Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

40
Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012

Transcript of Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Page 1: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Explosive Properties

Explosives 189Dr. Van Romero

26 Jan 2012

Page 2: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.
Page 3: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.
Page 4: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Some Definitions

• Explosion – rapid expansion of matter into a volume much greater than the original volume

Page 5: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Some Definitions

• Explosion – rapid expansion of matter into a volume much greater than the original volume

• Burn & Detonate – Both involve oxidation– Burn – relatively slow– Detonate – burning at a supersonic rate producing

a pressure Wave

Page 6: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Some Definitions

• Explosion – rapid expansion of matter into a volume much greater than the original volume

• Burn & Detonate – Both involve oxidation– Burn – relatively slow– Detonate – burning at a supersonic rate producing

a pressure Wave• Deflagration – Burning to detonation (DDT)

Page 7: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Some Definitions

• Explosion – rapid expansion of matter into a volume much greater than the original volume

• Burn & Detonate – Both involve oxidation– Burn – relatively slow– Detonate – burning at a supersonic rate producing

a pressure Wave• Deflagration – Burning to detonation (DDT)• Shock wave – High pressure wave that travels

faster then the speed of sound

Page 8: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Explosives Vs. Propellants

• The difference between an explosive and a propellant is functional as apposed to fundamental.

Page 9: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Explosives Vs. Propellants

• The difference between an explosive and a propellant is functional as apposed to fundamental.

• Explosives are intended to function by detonation from shock initiation (High Explosives)

Page 10: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Explosives Vs. Propellants

• Propellants are initiated by burning and then burn at a steady rate determined by the devise, i.e. gun (Low Explosives)

• Single molecule explosives are categorized by the required initiation strength

Page 11: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Primary Explosives

• Primary Explosives – Transit from surface burning to detonation within a very small distance. – Lead Azide (PbN6 )

Page 12: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Secondary Explosives

• Secondary Explosives – Can burn to detonation, but only in relatively large quantities. Secondary explosives are usually initiated from the shock from a primary explosive (cap sensitive)

• TNT

Page 13: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Tertiary Explosives

• Tertiary Explosives – Extremely difficult to initiate. It takes a significant shock (i.e. secondary explosive) to initiate. Tertiary explosives are often classified as non-explosives.

• Ammonium Nitrate (NH4NO3)

Page 14: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Exothermic and Endothermic Reactions

• Chemical reaction– Reactants Products.– Internal energy of reactants ≠ internal energy of

products.– Internal energy: contained in bonds between

atoms.– Reactants contain more energy than products—

energy is released as heat.– EXOTHERMIC Reaction.

Page 15: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Exothermic and Endothermic Reactions

• Products contain more internal energy than reactants

• ENDOTHERMIC Reaction• Energy must be added for the reaction to

occur.• Burning and detonation are

Page 16: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Exothermic and Endothermic Reactions

• Products contain more internal energy than reactants

• ENDOTHERMIC Reaction• Energy must be added for the reaction to

occur.• Burning and detonation are Exothermic

Page 17: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Oxidation: Combustion

• Fuel + Oxidizer Products (propellant)

Page 18: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Oxidation: Combustion

• Fuel + Oxidizer Products (propellant)• CH4 + 2 O2 CO2 + 2 H20

Methane Oxygen WaterCarbonDioxide

Page 19: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

• Fuel + Oxidizer Products (propellant)• CH4 + 2 O2 CO2 + 2 H20

• Oxidation (combustion) of methane• 1 methane molecule : 2 oxygen molecules

(4 oxygen atoms).

Methane Oxygen WaterCarbonDioxide

Oxidation: Combustion

Page 20: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Oxidation: Decomposition

• Oxidizer + Fuel decomposition to products (Explosive)

Page 21: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Oxidation: Decomposition

• Oxidizer + Fuel decomposition to products(Explosive)

• Example: Nitroglycol• O2N—O—CH2—CH2—O—NO2

Fuel (Hydrocarbon) + Oxidizer (Nitrate Esters)

Page 22: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Oxidation: Decomposition

• Oxidizer + Fuel decomposition to products(Explosive)

• Example: Nitroglycol • O2N—O—CH2—CH2—O—NO2

• Undergoes Decomposition to:2 CO2 + 2 H2O + N2

Fuel (Hydrocarbon) + Oxidizer (Nitrate Esters)

CarbonDioxide

NitrogenWater

Page 23: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

CHNO Explosives

• Many explosives and propellants are composed of:– Carbon– Hydrogen– Nitrogen– Oxygen

• General Formula: CcHhNnOo

• c, h, n, o are # of carbon, hydrogen, nitrogen and oxygen atoms.

• For Nitroglycol: C2H4N2O6

Page 24: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

CHNO Explosive Decomposition

• CcHhNnOo c C + h H + n N + o O • Imagine an explosive detonating.– Reactant CHNO molecule is completely broken

down into individual component atoms.

