Exponential and Logarithmic Functions - Osaka U

17
10. Exponential and Logarithmic Functions 10.1 The Nature of Exponential Functions In power expressions such as 3 or 5 , the exponents are constants. A function whose independent variable appears in the role of an exponent such as 3 is called an exponential function. โ€ข Simple exponential function = = (1) : the dependent variables, : the independent variable, : a fixed base of the exponent.

Transcript of Exponential and Logarithmic Functions - Osaka U

10. Exponential and Logarithmic Functions

10.1 The Nature of Exponential Functions

In power expressions such as ๐‘ฅ3 or ๐‘ฅ5, the exponents are constants.

A function whose independent variable appears in the role of an exponent such

as 3๐‘ฅ is called an exponential function.

โ€ข Simple exponential function

๐‘ฆ = ๐‘“ ๐‘ก = ๐‘๐‘ก (1)

๐‘ฆ : the dependent variables, ๐‘ก : the independent variable,

๐‘ : a fixed base of the exponent.

โ€ข Generalized Exponential Function

๐‘ฆ = ๐‘“ ๐‘ก = ๐‘Ž๐‘๐‘๐‘ก (2)

๐‘ฆ

๐‘ก0

๐‘ฆ

๐‘ก0 2๐‘ก๐‘ก๐‘ก0

1

๐‘ฆ = ๐‘๐‘ก

๐‘ฆ = ๐‘2๐‘ก

๐‘ก0

๐‘ฆ = ๐‘๐‘ก

๐‘ฆ = 2๐‘๐‘ก

4

2

1

Figure 10.2

โ€ข A Preferred Base (Napierโ€™s constant)

๐‘’ = 2.71828 . . .

โ€ข Natural Exponential Function

๐‘ฆ = ๐‘’๐‘ก , ๐‘ฆ = ๐‘’3๐‘ก , ๐‘ฆ = ๐ด๐‘’๐‘Ÿ๐‘ก

๐‘ฆ = exp ๐‘ก , ๐‘ฆ = exp 3๐‘ก , ๐‘ฆ = ๐ดexp ๐‘Ÿ๐‘ก ,

โ€ข The Derivative of Natural Exponential Function

๐‘‘

๐‘‘๐‘ก๐‘๐‘ก = ๐‘๐‘ก ln ๐‘

๐‘‘

๐‘‘๐‘ก๐‘’๐‘ก = ๐‘’๐‘ก ,

๐‘‘

๐‘‘๐‘ก๐ด๐‘’๐‘Ÿ๐‘ก = ๐‘Ÿ๐ด๐‘’๐‘Ÿ๐‘ก

10.2 Natural Exponential Functions and the Problem of Growth

โ€ข The Number ๐‘’

Let

๐‘“ ๐‘š = 1 +1

๐‘š

๐‘š. (3)

The function ๐‘“ ๐‘š is increasing in ๐‘š.

๐‘“ 1 = 1 +1

1

1= 2

๐‘“ 2 = 1 +1

2

2= 2.25

๐‘“ 3 = 1 +1

3

3= 2.37037โ€ฆ

๐‘“ 4 = 1 +1

4

4= 2.44141โ€ฆ

โ‹ฎ

The function of ๐‘“ ๐‘š is bounded from above.

๐‘“ ๐‘š = 1 +๐‘š1

1

๐‘š+

๐‘š2

1

๐‘š2 + โˆ™ โˆ™ โˆ™ +๐‘š๐‘š

1

๐‘š๐‘š

= 1 +1

1!+

1

2!1 โˆ’

1

๐‘š+ โˆ™ โˆ™ โˆ™ +

1

๐‘š!1 โˆ’

1

๐‘šโˆ™ โˆ™ โˆ™ 1 โˆ’

๐‘šโˆ’1

๐‘š

โ‰ค 1 +1

1!+

1

2!+

1

3!+ โˆ™ โˆ™ โˆ™ +

1

๐‘š!

โ‰ค 1 + 1 +1

22+

1

23+ โˆ™ โˆ™ โˆ™ +

1

2๐‘šโˆ’1

= 1 +1โˆ’

1

2๐‘š

1โˆ’1

2

< 1 +1

1โˆ’1

2

= 1 + 2 = 3 (4)

โ€ข ๐‘“ ๐‘š is bounded from above (๐‘“ ๐‘š < 3)

โ€ข ๐‘“ ๐‘š is monotonically increasing in ๐‘š

โ‡’ ๐‘“ ๐‘š โ†’ a certain number as ๐‘š โ†’ โˆž.

