exp_j

7
Chemistry 2301 Phase Diagram Fall 2011 Page 1 of 7 Binary LiquidVapour Phase Diagram Recommended Preparatory Reading Experiment 14 in Shoemaker (1) entitled Binary LiquidVapor Phase Diagram Experiment 6 in Sime (2) entitled LiquidVapor Equilibrium in an Azeotropic Mixture The following subheadings in section 6.1 of Mortimer (3) o Raoult’s Law o Molecular Structure and Ideal Solutions o Phase Diagrams of TwoComponent Ideal Solutions o TemperatureComposition Phase Diagrams The following subheading in section 6.6 of Mortimer (3) o Liquid Vapour Phase Diagrams Introduction This experiment is essentially Shoemaker’s Experiment 14: Binary LiquidVapor Phase Diagram (1). Two significant modifications to this experiment have been made. The cyclohexane/ethyl acetate system is studied, as described by Gordon, Kenkel, Prescia and Towns (4). A refluxing method is used, as described in the article by James W. Rogers and coauthors (5). The two component system that we use will exhibit a strong positive deviation from Raoult’s law, resulting in a boiling point minimum. For a system of two components (A and B), Gibbs’ phase rule is: = + 2 = 4 Where is the number of components in the system, is the number of phases (number of physically differentiable parts of the system at equilibrium), and is the variance or the number of degrees of freedom (number of intensive variables that can be independently varied at equilibrium without altering the number or kinds of phases present). Give Gibbs' phase rule, and explain how it will be applied to your twocomponent, twophase system. Give Raoult’s law. According to this law, the vapour pressure, , of component A at a given temperature, , is proportinal to its mole fraction, , in the liquid. Thus, on a plot of vs. , , the lines representing the vapour pressures of A and B and the total vapour pressure are straight lines. However, the total vapour pressure when plotted against vapour composition is not linear and lies below the line representing the total vapour pressure. If Raoult’s law holds true for a solution, the solution is said to be ideal. O O Cyclohexane Ethyl Acetate

description

,

Transcript of exp_j

Chemistry  2301   Phase  Diagram   Fall  2011  

Page  1  of  7    

Binary  Liquid-­‐Vapour  Phase  Diagram  Recommended  Preparatory  Reading  

Experiment  14  in  Shoemaker  (1)  entitled  Binary  Liquid-­‐Vapor  Phase  Diagram   Experiment  6  in  Sime  (2)  entitled  Liquid-­‐Vapor  Equilibrium  in  an  Azeotropic  Mixture   The  following  subheadings  in  section  6.1  of  Mortimer  (3)  

o Raoult’s  Law  o Molecular  Structure  and  Ideal  Solutions  o Phase  Diagrams  of  Two-­‐Component  Ideal  Solutions  o Temperature-­‐Composition  Phase  Diagrams  

The  following  subheading  in  section  6.6  of  Mortimer  (3)  o Liquid  Vapour  Phase  Diagrams  

Introduction     This  experiment   is  essentially  Shoemaker’s  Experiment  14:  Binary  Liquid-­‐Vapor  Phase  Diagram  (1).    Two  significant  modifications  to  this  experiment  have  been  made.    The  cyclohexane/ethyl  acetate  system  is  studied,  as  described  by  Gordon,  Kenkel,  Prescia  and  Towns  (4).    A  refluxing  method  is  used,  as  described  in  the  article  by  James  W.  Rogers  and  co-­‐authors  (5).    The  two  component  system  that  we  use  will  exhibit  a  strong  positive  deviation  from  Raoult’s  law,  resulting  in  a  boiling  point  minimum.    

