MM 11 2

    MM 11 3

    MM 11 4

    MM 15 1

    MM 15 2

    MM 15 3

    MM 15 4

    MM 19 1

    MM 19 2

    MM 19 3

    MM 19 4

    MC 11 1

    MC 11 2

    MC 11 3

    MC 11 4

    MC 15 1

    MC 15 2

    MC 15 3

    MC 15 4

    MC 19 1

    MC 19 2

    MC 19 3

    MC 19 4

    6,297

    6,6512

    6,3047

    5,7085

    6,564

    6,5403

    4,924

    6,5585

    6,707

    6,53553,755

    5,542

    4,99

    4,893

    4,242

    5,578

    5,515

    4,627

    4,923

    5,02

    5,698

    6,1535

    4,483

    5,062

    5,607

    5,83

    4,568

    6,149

    5,404

    4,598

    4,465

    4,889

    6,5085

    6,4916

    RAW WAVE SCORE 220

    anexo V/ 1.2

    MB 11 1

    MB 11 2

    MB 11 3

    MB 15 1

    MB 15 2

    MB 15 3

    MB 19 1

    MB 19 2

    MB 19 3

    MM 11 1

    MM 11 2

    MM 11 3

    MM 15 2

    MM 15 3

    MM 19 1

    MM 19 2

    MM 19 3

    MM 19 4

    6,3382

    6,6935

    6,3459

    6,5982

    6,5861

    4,9518

    6,5962

    6,7598

    6,5767

    4,563

    5,2293

    5,0312

    5,6238

    5,5527

    4,9417

    5,0623

    5,7392

    2,72

    RAW SCORE 235

    anexo V/2.2

    Hreal_Mdia 1.92

  • 7/29/2019 Extended Abstract 48803

    9/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    pictures Distortion and so a Photogrammetry study

    was made, and the author overcome this situation.

    Although the problem has been solved, it is a very

    complicated and extremely extensive. For each

    picture, a long term procedure takes action on a

    pictures reference geometry viewed on theAUTOCAD Software, and several algorithms in the

    MATHEMATICA Software are set to run, to obtain in

    the final Pell Angle.

    This Study begins by setting the chosen picture on the

    Autocad, defining a Picture coordinate system, and

    identify common points in the picture and in the REAL

    reference coordinate axis plot in Figure 13.

    Figure 16- REAL Reference, coordinate Axis.

    With a minimum of 4 identified common points on

    the (PX)REAL reference axis and on the

    (Px)Picture coordinate system, it is possible to

    determine any other Picture additional point real

    coordinate.

    Figure 17- Perspective Geometry.

    The method is based on the Bydimensional Invariance.

    Taking the values of the 4 point of each coordinate

    system, as well as the wanted point coordinates in Px,

    and inserting them into the algorithm based upon 2

    matrixes like the one on Figure 13 , the REAL

    coordinate of an extra unknown point is obtained.

    Figure 18- Equation Matrix to obtain extra point coordinate.

    Repeating the procedure for 3 points, and applying this

    3 point on a vector analysis algorithm, the obtained

    result is the REAL Peel Angle , as Show on the

    following example.

    Example on test 220 MB 15 1, Picture 264, and

    MATHEMATICA algorithm code.

    Figure 19- Test 220 MB 15 1, Picture 264.

    Determination in the REAL ref XY, point a ,Picture 264

    Solve[{f[mA,mB,mC,mD,mE,mF,mG,mH]=0,g[mI,mJ,mK,mL,mM,mN,mO,

    mP]=0},{Xu,Yu}]

    {{Xu=4.69282,Yu=3.58269}}

    Determination in the REAL ref XY, point b ,Picture 264

    Solve[{f[mA,mB,mC,mD,mE,mF,mG,mH]=0,g[mI,mJ,mK,mL,mM,mN,mO,

    mP]=0},{Xu,Yu}]

    {{Xu=6.70197,Yu=3.96482}}

    Determination in the REAL ref XY, point c ,Picture 264

    Solve[{f[mA,mB,mC,mD,mE,mF,mG,mH]=0,g[mI,mJ,mK,mL,mM,mN,mO,

    mP]=0},{Xu,Yu}]

    {{Xu=5.40452,Yu=3.08302}}

    Determination in the REAL ref XY, real PELL ANGLE, Picture 264

    {u}={u[XuA,YuA,XuB,YuB]}

    {{2.00915,0.382124}}

    {v}={v[XuB,YuB,XuC,YuC]}

    {{1.29745,0.881796}}

    "The angle Between the two lines is:"

    (180/Pi)*VectorAngle[u,v] ""

    The angle Between the two lines is:

    23.4328

    Clear [u,v]

    In this case the Pictures Peel Angle taken from

    AUTOCAD software is 28, and after eliminating the

    distortion, the REAL peel Angle taken from the

    MATHEMATICA algorithm, is 23.428. The results on

    the several long term distortion corrections obtained

    are disposed on Table 9.

