Exercise of mechanical vibration (Damped vibration) Q3: The ...Exercise of mechanical vibration...

18
Q1: Establish the equation of motion of each system about x. Regarding (1), answer the critical damping coefficient and damping ratio. m m c x m เฌต เฌถ Exercise of mechanical vibration (Damped vibration) c x (2) (3) (1) x เฌต เฌถ Basic Q3: The top view of a door is shown in the figure. The door has a mass of 40 kg, 2.1 m height, 1.2 m width, and 0.05 m thickness. The door has a torsional spring and damper of coefficient เตŒ13.6 Nm/rad and Nms/rad, respectively. Determine the critical value of when the damping ratio is เตŒ1. Torsional spring and damper Basic Q5: Highway crash barriers are designed to absorb a vehicleโ€™s kinetic energy without bringing the vehicle to such an abrupt stop that the occupants are injured. The barrierโ€™s materials and thickness are chosen to accomplish this. It can be modeled as the springโ€massโ€ damper system. For this application, t =0 denotes the time of collision at x(0) = 0. The speed of the vehicle at this moment is แˆถ 0 เตŒ 22 m/s. For a particular barrier, k = 18,000 N/m and c = 20,000 Nใƒปs/m. Determine how long it takes to for the vehicle of mass 1,800 kg to stop, and how far it compresses the barrier. Basic Q6: Obtain the response of the following equation of motion for each of the following three cases: a) 0 เตŒ 2, แˆถ 0 เตŒ 5; b) 0 เตŒ 2, แˆถ 0 เตŒ เต†5; c) 0 เตŒ 2, แˆถ 0 เตŒ 0. And, draw x(t) for the three cases using a graph drawing software such as MS Excel. Basic

Transcript of Exercise of mechanical vibration (Damped vibration) Q3: The ...Exercise of mechanical vibration...

  • Q1: Establish the equation of motion of each system about x. Regarding (1), answer the critical damping coefficient and damping ratio.

    m

    mc

    x

    m๐‘ ๐‘

    Exercise of mechanical vibration (Damped vibration)

    cx

    (2) (3)

    (1) x

    ๐‘ ๐‘๐‘˜

    Basic

    Q3: The top view of a door is shown in the figure. The door has a mass of 40 kg, 2.1 m height, 1.2 m width, and 0.05 m thickness. The door has a torsional spring and damper of coefficient ๐‘˜ 13.6 Nm/rad and ๐‘ Nms/rad, respectively. Determine the critical value of ๐‘ when the damping ratio is ๐œ 1.

    ๐œƒ๐‘๐‘˜Torsional springand damper

    Basic

    Q5: Highway crash barriers are designed to absorb a vehicleโ€™s kineticenergy without bringing the vehicle to such an abrupt stop that theoccupants are injured. The barrierโ€™s materials and thickness arechosen to accomplish this. It can be modeled as the springโ€massโ€damper system. For this application, t = 0 denotes the time ofcollision at x(0) = 0. The speed of the vehicle at this moment is๐‘ฅ 0 22 m/s. For a particular barrier, k = 18,000 N/m and c =20,000 Nใƒปs/m. Determine how long it takes to for the vehicle ofmass 1,800 kg to stop, and how far it compresses the barrier.

    Basic

    Q6: Obtain the response of the following equation of motion

    for each of the following three cases:a) ๐‘ฅ 0 2, ๐‘ฅ 0 5;b) ๐‘ฅ 0 2, ๐‘ฅ 0 5;c) ๐‘ฅ 0 2, ๐‘ฅ 0 0.And, draw x(t) for the three cases using a graph drawing software such as MS Excel.

    Basic

  • Q8: Obtain the response of the following equation of motion

    for the following case:๐‘ฅ 0 3, ๐‘ฅ 0 5.And, draw x(t) for the three cases using a graph drawing software such as MS Excel.

    Basic

    Rk

    ฮฑ

    x

    ฮธ c

    Q10: Consider a cylinder that rolls without slipping. Let x = 0 denote therest position of the cylinder. Neglect the mass of the spring anddamper. The mass moment of inertia of the cylinder is I.(1) Obtain the equation of motion in terms of x.(2) Determine the damped natural angular frequency of the

    cylinder.

    Basic

    Q11: Derive the equation of motion for ฮธ. When ฮธ = 0, the spring is at itsnatural length. Assume that ฮธ is small (small angle assumption).Mass of the lever is negligible. Gravitational acceleration is g.Answer the damped natural angular frequency.

    m

    l1

    l2

    l3

    ฮธ

    c

    k

    Basic

    Q12: Consider a lever system shown in the figure. Obtain its equation ofmotion in terms of x, and determine the damped natural angularfrequency. x = 0, when the lever is at its rest (statically equilibrium)position.

    xma mb

    ab

    kc

    Basic

  • Q14: In the following system, the spring coefficient and mass are k=10000 N/m and m=20 kg, respectively. Find the critical damping coefficient.