      For  a  system  of  two  components  (A  and  B),  Gibbs’  phase  rule  is:    

𝐹𝐹 = 𝐶𝐶 − 𝑃𝑃 + 2 = 4 − 𝑃𝑃    

Where  𝐶𝐶  is  the  number  of  components  in  the  system,  𝑃𝑃  is  the  number  of  phases  (number  of  physically  differentiable  parts  of  the  system  at  equilibrium),  and  𝐹𝐹  is  the  variance  or  the  number  of  degrees  of  freedom  (number  of  intensive  variables  that  can  be  independently  varied  at  equilibrium  without  altering  the  number  or  kinds  of  phases  present).    Give  Gibbs'  phase  rule,  and  explain  how  it  will  be  applied  to  your  two-­‐component,  two-­‐phase  system.       Give  Raoult’s  law.    According  to  this  law,  the  vapour  pressure,  𝑝𝑝 ,  of  component  A  at  a  given  temperature,  𝑇𝑇 ,  is  proportinal  to  its  mole  fraction,  𝑋𝑋 ,    in  the  liquid.    Thus,  on  a  plot  of  𝑝𝑝  vs.  𝑋𝑋 , ,  the  lines  representing  the  vapour  pressures  of  A  and  B  and  the  total  vapour  pressure  are  straight  lines.    However,  the  total  vapour  pressure  when  plotted  against  vapour  composition  is  not  linear  and  lies  below  the  line  representing  the  total  vapour  pressure.    If  Raoult’s  law  holds  true  for  a  solution,  the  solution  is  said  to  be  ideal.  

O

O

Cyclohexane Ethyl Acetate

Chemistry  2301   Phase  Diagram   Fall  2011  

Page  2  of  7    

Vapour  pressures  of  the  pure  liquids,  𝑝𝑝  and    𝑝𝑝 ,    increase  with  temperature.    At  a  constant  pressure  (say  1  atm),  the  boiling  points  of  the  pure  liquids  are  𝑇𝑇  and  𝑇𝑇 .    The  boiling  point  of  the  solution  𝑇𝑇 ,  as  a  function  of  𝑋𝑋 ,  or  𝑋𝑋 , ,  is  not  linear,  the  vapour  curve  lying  above  the  liquid  curve.       In  most  binary  liquid-­‐vapour  systems  Raoult’s  law  is  a  good  approximation  for  a  component  only  when  its  mole  fraction  is  close  to  unity  (one).    Large  deviations  are  oftentimes  encountered  for  the  dilute  component  or  when  the  mole  fraction  of  neither  is  close  to  unity.    If,  at  a  given  temperature,  the  vapour  pressure  is  greater  than  that  predicted  by  Raoult’s  law  the  system  is  said  to  show  a  positive  deviation  from  that  law.    For  such  a  system  the  𝑇𝑇  versus  𝑋𝑋  diagram  will  be  convex  downward  at  a  given  temperature.    On  the  other  hand,  if  at  a  given  temperature  the  vapour  pressure  is  lower  than  that  predicted  by  Raoult’s  law,  the  system  is  said  to  show  a  negative  deviation  from  the  law  and  the  boiling  point  diagram  will  be  convex  upward.       In  many  cases  the  deviations  are  large  enough  to  produce  a  maxima  or  minima  in  the  boiling  point  diagram.    Note  that  at  the  maximum  or  minimum  there  is  a  point  of  tagency  of  the  vapour  and  liquid  curves.    Also,  at  every  𝑋𝑋  the  slope  of  the  vapour  and  liquid  curves  have  the  same  sign  (i.e.  positive  or  negative)  and  one  is  zero  where  and  only  where  the  other  is  zero.        

Sketch   vapour   pressure   and   boiling   point   diagrams   for   ideal   and   non-­‐ideal   systems,   drawing  separate  diagrams  illustrating    positive  and  negative  deviations.    Explain  why  these  deviations  occur   in  terms  of  intermolecular  forces.    See  Shoemaker’s  (1)  introduction  for  help  with  this.  

