Exponential & Logarithmic Functions

30
Exponential & Logarithmic Functions REVIEW 11.1 – 11.4

description

REVIEW 11.1 – 11.4. Exponential & Logarithmic Functions. Properties of Exponents. OR. Evaluate:. 1.)2.)3.) 4.)5.)6.) 7.)8.)9.) 10.)11.)12.). Express using rational exponents:. 1.)2.)3.) 4.)5.)6.) 7.)8.)9.) 10.)11.)12.). - PowerPoint PPT Presentation

Transcript of Exponential & Logarithmic Functions

Page 1: Exponential & Logarithmic Functions

Exponential & Logarithmic Functions

REVIEW11.1 – 11.4

Page 2: Exponential & Logarithmic Functions

Properties of Exponents

am • an = am+ n

am

an = am −n

(am )n = am• n

(a • b)m = am • bm

ab ⎛ ⎝ ⎜

⎞ ⎠ ⎟m

=am

bm

a0 =1

a−n =1an

1a−n = an

ab ⎛ ⎝ ⎜

⎞ ⎠ ⎟−n

=ba ⎛ ⎝ ⎜

⎞ ⎠ ⎟n

am

n = amn

OR

Page 3: Exponential & Logarithmic Functions

Evaluate:1.) 2.) 3.)

4.) 5.) 6.)

7.) 8.) 9.)

10.) 11.) 12.)

1253

1624

1691

2( )0

2163( )2

811

2 − 81−1

2

3433( )−2

815

4

31

2 • 211

2

6251

4

2163

2−5 • 27

833

5

4

1

36

809

889

243

3 7

5

6

4

8

Page 4: Exponential & Logarithmic Functions

Express using rational exponents:1.) 2.) 3.)

4.) 5.) 6.)

7.) 8.) 9.)

10.) 11.) 12.)

a6b3

25a4b10

64s9t153

169x 5

15x 3y155

27x 4 y 34

x 5y 6

c 73

144x 6y10

27x10y 55

1024a3

36a8b54

a3b3

2

5a2b5

4s3t 5

13x5

2

151

5 x3

5 y 3

271

4 xy3

4

x5

2 y 3

c7

3

12x 3y 5

271

5 x 2y

32a3

2

61

2 a2b5

4

Page 5: Exponential & Logarithmic Functions

Express using radicals:1.) 2.) 3.)

4.) 5.) 6.)

7.) 8.) 9.)

10.) 11.) 12.)

x2

3

x4

7 y3

7

a1

6b2

3c1

2

15x1

3 y1

5

(5a)2

3 b5

3

3433( )−2

641

3

y3

2

21

2 a3

2b5

2

x2

5 y3

5

s2t( )1

3v2

3

x 6y 3( )1

2 z3

2

x 23

x 4 y 37

ab4c 36

15 x 5y 315

b 25a2b23

149

4

y 3

ab2 2ab

x 2y 35

s2tv 23

x 3 y 3z3

Page 6: Exponential & Logarithmic Functions

Simplify:1.) 2.) 3.)

4.) 5.) 6.)

7.) 8.) 9.)

10.) 11.) 12.)

4x 2(4 x)−2

(y−2)4 • y 8

2x( )4( )

−2

a3b2 • a4b5

(5ac)1

3 (a2c 3)1

3

a4b83

x −2( )3

• x 3( )−2

3y 3( ) 3y( )3

x 7 • x 5 • x−7 • x−5

6a1

3( )3

3x 2(3x)−2

2a( )1

3 a2b( )1

3

14

1

1256x 8

a3b3 ab

ac 5c3

ab2 ab23

1x12

81y 6

1

216a

13

a 2b3

Page 7: Exponential & Logarithmic Functions

General Form of Exponential Function y = b x where b > 1 Domain: All

reals Range: y > 0 x-intercept:

None y-intercept:

(0, 1)

Page 8: Exponential & Logarithmic Functions

General Form of Exponential Function y = b (x + h) + k where b > 1

h moves graph left or right (opposite way)

k move graph up or down (expected way)

So y=3(x+2) + 3 moves the graph 2 units to the left and 3 units up

(0, 1) to (– 2, 4)

Page 9: Exponential & Logarithmic Functions

Graph:

y =13 ⎛ ⎝ ⎜

⎞ ⎠ ⎟x

X Y

-2

-1

0

1

2

3

9

3

1

1/3

0.111

0.037

Decreasing for all of x

Page 10: Exponential & Logarithmic Functions

Graph:

y = 2x −1

X Y

-2

-1

0

1

2

3

0.125

0.25

0.5

1

2

4

Increasing for all of x

Page 11: Exponential & Logarithmic Functions

Graph:

y = −2x +1

X Y

-2

-1

0

1

2

3

-0.5

-1

-2

-4

-8

-16

Decreasing for all of x

Page 12: Exponential & Logarithmic Functions

Graph:

y = 2−x +1

X Y

-2

-1

0

1

2

3

8

4

2

1

0.5

0.25

Decreasing for all of x

Page 13: Exponential & Logarithmic Functions

Graph:

y > 2x

X Y

-2

-1

0

1

2

3

0.25

0.5

1

2

4

8

Page 14: Exponential & Logarithmic Functions

Graph:

y ≥ (0.5)x

X Y

-2

-1

0

1

2

3

4

2

1

0.5

0.25

0.125

Page 15: Exponential & Logarithmic Functions

Converting between Exponents & LogarithmsWRITE EACH EQUATION INTO A LOG FUNCTION:

