Exponential & Logarithmic Functions

25

description

Exponential & Logarithmic Functions. e 的發現始於微分,當 h 逐漸接近零時,計算 (1+ h) 1/h 之值,其結果無限接近一定值 2.71828... ,這個定值就是 e , 最早發現此值的人是瑞士著名數學家歐拉,他以自己姓名的字頭小寫 e 來命名此無理數。. 計算對數函數 y = log a x 的導數,得 dy/dx = (1/x) log a e , 當 a=e 時, log e x 的導數為 1/ x , 因而有理由使用以 e 為底的對數,這叫作自然對數。. 以 x =1 代入上式得 - PowerPoint PPT Presentation

Transcript of Exponential & Logarithmic Functions

Page 1: Exponential & Logarithmic Functions
Page 2: Exponential & Logarithmic Functions

e 的發現始於微分,當 h 逐漸接近零時,計算 (1+h)1/h 之值,其結果無限接近一定值 2.71828... ,這個定值就是 e ,最早發現此值的人是瑞士著名數學家歐拉,他以自己姓名的字頭小寫 e 來命名此無理數。

計算對數函數 y = loga x 的導數,得 dy/dx = (1/x) loga e ,當 a=e 時, loge x 的導數為 1/x ,因而有理由使用以 e 為底的對數,這叫作自然對數。

Page 3: Exponential & Logarithmic Functions

若將指數函數 ex 作泰勒展開,則得

ex = 1 + x + x2 + x3 + x4 + … 2! 3! 4!

以 x=1 代入上式得

e = 1 + 1 + ½ + 1/6 + 1/12 +….

此級數收斂迅速, e 近似到小數點後 40 位的數值是 2.71828 18284 59045 23536 02874

Page 4: Exponential & Logarithmic Functions

The exponential function f with base a is denoted by f(x)=ax, where a≠1 , and x is any real number.

The function value will be positive because a positive base raised to any power is positive.

Page 5: Exponential & Logarithmic Functions

Ex: if the base is 2 and x = 4, the function value f(4) will equal 16. The graph of f(x)=2x would be (4, 16).

Page 6: Exponential & Logarithmic Functions

Exponential functions Definition

Take a > 0 and not equal to 1 . Then, the function defined by f : R -> R : x -> ax

is called an exponential function with base a.

Page 7: Exponential & Logarithmic Functions

Graph and propertiesLet f(x) = an exp. fun. with a > 1.Let g(x) = an exp. Fun. with 0 < a < 1.

Page 8: Exponential & Logarithmic Functions

From the graphs we see that

The domain is R The range is the set of strictly positive real numbers The function is continuous in its domain The function is increasing if a > 1 and decreasing if 0 < a < 1 The x-axis is a horizontal asymptote

Page 9: Exponential & Logarithmic Functions

Logarithmic functions

Definition and basic properties

Take a > 0 and not equal to 1 . Since the exponential function f : R -> R : x -> ax are either increasing or decreasing, the inverse function is defined. This inverse function is called the logarithmic function with base a. We write loga (x)

Page 10: Exponential & Logarithmic Functions

loga(x) = y <=> ay = x

for x > 0 we have aloga(x) = x for all x we have loga(ax) = x

GraphLet f(x) = a logarithmic function with a > 1.Let g(x) = a logarithmic function with 0 < a < 1.

Page 11: Exponential & Logarithmic Functions
Page 12: Exponential & Logarithmic Functions

log(x.y) = log(x) + log(y)

log(x/y) = log(x) - log(y)

log(xr ) = r.log(x)

Page 13: Exponential & Logarithmic Functions

Pf:

log(x.y) = u then au = x.y (1)

Let log(x) = v then av = x (2)

Let log(y) = w then aw = y (3)

From (1) , (2) and (3)

au = av . aw => au = av + w => u = v + w

Page 14: Exponential & Logarithmic Functions

Change the base of a logarithmic fun.Theorem:for each strictly positive real number a and b, different from 1,

loga(x) =( ) .

logb(x)logb(a)

1

Page 15: Exponential & Logarithmic Functions

loga(xr) = r logax

log22 = 1

log31 = 0

log25 = log 5    

log 2

  2.3219

Identity Example

loga(xy) = logax + logay log216 = log28 +

log22loga(x/y) = logax - logay log2 (5/3) = log25 -

log23

log2(65) = 5 log26

logaa = 1

loga1 = 0

loga(1/x) = -logax log2(1/3)= -log23

logax = log x    

log a

= ln x   ln a

Page 16: Exponential & Logarithmic Functions

Relationship of the Functions f(x) = logax and g(x) = ax If a is any positive number, then the functions f(x) = logax and g(x) = ax are inverse functions. This means that

alogax= x

for all positive x and loga(ax) = x for all real x.

Page 17: Exponential & Logarithmic Functions

Ex

2log2x=

eln x=

log2(2x) =

ln (ex) =

Ans: x

Page 18: Exponential & Logarithmic Functions

Definition of Logarithmic Function

For x >0, a>0 , and a ≠ 1, we have f(x)=loga(x) iff a f(x) =x Since x > 0, the graph of the

above function will be in quadrants I and IV.

Page 19: Exponential & Logarithmic Functions
Page 20: Exponential & Logarithmic Functions

Comments on Logarithmic Functions

The exponential equation 43=64, could be written in terms of a logarithmic equation as log4(64)=3.

The exponential equation 5-2=1/25 can be written as the logarithmic equation log5(1/25)=-2.

Page 21: Exponential & Logarithmic Functions

Logarithmic functions are the inverse of exponential functions. For example if (4, 16) is a point on the graph of an exponential function, then (16, 4) would be the corresponding point on the graph of the inverse logarithmic function.

Page 22: Exponential & Logarithmic Functions
Page 23: Exponential & Logarithmic Functions

The derivatives of the logarithmic functions

Derivative of logb and ln

An important special case is this:

d/dx logb(x) = 1 / x ln (b)

d/dx ln (x) = 1/x since ln e =1

Derivative of bx and ex

(d/dx) bx = bx ln(b)

Page 24: Exponential & Logarithmic Functions

Ex: d/dx [e ] 4x2-2

Ex:

d ex - e-x

dx ex + e-x

Ex: d/dx 2x(4 x ) = 2(4 x ) +2x(4 x ) ln4

Page 25: Exponential & Logarithmic Functions

Ex: d/dx ln (x2 + 2x -1)

Ex: d/dx ln (3x + 2)

Ex: d/dx log 3 (x) = 1 / x ln (3)

(3x + 2)