 Liquid-­‐vapour   phase   diagrams   and,   in   particular,   boiling   point   diagrams   are   of   importance   in  

connection   with   distillation,   which   usually   has   the   objective   of   separating   a   liquid   solution   into   it’s  individual  components.    Basically,  the  liquid  solution  is  boiled  and  the  vapour  condensed  into  a  separate  container.     Consider   a   simple   distillation   of   an   ideal   binary   solution   having   components   C   and  D   (the  boiling  point  of  D  being  higher  than  C).    When  the  solution  is  boiled  and  a  small  portion  of  the  vapour  condensed,  the  drop  of  distillate  (condensed  vapour)  obtained  will  be  richer  in  C  than  in  D.    This  causes  the  residue  in  the  flask  to  be  slightly  richer  in  D.    When  the  next  drop  of  distillate  is  obtained  it  will  be  richer  in  D  than  was  the  first  drop.    If  the  distillation  is  continued  until  all  of  the  residue  is  boiled  away,  the  last  drop  of  distillate  obtained  will  be  (virtually)  pure  D.    To  completely  separate  the  solution  in  this  way,  the  reciveing  flask  would  have  to  be  changed  many  times  during  the  distillation  and  the  separate  portions   of   distillate   subsequently   distilled   in   the   same   way,   and   so   on.     This   would   be   very   time  consuming  as  many  subsequent  distillations  would  be  required.  

 Now  consider  the  same  solution  but  assume  that  it  is  not  ideal  (its  boiling  point  diagram  shows  a  

minimum  or  maximum).    When  distilled,   the  composition  of   the  vapour  and   residue  do  not  approach  pure   C   or   D   but,   instead,   the   composition   corresponding   to   the   maximum   or   minimum.     Here   the  solution  will  distill  without  a  change  in  composition  because  the  vapour  and  liquid  phases  have  the  same  composition.     This   solution   is   known   as   an   azeotrope   and   cannot   be   separated   by   distillation.    Azeotropes  are  sometimes  useful   (the  aqueous  azeotrope  of  hydrochloric  acid   is  used  as  an  analytical  standard)  but  most  times  are  nuisances  (aqueous  95%  ethanol   is  an  azeotrope,  the  existance  of  which  prevents  the  preparation  of  absolute  (100  %)  ethanol  by  direct  distillation  of  dilute  ethanol  solutions).  

Chemistry  2301   Phase  Diagram   Fall  2011  

Page  3  of  7    

Experimental  

Safety  Issues   Since  you  are  heating  flammable  solvents,  please  be  aware  of  the  location  of  the  closest  fire  

extinguisher  in  case  it  needs  to  be  used.   The  solvents  used  are  quite  volatile.    Please  keep  all  containers  containing  solvents  capped  

as  much  as  possible  to  minimize  fumes  in  the  laboratory.   MSDS  sheets  for  the  chemicals  used  can  be  found  in  the  experiment’s  folder  placed  near  

experimental  setup  in  C-­‐3041.   Please  wear  appropriate  eye  protection,  a  lab  coat  and  disposable  nitrile  gloves  for  the  

duration  of  this  experiemnt.        Your   instructor  will   supply  hints   concerning   the  use  and   care  of   the  apparatus,  which  will   include   the  operation  of  the  Mettler-­‐Toledo  digital  refractometer.  Treat  the  glass  Cottrell  pump  with  care  because  it  is  fragile.  Take  notice  of  the  five  positions  of  the  stopcock  (see  diagram  on  following  page).       It   is   extremely   time-­‐consuming   to   select   concentrations   which   will   produce   a   good   phase  diagram  and  allow  discovery  of  the  azeotropic  properties.  Therefore  a  list  of  suggested  volumes  will  be  supplied.1    

1. Unclamp  the  boiling  tube  from  the  ring  stand.    Place  the  Cotrell  pump  in  the  tube  by  sliding   it  down  the  side.    Reclamp  the  boiling  tube  in  position.    

2. With   the   stopcock   in   position   1,   introduce   roughly   100  mL   of   cyclohexane,  measured   with   a  graduated  cylinder,  into  one  of  the  boiling  tubes.    Add  a  few  boiling  stones.    

3. Position   the   thermometer   and   condenser   in   the   boiling   tube.     The   thermometer   should   be  placed   so   that   its   bulb   is   in   the  middle  of   the   three   spouts  on   the  Cotrell   pump.   Turn  on   the  condenser  water.  

 4. Mark   the   level   of   pure   cyclohexane   at   room   temperature   on   the   outside   of   the   boiling   tube  

using  a  glass  marker.    