  • 7/29/2019 Extended Abstract 48803

    10/10

    D.F.Antunes Physical Modelling of an Artificial Surf Reef in S. Pedro do Estoril

    September 2009

    Instituto Superior Tcnico | 1049-001 Lisboa, Portugal

    Table 9- PA results on distortion correction.

    After analysing the error results on these 7 pictures,

    the conclusion was that inside the 44-45-54-55

    Square on Figure 20, the distortion was minimal, and

    even so, the relative error on the distortion, was not

    that accentuated. Consequently, the Peel Angle data

    taken for the REFINED analysis can set values from

    this Square because it is the less affected by distortion

    Area. It is natural to understand this fact just by

    realizing that the investigator had take pictures mainly

    positioned over this area.

    The Results on this REFINED analysis are posted on

    Table 11, and Figure 20.

    9.Results.

    1st_220 MB 19 2_SCORE=6,776;

    2nd

    _220 MB 15 2_SCORE=6,743;

    3rd_220 MB 11 2_SCORE=6,661

    10. Conclusions

    It is very difficult to study a wave behaviour due to its

    chaotic blowing properties, but yet, it was possible,

    after defining the surf parameters and applying this

    theory to the S. Pedro ASR surf Model. The best

    results were obtained in the lowest tide and smallerwaves, due to the minor boundary conditions

    influence.

    The perfect angle for the ASR physical model would

    be between 35 to 40.

    11. References

    [1] Product Design and Development by Ulrich and Eppinger (2nd ed.,

    McGraw-Hill, 2000)

    [2] Edward M. Mikhail, James S. Bethel and J Chris McGlone..

    Introduction to Modern Photogrammetry, John Wiley and Sons, Inc., New

    York. Mar 2001.

    [3] Mota-Oliveira, I. Hidrulica martima. Ed. AEIST, Instituto Superior

    Tcnico, Lisboa. (1981).

    [4] P. Bicudo, Estudo Prvio da implementao de um recife artificial

    para a prtica de surf na praia de So Pedro do Estoril.

    [5] P. Bicudo, A Fisica Do Surf, Lisboa, 28 de Outubro de 2003.

    [6] P. Bicudo and A. Horta, Integrating Surfing in the Socio-economic

    and Morphology and Coastal Dynamic Impacts of the Environmental

    Evaluation of Coastal Projects, Journal of Coastal Research, Special

    Issue 56, 2009.

    Table 11- REFINED analysis Values for 220.

    Figure 20- REFINED SCOREs for 220 and the 44-45-54-55Square.

    Picture PA in Picture REAL PA PA

    77 40,00 : 40,58 : 0,58 :

    79 22,00 : 21,10 : 0,90 :

    245 19,00 : 17,65 : 1,35 :

    248 30,00 : 31,47 : 1,47 :

    264 28,00 : 23,43 : 4,57 :481 15,00 : 16,15 : 1,15 :

    512 25,00 : 28,58 : 3,58 :

    NIVEL 1

    Segurana

    Qualidade

    Aprendizagem

    Qualidade

    Profissional

    Qualidade

    nivel Mdio

    Qua idade a

    nivel de impacto

    Visual

    Qualidade

    Final

    1 2 3 4 5 6 7 8 9 10 11

    N Mar condio PERIODO

    HEIGHT

    criada

    pelo

    batedor

    HEIGHT

    REAL

    pelos

    sensores HEIGHT

    PA

    medido

    nas fotos

    SCORE PA

    terico

    SCORE

    de PA PA TUBO HEIGHT WALL Q&R BW CF START MOVE P TIDE SCORE

    1 MB 11 1 1 1,03 0,03 40 8, 5 0, 669 7 ,83 1 6 7 ,3 3 7 ,5 9 ,5 1 0 7 5 9 7 8 4, 19 70 80 439 5 ,09 53 121 42 7 ,30 43 342 31 7, 24 45 11 044 7, 630 818 78 5 6, 294 411 33

    2 MB 11 2 2 1,92 0,08 38 9 0, 6908 8 ,3092 8 9, 32 8 9, 5 10 6, 7 7 8, 5 7 8 3, 917395812 4, 60763213 8, 359077329 8, 2607226 8, 569858406 6,74293726

    3 MB 11 3 3 3,42 0,42 46 6 0 ,4 68 4 6, 46 84 6 8 ,8 0 8 ,5 7 1 0 6 ,7 8 7 7 8 4, 23 88 84 982 4 ,94 22 820 64 7 ,31 37 412 82 7, 39 57 29 609 7, 627 826 02 1 6, 303 692 79

    4 MB 11 4 4 3,88 0,12 62 2 1 ,3 62 8 3, 36 28 1 7 ,5 4 6 ,5 5 ,5 1 0 6 8, 3 6 7 8 5 ,3 38 73 425 6 ,23 64 587 71 4 ,96 41 450 62 5, 34 88 43 145 5, 550 043 22 8 5, 487 644 89