WRITE EACH EQUATION INTO A EXPONENTIAL FUNCTION:

25 = 32

5−3 =1

125

6−3 =1

216

log2 32 = 5

log51

125= −3

log61

216= −3

log3 27 = 3

log4 16 = 2

log101

100= −2

33 = 27

42 =16

10−2 =1

100

Page 16: Exponential & Logarithmic Functions

log7 73

log10 0.001

3log3 6

Evaluate:

Evaluate:

Evaluate:

logb b−4

loga a

34 log3 4

Evaluate:

Evaluate:

Evaluate:

3

-3

6

-4

1

256

Page 17: Exponential & Logarithmic Functions

Properties of Logarithms (Shortcuts)

logb1 = 0 (because b0 = 1) logbb = 1 (because b1 = b) logb(br) = r (because br = br)

blog b M = M (because logbM = logbM)

Page 18: Exponential & Logarithmic Functions

Properties of Logarithms logb(MN)= logbM + logbN Ex: log4(15)= log45 + log43

logb(M/N)= logbM – logbN Ex: log3(50/2)= log350 – log32

logbMr = r logbM Ex: log7 (103) = 3 log7 10

If logbM = logbN Then M = N log11 (1/8) = log11 8-1

Page 19: Exponential & Logarithmic Functions

TRY THESE TO SOLVE THESE:

log6 x = 2

log5125

= y

logx 64 = 3

log4 0.25 = x

log4 (2x −1) = log4 16

log10 10 = x€

62 = xx = 36

5y =125

5y =152

5y = 5−2

y = −2

x 3 = 64x = 4

4 x = 0.25

4 x =14

4 x = 4−1

x = −1

2x −1 =162x =17

x =172

10x = 10

10x =101

2

x =12

First I would change to exponential form!!

Page 20: Exponential & Logarithmic Functions

log3(4 x −10) = log3(x −1)

log8(x 2 + 5x +14) = log8 0

It appears that we have 2 solutions here.If we take a closer look at the definition of a logarithm however, we will see that not only must we use positive bases, but also we see that the arguments must be positive as well. Therefore -2 is not a solution.

Page 21: Exponential & Logarithmic Functions

Our final concern then is to determine why logarithms like the one below are undefined.

Can anyone give us an explanation ?2log ( 8)

One easy explanation is to simply rewrite this logarithm in exponential form. We’ll then see why a negative value is not permitted.

2log ( 8) y

2y = −8

What power of 2 would gives us -8 ?

Hence expressions of this type are undefined.

Page 22: Exponential & Logarithmic Functions

SOLVE EACH LOGARITHM EQUATION:

1.) 2.)

3.) 4.)

4 log8 x = log8 81

x = ±3 €

log5(y −12) + log5(y +12) = 2

y =13

log5 42 − log5 6 = log5 k

k = 7 €

log10 y =14

log1016 +12

log10 49

y =14

y =13 or −13

Page 23: Exponential & Logarithmic Functions

Same Base

Solve: 4x-2 = 64x

4x-2 = (43)x

4x-2 = 43x

x–2 = 3x -2 = 2x -1 = x

If bM = bN, then M = N64 = 43

If the bases are already =, just solve the exponents

Page 24: Exponential & Logarithmic Functions

You Do

Solve 27x+3 = 9x-1

x 3 x 13 2

3x 9 2x 2

3 33 33x 9 2x 2x 9 2x 11

Page 25: Exponential & Logarithmic Functions

Review – Change Logs to Exponents

log3x = 2 logx16 = 2 log 1000 = x

32 = x, x = 9x2 = 16, x = 4

10x = 1000, x = 3

Page 26: Exponential & Logarithmic Functions

Example

7xlog25 = 3xlog25 + ½ log225 log257x = log253x + log225 ½

log257x = log253x + log251

7x = 3x + 1 4x = 11

4x

Page 27: Exponential & Logarithmic Functions

Example 1 – Solving Simple Equations

a. 2x = 32 2x = 25 x = 5 b. ln x – ln 3 = 0 ln x = ln 3 x = 3 c. = 9 3–

x = 32 x = –2

d. ex = 7 ln ex = ln 7 x = ln 7 e. ln x = –3 eln x = e–

3 x = e–3

f. log x = –1 10log x = 10–1 x = 10–1 =

g. log3 x = 4 3log3 x = 34 x = 81

Page 28: Exponential & Logarithmic Functions

Example 6 – Solving Logarithmic Equations

a. ln x = 2 eln x = e2

x = e2

b. log3(5x – 1) = log3(x + 7)

5x – 1 = x + 7

4x = 8 x = 2

Page 29: Exponential & Logarithmic Functions

Example 6 – Solving Logarithmic Equations c. log6(3x + 14) – log6 5 = log6 2x

3x + 14 = 10x

–7x = –14

x = 2

cont’d

Page 30: Exponential & Logarithmic Functions

Given the original principal, the annual interest rate, and the amount of time for each investment, and the type of compounded interest, find the amount at the end of the investment.

1.) P = $1,250; r = 8.5%; t = 3 years; quarterly

2.) P = $2,575; r = 6.25%; t = 5 years, 3 months; continuously

A = P 1+rn

⎛ ⎝ ⎜

⎞ ⎠ ⎟nt

A =1250 1+0.085

4 ⎛ ⎝ ⎜

⎞ ⎠ ⎟4(3)

A = $1,608.77

A = Pert

A = 2575e0.0625(5.25)

A = $3,575.03