5. Raise   the   heating   mantle   into   position   around   the   bottom   of   the   tube   and   turn   on   the  transformer  at  a  setting  of  about  90.    

                                                                                                                         1  Posted  on  the  benchtop  adjacent  to  the  experimental  setup  (Thanks  to  Margaret  Miller  and  Jerome  Johnson).  

Chemistry  2301   Phase  Diagram   Fall  2011  

Page  4  of  7    

6. While   the   cyclohexane   is  heating  obtain  20  sample  vials  with  caps   and   number   two   sets   from  1  to   10   with   one   each   for   liquid   (L)  and  vapour  (V)  samples  (i.e.  1L,  2L,  3L,  …  and  1V,  2V,  3V,  …)    

7. Obtain  a   clean  dry   reserve  flask   with   a   stopper.     Record   the  atmospheric   pressure   in   mm   Hg  (an  instructor  will  show  you  how  to  use   the   barometer   in   C-­‐3041A).  Two   or   three   readings   during   the  laboratory  period  will  be  sufficient.    

8. When   the   liquid   has   been  boiling   for   about   5  minutes.     Turn  the   stopcock   clockwise   to  position  2   to   drain   the   contents   of   the  condensed  vapour  column  into  the  reserve  flask.    

9. Turn   the   stopcock   back   to  position  3.  Immediately,  record  the  temperature  to  the  nearest  0.01°C.  Allow   the   column   to   fill   to  approximately   ¾   full.     Again,  immediately  record  temperature.    

10. If   the   two   temperatures  agree   to   within   0.20°C,  immediately   turn   off   the  transformer  and  lower  the  heating  mantle2,   then   begin   sample  

withdrawal.  If  temperatures  do  not  agree,  repeat  steps  8  through  10.  

Sample  Withdrawal  11. Turn  the  stopcock  clockwise  to  position  2.    Condensed  vapour  will  begin  to  flow  out  of  the  spout  

into  the  reserve  flask.    When  the  column  is  half  empty  turn  quickly  back  to  position  3  again  to  close  the  stopcock  and  keep  the  other  half  of  the  condensed  vapour  in  the  column.  

 12. Collect  a  small  sample  of  condensed  vapour  in  the  vial  labeled  1V  by  returning  the  stopcock  to  

position  2,  then  turn  back  to  position  3.    It  is  only  necessary  to  approximately  half  fill  the  vial.    

                                                                                                                         2  Do  not  allow  liquids  to  fall  on  the  mantle.    Move  it  well  away  from  the  boiling  tube  when  you  are  not  heating  the  solution.    Also,  notice  the  location  of  the  fire  extinguishers  adjacent  to  the  main  lab  doors!!  

Chemistry  2301   Phase  Diagram   Fall  2011  

Page  5  of  7    

13. Drain  roughly  half  of  the  liquid  in  the  boiling  tube  into  the  reserve  flask  to  flush  the  contents  of  the  spout  by  turning  the  stopcock  clockwise  to  position  4.    Turn  to  position  5  to  stop  the  flow  when  approximately  half  of  the  liquid  is  remaing  in  the  tube.  

 14. Collect  a  liquid  sample  in  the  vial  labeled  1L  by  returning  the  stopcock  to  position  4.    Again,  it  is  

only  necessary  to  half  fill  the  vial.    Stop  the  flow  be  returning  the  stopcock  to  position  1.    

15. Now,   add   the   required   amount3   of   pure   ethyl   acetate,   measured   roughly   with   a   graduated  cylinder.  

 16. Top  up  the  solution,  by  adding  liquid  from  the  reserve  flask,  to  the  100  mL  level  as  marked  on  

the  boiling  tube.  Discard  the  remaining  contents  of  the  reserve  flask  in  the  organic  dump  or  a  waste  flask  (this  is  important).  

 17. Add  a  few  more  boiling  stones  (this  is  also  important!).    Raise  the  heating  mantle  into  position  

and  turn  on  the  transformer.    

