Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After...

15
Experimental quantum teleportation Dirk Bouwmeester, JianWei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & Anton Zeilinger NATURE | VOL 390 | 11 DECEMBER 1997

Transcript of Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After...

Page 1: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Experimental quantumteleportation

Dirk Bouwmeester, Jian‐Wei Pan, Klaus Mattle, Manfred Eibl, Harald

Weinfurter & Anton Zeilinger

NATURE | VOL 390 | 11 DECEMBER 1997

Page 2: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Overview

• Motivation

• General theory behind teleportation

• Experimental setup

• Applications of teleportation

• New research from this study

Page 3: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Relaying quantum information is difficult

Sending directly can take a lot of time

Coherence can be lost in the transfer

We can’t just measure a particle’s state and then reconstruct, because‐‐

Each state is a superposition of many states. 

Once we measure the particle, it will collapse into only one state, and all the other information is lost

Page 4: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

For example, a photon can be polarized or in a superposition of polarized states.

Beam Splitter: horizontally polarized photons are reflected, vertically polarized photons are transmitted 

The measurement projects the photon onto one polarization or the other, and we lose information about the original state

Page 5: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

So, if we want to replicate the state, we can’t just measure and reconstruct…

But we can use entanglement to replicate the state by quantum teleportation.

We have Alice, with a particle in state <ψ1|.  She wants to transfer it to Bob.

Bob and Alice also have particles 2 and 3, which are entangled.

Page 6: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

…if Alice can entangle particle 1 and particle 2,

…then particle 3 should be in the same state as the original particle 1.

Page 7: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

But how can we do this experimentally?

Page 8: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Experimental verification of teleportation theory

‐1993: Bennett et al. suggest it is possible to transfer the state of one particle to another using entanglement

Meanwhile: Quantum computing andcryptography develop

‐1995: Kwiat et al. build a bright entanglement source‐1997: Bouwmeester et al.demonstrate experimental teleportationSpontaneous parametric downconversion

provides a bright source of entangled photonsSource: Wikimedia Commons

Page 9: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Teleportation has been achieved, but

• Initial state is destroyed on Alice’s side during teleportation (don’t try this on yourself!)

• Bell‐state measurement has four outcomes, including the desired antisymmetric state– Teleportation occurs just 25% of the time, 100% with extra classical information (slower)

Desired state after measurement

Other possible outcomes

Page 10: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

But this kind of teleportation is good enough

• Complete basis of states can be teleported, allowing teleportation of general states

• Applications in quantum information:– Quantum memory– Data transfer through poor 

connections without losses– Needs work, though: 

improved data rate?• New science:

– Bell test on particles with no Common past

Page 11: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Citation Analysis

Since its publication in 1997, it have been sited for 1991 times.

Ci

Citation by Year                                           Citation By Journal

020406080

100120140160180

1998

‐1999

‐2000

‐2001

‐2002

‐2003

‐2004

‐2005

‐2006

‐2007

‐2008

‐2009

‐2010

‐2011.10.9

Citation

Citation

0

200

400

600

800

1000

1200

470

137 115 77 70 34

1088

Page 12: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Recent Progress in Quantum Teleportation Experiments

After the first Innsbruck experiment• 2003‐Experimental realization offreely propagating teleported qubitsJian‐Wei Pan et al., Nature 421 (2003) 721‐725

• 2004‐Experimental demonstration of five‐photon entanglement and open‐destination teleportationZhi Zhao, et al. Nature 430, 54‐58 (1 July 2004) 

• 2006‐Experimental entanglementof six photons in graph statesChao‐Yang Lu, et al. Nature Physics 3, 91 ‐ 95 (2007)

Page 13: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Recent Progress in Quantum Teleportation Experiments (Continued)• 2008‐Memory‐built‐in quantum teleportation with 

photonic and atomic qubitsYu‐Ao Chen, et al, Nature Physics 4, 103 ‐ 107 (2008) 

Experimental set‐up for teleportation between photonic and atomic qubits.

Page 14: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Recent Progress in Quantum Teleportation Experiments (continued)• 2010‐Quantum teleportation achieved over 16 km

University of Science and Technology of China, Tsinghua University 

(PhysOrg.com) ‐‐ Scientists in China havesucceeded in teleporting information betweenphotons further than ever before. Theytransported quantum information over a freespace distance of 16 km (10 miles), muchfurther than the few hundred meterspreviously achieved, which brings us closer totransmitting information over long distanceswithout the need for a traditional signal.

Page 15: Experimental quantum teleportation · Recent Progress in Quantum Teleportation Experiments After the first Innsbruck experiment • 2003‐Experimental realization of freely propagating

Summary

• Observed teleportation of photon polarization states

• Teleportation can be used to realize a quantum computer

• Fueled new research involving more photons and information transfer between different particles