Page 25: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

CHNO Explosive Decomposition

• CcHhNnOo c C + h H + n N + o O • Imagine an explosive detonating.– Reactant CHNO molecule is completely broken down

into individual component atoms.• For Nitroglycol:– 2N N2

– 2H + O H20– C + O CO– CO + O CO2

Page 26: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Overoxidation vs Underoxidation

• In the case of nitroglycol• O2N—O—CH2—CH2—O—NO2

2 CO2 + 2 H2O + N2

• Exactly enough oxygen to burn all carbon to CO2

• Some have more than enough oxygen to burn all the carbon into CO2

– OVEROXIDIZED OR FUEL LEAN• Most explosives do not have enough oxygen to burn all

the carbon to CO2

– UNDEROXIDIZED OR FUEL RICH

Page 27: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Simple Product Hierarchy for CHNO Explosives

• First, all nitrogen forms N2

Page 28: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Simple Product Hierarchy for CHNO Explosives

• First, all nitrogen forms N2

• Then, all the hydrogen is burned to H2O

Page 29: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Simple Product Hierarchy for CHNO Explosives

• First, all nitrogen forms N2

• Then, all the hydrogen is burned to H2O

• Any oxygen left after H20 formation burns carbon to CO.

Page 30: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Simple Product Hierarchy for CHNO Explosives

• First, all nitrogen forms N2

• Then, all the hydrogen is burned to H2O

• Any oxygen left after H20 formation burns carbon to CO.

• Any oxygen left after CO formation burns CO to CO2

Page 31: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Simple Product Hierarchy for CHNO Explosives

• First, all nitrogen forms N2

• Then, all the hydrogen is burned to H2O

• Any oxygen left after H20 formation burns carbon to CO.

• Any oxygen left after CO formation burns CO to CO2

• Any oxygen left after CO2 formation forms O2

Page 32: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Simple Product Hierarchy for CHNO Explosives

• First, all nitrogen forms N2

• Then, all the hydrogen is burned to H2O

• Any oxygen left after H20 formation burns carbon to CO.

• Any oxygen left after CO formation burns CO to CO2

• Any oxygen left after CO2 formation forms O2

• Traces of NOx (mixed oxides of nitrogen) are always formed.

Page 33: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Decomposition of Nitroglycerine

• C3H5N3O9 3C + 5H + 3N + 9O– 3N 1.5 N2

– 5H + 2.5O 2.5 H2O (6.5 O remaining)– 3C + 3O 3 CO (3.5 O remaining)– 3 CO 3O 3 CO2 (0.5 O remaining)

• 8.5 of 9 oxygen atoms consumed– 0.5 O 0.25 O2

Page 34: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Decomposition of Nitroglycerine

• C3H5N3O9 3C + 5H + 3N + 9O– 3N 1.5 N2

– 5H + 2.5O 2.5 H2O (6.5 O remaining)– 3C + 3O 3 CO (3.5 O remaining)– 3 CO + 3O 3 CO2 (0.5 O remaining)

• 8.5 of 9 oxygen atoms consumed– 0.5 O 0.25 O2

• Overall Reaction:– C3H5N3O9 1.5 N2 + 2.5 H2O + 3 CO2 + 0.25 O2

• Oxygen Remaining = Nitroglycerine is – OVEROXIDIZED

Page 35: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Decomposition of RDX

• C3H6N6O6 3C + 6H +6N +6O– 6N 3N2

– 6H + 3O 3H2O (3 O remaining)– 3C + 3O 3CO (All O is consumed)– No CO2 formed.

H2 H2

H2

Page 36: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Decomposition of RDX

• C3H6N6O6 3C + 6H +6N +6O– 6N 3N2

– 6H + 3O 3H2O (3 O remaining)– 3C + 3O 3CO (All O is consumed)– No CO2 formed.

• Overall Reaction:– C3H6N6O6 3 N2 + 3 H2O + 3 CO

• Not enough oxygen to completely burn all of the fuel– UNDEROXIDIZED

H2 H2

H2

Page 37: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Oxygen Balance

• OB (%) – 1600/MWexp[oxygen-(2 carbon+ hydrogen/2)]

• Oxygen balance for Nitroglycol C2H4N2O6

– c = 2, h = 4, n = 2, o = 6– Mwexp=12.01 (2) + 1.008 (4) + 14.008 (2) + 16.000 (

6) = 152.068 g/mol– OB = = 0% 1600

152.0686 – 2 (2) – 4

2 Perfectly Balanced

Page 38: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Oxygen Balance

• Oxygen balance for Nitroglycerine C3H5N3O9

– C = 3, h = 5, n = 3, o = 9– Mwexp=12.01 (3) + 1.008 (5) + 14.008 (3) + 16.000 (

9) = 227.094 g/mol

– OB = = 3.52% 1600

227.094 259 – 2 ( 3) –

Slightly overoxidized

Page 39: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Oxygen Balance

• Oxygen balance for RDX: C3H6N6O6

– C = 3, h = 6, n = 6, o = 6– Mwexp=12.01 (3) + 1.008 (6) + 14.008 (6) + 16.000 (

6) = 222.126 g/mol

– OB = = -21.61% 1600

222.126 266 – 2 ( 3) –

Underoxidized

Page 40: Explosive Properties Explosives 189 Dr. Van Romero 26 Jan 2012.

Homework

• Calculate the oxygen balance for:– TNT– Picric Acid