18. While   the   liquid   is   heating   you   may   measure   the   refractive   indices   of   the   vapour   and   liquid  samples  collected  in  step  12.    Your  instructor  will  probably,  however,  ask  you  to  collect  several  samples  before  measuring.    Be  sure  sample  vials  are  tightly  sealed  to  prevent  evaporation.  

 19. Repeat  steps  8  through  17  until  the  suggested  increments  have  been  added.  

 20. When  you  are  comfortable  with  the  operation  of  the  apparatus,  return  to  step  1.    This  time  use  

pure  ethyl  acetate   in   the  second  boiling  tube  and  repeat   the  procedure,  adding   increments  of  cyclohexane  to  the  ethyl  acetate.    

21. If   you   have   not   done   so   already,   measure   and   record   the   refractive   indicies   of   each   sample  collected.  

 Have  your  data  checked  by  an   instructor  before  carefully  disassmbling   the  apparatus.    Do  not  

rinse  any  parts  with  water.    Simply  empty  liquids  into  the  organic  dump  and  leave  the  apparatus  open  to  the  air  to  dry.    If  you  have  not  already  done  so  measure  the  atmospheric  pressure.    Before  leaving  the  lab,  be  certain  the  water  flowing  through  both  condensers  has  been  turned  off.  

Results     Calculate  the  mole  percent  or  mole  fraction  of  cyclohexane  in  each  sample.  You  may  use  a  linear  interpolation  between  the  succesive  data  in  the  refractive  index  -­‐  composition  table  located  on  the  last  page  of  this  outline  or  the  calibration  equation  provided.    Calculate  the  mean  temperature  over  which  vapour  condensed  for  each  sample.    

Construct  a  boiling  point  diagram,  plotting  𝑇𝑇  versus  𝑋𝑋 .  Expand  your  data  to  fill  the  page.    This  diagram  should  contain  two  separate  sets  of  data  points,  one  for  the  liquid  phase  and  one  for  the   vapour   phase.     To   allow   for   differeitiation  between  phases,   the  data   points   corresponding   to   the  liquid   phase   should   have   a   different   color   or   shape   than   the   vapour   phase   data   points.     Use   french  

                                                                                                                         3  Amounts  are  posted  on  the  benchtop.  

Chemistry  2301   Phase  Diagram   Fall  2011  

Page  6  of  7    

curves   (available   in  C-­‐3041)   to   fit   your  data  with  very   smooth  curves,   tangent  at  a   single  point  at   the  minimum.4       If  your  data  is  smooth  enough,  with  a  good  fit  and  a  large,  very  fine-­‐grid  plot,  your  precision  will  not   be   limited   by   your   graph,   but   rather   by   your   thermometer   and   refractometer,   or,   if   available  reference   data   is   not   very   precise,   by   your   thermometer   and   refractive   index/composition   table   or  calibration  equation.       Using   your   completed   phase   diagram,   report   an   estimate   of   the   azeotropic   composition,  temperature,  and  pressure  (if  measured).  

Discussion     Your   data   should   be   very   smooth,   with   both   curves   originating   at   the   boiling   point   of   pure  cyclohexane  on  the  left  and  terminating  at  the  boiling  point  of  pure  ethyl  acetate  on  the  right.    Explain  any  anomalies.       Obtain   literature   values   of   the   azeotropic   composition,   temperature,   and   pressure   for   the  cyclohexane/ethyl  acetate  system  from  Gordon  et  al   (4),  and  compare  with  your  experimental  values.    Why  might  your  experimental  results  not  agree  with  the  literature  results?      

Using  molecular  diagrams,   show  the   intermolecular   forces  which  seem  to  be   important   in   the  cyclohexane/ethyl  acetate  system.    Explain  how  deviations  from  Raoult's  Law  occur  in  this  system.  