    ใƒ†ใ‚ญใ‚นใƒˆ P51โ€2.9a 

    m

    k

    c

    2k

    Basic

    Q15: ๅทฆ็ซฏใ‚’ๆ”ฏ็‚นใจใ—ใฆๅ›ž่ปขใงใใ‚‹ๅ‰›ไฝ“ๆฃ’ใฎๅ…ˆ็ซฏใซ่ณช้‡ใฎ็‰ฉไฝ“ใŒใคใ„ใฆใ„ใ‚‹ใ€‚ใฐใญๅฎšๆ•ฐ k ,็ฒ˜ๆ€งๆธ›่กฐไฟ‚ๆ•ฐ c ๏ผŽ(1)  ๐œƒใซ้–ขใ—ใฆใฎ้‹ๅ‹•ๆ–น็จ‹ๅผใ‚’ๆฑ‚ใ‚ใ‚ˆ๏ผŽ(2)  ่‡จ็•Œๆธ›่กฐไฟ‚ๆ•ฐใ‚’ๆฑ‚ใ‚ใ‚ˆ๏ผŽ

    ใƒ†ใ‚ญใ‚นใƒˆ P51โ€2.10a 

    m

    l

    l

    l

    Basic

    Q16:  Consider a pendulum supported by a springโ€damper system. A mass is attached at the end of a weightless rod. The rotation angle ฮธ is zero at the equilibrium position. Let the gravity acceleration be g.(1) Answer the equation of motion about ๐œƒ.(2) Answer c such that the pendulum is critically damped (๐œƒ is 

    small enough).

    m

    k

    c

    ๐œƒ

    ๐‘™๐‘™

    Basic

    Q18: If applicable, compute ฮถ, ฯ‰n, and ฯ‰d for the following characteristic roots of 1โ€d.o.f damped systems.(1) ๐œ† 2 6๐‘–(2) ๐œ† 10(3) ๐œ† , (or  1 )

    Basic

  • Q20: ไธ‹่จ˜(1)โ€”(3)ใฏ๏ผŒๆธ›่กฐใฎใ‚ใ‚‹1่‡ช็”ฑๅบฆๆŒฏๅ‹•็ณปใฎ้‹ๅ‹•ๆ–น็จ‹ๅผใงใ‚ใ‚‹.x is the displacement of the system. ๅ›บๆœ‰ๆ–น็จ‹ๅผใฎๆ นใ‚’ๅŸบใซ๏ผŒใใ‚Œใžใ‚ŒใŒ้Žๆธ›่กฐ็ณป๏ผŒไธ่ถณๆธ›่กฐ็ณป๏ผŒ่‡จ็•Œๆธ›่กฐ็ณปใฎใ„ใšใ‚Œใงใ‚ใ‚‹ใ‹ใ‚’ๅˆคๆ–ญใ›ใ‚ˆ๏ผŽ

    (1) 3๐‘ฅ 2๐‘ฅ ๐‘ฅ 0(2) 2๐‘ฅ 5๐‘ฅ 2๐‘ฅ 0(3) ๐‘ฅ 4๐‘ฅ 4๐‘ฅ 0

    Basic

    Q21: Consider a cart of mass m being supported by a spring of coefficient k and a damper of coefficient c. x is the displacement of the cart. At the equilibrium position, x = 0. The three curves in the figure depict the displacement of the cart after being released with the initial conditions being ๐‘ฅ ๐‘ก 0 ๐‘ฅ and ๐‘ฅ ๐‘ก 0 ๐‘ฃ . Answer the correct response of the system from X, Y, and Z when (1) ๐‘ 2 ๐‘š๐‘˜(2) ๐‘ 2 ๐‘š๐‘˜(3) ๐‘ 2 ๐‘š๐‘˜.

    0

    x0

    Time [s]