Definition of ๐’† : ๐‘’ โ‰ก lim๐‘šโ†’โˆž

๐‘“ ๐‘š = 2.71828. . . (5)

โ€ข The approximation value of ๐‘’

Consider the Maclaurin series of ๐œ™ ๐‘ฅ = ๐‘’๐‘ฅ.

๐œ™ ๐‘ฅ = ๐œ™ 0 +๐œ™โ€ฒ 0

1!๐‘ฅ +

๐œ™โ€ฒโ€ฒ 0

2!๐‘ฅ2 + โˆ™ โˆ™ โˆ™ +

๐œ™ ๐‘› 0

๐‘›!๐‘ฅ๐‘› + ๐‘…๐‘›

= 1 + ๐‘ฅ +1

2!๐‘ฅ2 + โˆ™ โˆ™ โˆ™ +

1

๐‘›!๐‘ฅ๐‘› + ๐‘…๐‘›, (6)

where ๐‘…๐‘› =๐œ™ ๐‘›+1 ๐‘

๐‘›+1 !๐‘ฅ๐‘›+1 =

๐‘’๐‘

๐‘›+1 !๐‘ฅ๐‘›+1 (0 < ๐‘ < ๐‘ฅ). (7)

Since ๐‘…๐‘› โ†’ 0 as ๐‘› โ†’ โˆž, we have

๐‘’๐‘ฅ = 1 + ๐‘ฅ +1

2!๐‘ฅ2 +

1

3!๐‘ฅ3 +

1

4!๐‘ฅ4 +

1

5!๐‘ฅ5 +โˆ™ โˆ™ โˆ™ (8)

Substituting ๐‘ฅ = 1, we find that

๐‘’ = 1 + 1 +1

2!+1

3!+1

4!+1

5!+โˆ™ โˆ™ โˆ™

= 2 + 0.5 + 0.1666667 + โˆ™ โˆ™ โˆ™

โ‰… 2.7182819 (9)

โ€ข An Economic Interpretation of ๐‘’

The number ๐‘’ can be interpreted as the result of a special process of interest

compounding.

Suppose that, starting out with a principal of $1, we find a banker to offer us

the interest rate of 100% per annum. If interest is to be compounded once a

year, the value of our asset at the end of the year will be $2.

๐‘‰ 1 = initial principal ร— 1 + interest rate

= 1 ร— 1 +100%

1

1

= 2(10)

Suppose that interest is compounded semiannually. Then, we have

๐‘‰ 2 = 1 +100%

2ร— 1 +

100%

2= 1 +

1

2

2(11)

If the frequency of compounding in 1 year is ๐‘š, our year end asset value is

๐‘‰ ๐‘š = 1 +1

๐‘š

๐‘š(12)

When ๐‘š โ†’ โˆž, the value of the asset at the end of 1 year will be

lim๐‘šโ†’โˆž

๐‘‰ ๐‘š = ๐‘’ (13)

The number of ๐‘’ can be interpreted as the year-end value to which a principal of

$1 will grow if interest at the rate of 100% per annum is compounded

continuously.

10.3 Logarithms

โ€ข The Meaning of Logarithm

The log of ๐‘ฆ to the base ๐‘ is the power to which the base ๐‘ must be raised to attain the value ๐‘ฆ.

๐‘ฆ = ๐‘๐‘ก โ‡” ๐‘ก = log๐‘ ๐‘ฆ (14)

ln ๐‘ฅ โ‡” log๐‘’ ๐‘ฅ.

Examples log4 16 = log4 42 = 2 log10 1000 = log10 10

3 = 3

log10 0.01 = log10 10โˆ’2 = โˆ’2

ln ๐‘’2 = log๐‘’ ๐‘’2 = 2 ln 1 = log๐‘’ ๐‘’

0 = 0

ln1

๐‘’= log๐‘’ ๐‘’

โˆ’1 = โˆ’1

โ€ข Rules of Logarithms

Rule I : ln ๐‘ข๐‘ฃ = ln ๐‘ข + ln ๐‘ฃ ๐‘ข, ๐‘ฃ > 0Rule II : ln ๐‘ข/๐‘ฃ = ln ๐‘ข โˆ’ ln ๐‘ฃ ๐‘ข, ๐‘ฃ > 0Rule III : ln ๐‘ข๐‘Ž = ๐‘Ž ln ๐‘ข ๐‘ข > 0Rule IV : log๐‘ ๐‘ข = log๐‘ ๐‘’ log๐‘’ ๐‘ข ๐‘ข > 0

Rule V : log๐‘ ๐‘’ =1

log๐‘’ ๐‘

Proof of Rule I.