    5 MB 15 1 1 0,99 0,01 31 8, 2 1 ,8 77 4 10 ,0 77 9 7 ,1 8 8 9 1 0 6 6 9 8 8 3, 95 09 67 978 4 ,37 30 636 43 8 , 38 88 710 38 8, 16 79 03 697 8, 258 618 02 2 6, 627 884 88

    6 MB 15 2 2 2,76 0,76 39 7, 5 0 ,5 68 6 8, 06 86 8 9 ,6 5 8 8 ,5 1 0 6 ,3 7 8 8 8 3 ,92 31 087 4 ,43 20 360 92 8 ,33 18 447 74 8, 18 99 04 341 8, 430 447 76 5 6,66146833

    7 MB 15 3 3 3,48 0,48 6 0, 5 0 ,4 70 06 78 0, 02 99 1 8 ,6 7 2 1 ,5 1 0 6 6 7 8 8 5, 40 18 30 913 6 ,03 16 462 01 3 ,95 47 975 97 4, 27 15 75 698 3, 982 995 73 8 4, 728 569 23

    8 MB 19 1 1 1,24 0,24 32 8, 7 1 ,1 15 8 9 ,8 158 9 8 ,0 2 7 ,5 9 ,5 1 0 6 5 8 ,7 9 8 3, 83 07 43 482 4 ,23 13 104 38 8 ,54 10 539 07 8, 21 98 71 734 8, 420 854 59 7 6, 648 766 83

    9 MB 19 2 2 2,86 0,86 46 8, 4 1 ,9 31 6 6, 46 84 8 ,5 9 ,5 9 8 9 1 0 6 7, 5 8 9 8 4, 19 20 41 432 4 ,53 45 348 85 8 , 28 97 174 93 8, 23 25 91 304 8, 630 088 01 5 6,77579463

    10 MB 19 3 3 4,59 1,59 24 6 5 ,7 25 6 0 ,2 744 6 4 ,9 7 7 ,5 7 ,5 1 0 6 9, 5 7 ,8 9 8 5, 75 57 02 735 6, 134 684 63 5 ,63 16 602 14 6, 24 34 87 792 6, 752 711 55 5 6, 103 649 39

    12 MM 11 2 2 1,74 0,26 33 2,8 6 ,7572 9,5572 1 9 ,08 1 ,5 3 10 7 7 ,2 9 ,4 7 7 4 ,679454607 6 ,131495824 5 ,562774438 5 ,555639307 4 ,101291549 5 ,20613115

    13 MM 11 3 3 3,37 0,37 38 2, 6 5 ,7 09 2 8, 30 92 3 8 ,9 1 6 2 1 0 7 3 6 7 7 3, 76 02 73 422 4 ,46 66 662 07 6 , 05 67 915 11 5, 73 50 62 652 5, 269 630 04 6 5, 057 684 77

    15 MM 15 1 15 1 0,97 0,03 35 0 9,049 9 ,04 9 0 7 ,1 0 0 0 ,5 1 0 0 1 0 10 8 7 6, 67 84 45 462 6, 284 924 25 4 ,23 77 454 42 4, 33 64 10 596 2, 653 314 8 4, 838 168 11

    20 MM 19 2 2 2,8 0,8 36 2 6 ,7 99 4 8, 79 94 2 9 ,6 3 3 1 1 0 7 6 8 ,8 9 7 4, 30 44 55 841 5 ,37 81 254 95 5 ,86 82 172 78 5, 71 50 45 892 4, 342 854 60 1 5, 121 739 82

    21 MM 19 3 3 3,43 0,43 24 5, 7 5 ,4 25 6 0, 27 44 4 8 ,7 8 5 ,5 5 ,5 1 0 7 5 6 9 7 4, 91 88 88 006 5 ,42 48 020 06 5, 445 085 99 5, 64 01 41 992 6, 070 200 00 8 5, 49 98 23 6

    Direction 220REFINED ANALYSIS

    MEIA

    11

    19

    BAIXA

    11

    15

    19

    ALTURA

    CLASSIFICAESNIVEL 3 NIVEL 2

    M AIN PARAME TE RS S EC UN DARY PARAME TE RS

    0 1 2 3 4 5 6 7

    MB 11 1

    MB 11 2

    MB 11 3

    MB 11 4

    MB 15 1

    MB 15 2

    MB 15 3

    MB 19 1

    MB 19 2

    MB 19 3

    MM 11 2

    MM 11 3

    MM 15 1

    MM 19 2

    MM 19 3

    6,294411329

    6,742937255

    6,303692791

    5,487644891

    6,627884876

    6,661468335

    4,72856923

    6,648766832

    6,775794626

    6,103649385

    5,206131145

    5,057684768

    4,83816811

    5,121739821

    5,4998236

    REFINED SCORE FOR 220