Works  Cited  1.  Shoemaker,  David  P.,  Garland,  Carl  W.  and  Nibler,  Joseph  W.  Experiments  in  Physical  Chemistry.  8th.  New  York  :  McGraw  Hill  Higher  Education,  2009.  ISBN  978-­‐0-­‐07-­‐282842-­‐9.  2.  Sime,  Rodney  J.  Physical  Chemistry  -­‐  Methods,  Techniques,  and  Experiments.  Philadelphia  :  Saunders  College  Pubulishing,  1990.  ISBN  03-­‐0-­‐009499-­‐2.  3.  Mortimer,  Robert  G.  Physical  Chemistry.  3rd.  Boston  :  Elsevier  Academic  Press,  2008.  ISBN-­‐13:  978-­‐1-­‐12-­‐370617-­‐1.  4.   Developement   of   Binary   Liquid-­‐Vapor   Phase   Diagram   Laboratory   Procedures   to   Replace   the  Traditional   Tetrachloroethylene/Cyclohexanone   System.   Gordon,   Kelly   J.,   et   al.   s.l.  :   Chem.   Educator,  2007,  Vol.  12,  pp.  177-­‐178.  5.  An  Improved  Apparatus  for  Determining  Vapor-­‐Liquid  Equilibrium.  Rogers,  James  W.,  Knight,  Jack  W.  and  Choppin,  A.  R.  s.l.  :  Journal  of  Chemical  Education,  October  1947,  Vol.  24,  pp.  491-­‐493.    

                                                                                                                         4  This  diagram  is  the  centerpiece  of  your  report.    Make  it  a  good  one.    It  is  worth  a  high  percentage  of  the  grade  for  your  report.  

Chemistry  2301   Phase  Diagram   Fall  2011  

Page  7  of  7    

 

 

 

 

Refractive  Index  /  Composition  Table    Refractive   Index   and   corresponding   composition   of   cyclohexane/ethyl   acetate   mixtures   according   to   the  calibration  equation:    

𝑛𝑛 = 1.3699 + 0.0363  𝑋𝑋 + 0.0163  𝑋𝑋  

 

𝑛𝑛  mol  %  C6H12  

𝑛𝑛  mol  %  C6H12  

𝑛𝑛  mol  %  C6H12  

𝑛𝑛  mol  %  C6H12  

1.3700   0.00   1.3836   32.37   1.3972   59.56   1.4108   82.69  1.3706   2.62   1.3842   33.69   1.3978   60.70   1.4114   83.64  1.3712   3.62   1.3848   35.01   1.3984   61.83   1.4120   84.59  1.3719   5.61   1.3854   36.31   1.3990   62.95   1.4126   85.53  1.3725   7.10   1.3861   37.61   1.3996   64.07   1.4132   86.46  1.3731   8.57   1.3867   38.90   1.4003   65.17   1.4138   87.38  1.3737   10.04   1.3873   40.19   1.4009   66.27   1.4145   88.29  1.3743   11.50   1.3879   41.46   1.4015   67.36   1.4151   89.20  1.3749   12.95   1.3885   42.72   1.4021   68.44   1.4157   90.09  1.3756   14.39   1.3891   43.98   1.4027   69.51   1.4163   90.98  1.3762   15.82   1.3898   45.23   1.4033   70.58   1.4169   91.86  1.3768   17.25   1.3904   46.47   1.4040   71.63   1.4176   92.73  1.3774   18.66   1.3910   47.70   1.4046   72.68   1.4182   93.59  1.3780   20.07   1.3916   48.93   1.4052   73.72   1.4188   94.45  1.3786   21.47   1.3922   50.14   1.4058   74.75   1.4194   95.29  1.3793   22.86   1.3929   51.35   1.4064   75.77   1.4200   96.13  1.3799   24.25   1.3935   52.54   1.4071   76.78   1.4206   96.96  1.3805   25.62   1.3941   53.73   1.4077   77.79   1.4213   97.78  1.3811   26.99   1.3947   54.92   1.4083   78.78   1.4219   98.59  1.3817   28.34   1.3953   56.09   1.4089   79.77   1.4225   99.40  1.3824   29.69   1.3959   57.25   1.4095   80.75   1.4227   100.00  1.3830   31.03   1.3966   58.41   1.4101   81.73  

 **  Notice  that,  in  the  table,  composition  is  expressed  in  mole  percent,  not  mole  fraction.