๐‘ข๐‘ฃ = ๐‘’ln ๐‘ข๐‘’ln ๐‘ฃ = ๐‘’ln ๐‘ข+ln ๐‘ฃ and ๐‘ข๐‘ฃ = ๐‘’ln ๐‘ข๐‘ฃ

โ‡’ ln๐‘ข๐‘ฃ = ln ๐‘ข + ln ๐‘ฃ

10.4 Logarithm Functions

โ€ข Log Functions and Exponential Functions

Log functions are inverse functions of certain exponential functions.

๐‘ก = log๐‘ ๐‘ฆ and ๐‘ก = ln ๐‘ฆ (15)

๐‘ฆ = ๐‘๐‘ก and ๐‘ฆ = ๐‘’๐‘ก (16)

Inverse function

โ€ข The Graphical Form

๐‘ฆ = ๐‘’๐‘ก and ๐‘ก = ln ๐‘ฆ are drawn as follows.

๐‘ก

๐‘ฆ0

๐‘ฆ

๐‘ก0

45ยฐ

1

๐‘ฆ = ๐‘’๐‘ก

๐‘ก = ln ๐‘ฆ

Figure 10.3 mirror-relationship

45ยฐ

1

We consider the inverse of ๐‘ฆ = ๐ด๐‘’๐‘Ÿ๐‘ก.

Taking the natural log of both sides of this exponential function,

ln ๐‘ฆ = ln ๐ด๐‘’๐‘Ÿ๐‘ก = ln๐ด + ๐‘Ÿ๐‘ก ln ๐‘’ = ln๐ด + ๐‘Ÿ๐‘ก, (17)

Solving for ๐‘ก,

๐‘ก =ln ๐‘ฆโˆ’ln ๐ด

๐‘Ÿ.

(18)

As inverse function of monotonically increasing functions, logarithmic

functions must also be monotonically increasing.

ln ๐‘ฆ1 = ln ๐‘ฆ2 โŸบ ๐‘ฆ1 = ๐‘ฆ2

ln ๐‘ฆ1 > ln ๐‘ฆ2 โŸบ ๐‘ฆ1 > ๐‘ฆ2 (19)

For any base ๐‘ > 1,

แ‰‘

0 < ๐‘ฆ < 1๐‘ฆ = 1๐‘ฆ > 1

โŸบ เตž

log๐‘ ๐‘ฆ < 0log๐‘ ๐‘ฆ = 0log๐‘ ๐‘ฆ > 0

(20)

โ€ข Base Conversion

Let us consider the conversion of ๐ด๐‘๐‘๐‘ก into ๐ด๐‘’๐‘Ÿ๐‘ก.

๐‘’๐‘Ÿ = ๐‘๐‘ โŸน ln๐‘’๐‘Ÿ = ln ๐‘๐‘

โŸน ๐‘Ÿ = ๐‘ ln ๐‘ (21)

Thus,

๐ด๐‘๐‘๐‘ก = ๐ด๐‘’ ๐‘ ln ๐‘ ๐‘ก

10.5 Derivative of Exponential and Logarithmic Functions

โ€ข Log-Function Rule

๐‘‘

๐‘‘๐‘กln ๐‘ก =

1

๐‘ก(23)

โ€ข Exponential-Function Rule

๐‘‘

๐‘‘๐‘ก๐‘’๐‘ก = ๐‘’๐‘ก (24)

โ€ข The Rules Generalized

๐‘‘

๐‘‘๐‘ก๐‘’๐‘“ ๐‘ก = ๐‘“โ€ฒ ๐‘ก ๐‘’๐‘“ ๐‘ก

๐‘‘

๐‘‘๐‘กln ๐‘“ ๐‘ก =

๐‘“โ€ฒ ๐‘ก

๐‘“ ๐‘ก(25)