    x: Cart d

    isplacemen

    t

    X

    YZ

    Basic

    Q22: ๆง‹้€ ็‰ฉใซๅŠ ใˆใŸๅŠ›f ใจใใฎใŸใ‚ใฟxใฎๆฏ”f/xใ‚’่ค‡็ด ๆ•ฐใ‚’็”จใ„ใฆ่กจใ™ใจ๏ผŒๅพฎๅˆ†ใ‚’็”จใ„ใ‚‹ใ‚ˆใ‚Šใ‚‚็ฐกไพฟใจใชใ‚Š๏ผŒ็†่งฃใ‚’ไฟƒ้€ฒใ™ใ‚‹ใ“ใจใŒใ‚ใ‚‹๏ผŽไธ‹ๅ›ณใฎ็ฒ˜ๆ€งๆŠตๆŠ—ใฎใฟใ‹ใ‚‰ใชใ‚‹ๆง‹้€ ็‰ฉใ‚’ไพ‹ใจใ™ใ‚‹๏ผŽ็ฒ˜ๆ€งๆŠตๆŠ—ใฎๅ…ˆ็ซฏใซๅŠ›f ใ‚’ๅŠ ใˆ๏ผŒใใฎใŸใ‚ใฟใ‚’xใจใ™ใ‚‹๏ผŽๆง‹้€ ็‰ฉใŒ้™็š„ๅนณ่กกใซใ‚ใ‚‹ใจใ๏ผŒx = 0ใงใ‚ใ‚‹๏ผŽใ“ใฎ็ณปใฎ้‹ๅ‹•ๆ–น็จ‹ๅผใฏ๐‘“ ๐‘๐‘ฅใงใ‚ใ‚‹๏ผŽใ“ใ“ใง๏ผŒ๐‘ฅ ๐ดsin๐œ”๐‘ก ใจใ™ใ‚‹ใจ๏ผŒ๐‘“ ๐‘๐ด๐œ”cos๐œ”๐‘ก๐‘–๐‘๐œ”๐‘ฅใจใชใ‚Š๏ผŒๅŠ›ใจใŸใ‚ใฟใฎๆฏ”ใฏ๏ผŒ๐‘“๐‘ฅ ๐‘–๐‘๐œ”ใจ่กจใ•ใ‚Œใ‚‹๏ผŽใ“ใฎใจใŠใ‚Š๏ผŒ็ฒ˜ๆ€ง่ฆ็ด ใฏ๏ผŒ

    ๐‘ฅ ๐‘ก๐‘“ใŸใ‚ใฟใฎๅ‘จๆณขๆ•ฐ๐œ”ใซไพๅญ˜ใ—๏ผŒใŸใ‚ใฟใ‚ˆใ‚Šใ‚‚ ๐œ‹/2 rad ไฝ็›ธใŒ้€ฒใ‚“ใ ๏ผŒใŸใ‚ใฟใฎ้€Ÿ

    ๅบฆใซๅฏพใ—ใŸๆŠ—ๅŠ›ใ‚’็™บ็”Ÿใ•ใ›ใ‚‹๏ผŽ

    Basic

    Answer the f/x ratios of the following systems using a complex unit.

    ๐‘๐‘ฅ ๐‘ก

    ๐‘“ ๐‘˜(1)

    ๐‘๐‘ฅ ๐‘ก๐‘“ ๐‘˜

    (2)

    ๐‘๐‘ฅ ๐‘ก

    ๐‘“๐‘˜(3)

    ๐‘˜๐‘๐‘ฅ ๐‘ก๐‘“ ๐‘˜

    (4)

    ๐‘˜

  • Q23 Consider a lever system on a horizontal plane, for which we do not need to consider the effect of the gravity. As shown in the figure, two point masses are fixed on the lever, one of which end is fixed to a frictionless pin. The lever rotates around this pin, and its rotation angle is small enough such that sin๐œƒ~๐œƒ. At its static equilibrium position, ๐œƒ 0. Answer the following problems.(1) Find the mass moment of inertia of the lever with the two 

    masses about the pin.(2) Find the equation of motion of the system about ๐œƒ. Use I as the 

    mass moment of inertia of the system.(3) Solve the equation acquired in (2) about ๐œƒ with the initial 

    conditions ๐œƒ 0 ๐œƒ and ๐œƒ 0 0 when the system is underdamped.

    Basic

    mm

    c

    Q24 The behaviors of 1โ€DOF systems can be understood from their characteristic roots. Complete the following roots locus by finding the correct combinations of the loci of roots (ใ„โ€”ใป) and the motions of 1โ€DOF springโ€massโ€damper systems (Aโ€”E).

    Im

    Re

    ใ„

    ใฏ

    ใปใซ

    ใ‚

    Roots locus of 1โ€DOF springโ€massโ€damper systems

    Basic

    Motions (displacement) after being released from rest

    Time

    (A)

    (C)

    (B)

    (D)

    (E)

    Time

    Time

    Displacemen

    t

    Displacemen

    t

  • Q26 When the equation of motion of 1โ€d.o.f vibration system is given asbelow, answer the following problems.๐‘ฅ 4๐‘ฅ 2๐‘ฅ 0(1) Choose one among ใ„, ใ‚, and ใฏ, to express the nature of the

    system.ใ„: Overdampedใ‚: Critically dampedใฏ: Underdamped

    (2) Find the solution of ๐‘ฅ with the initial conditions being ๐‘ฅ 0 1,๐‘ฅ 0 0.

    Basic

    Q28  Consider a pendulum supported by a springโ€damper system. A mass is attached at the end of a weightless rod. The rotation angle ฮธ is zero at the equilibrium position. Let the gravity acceleration be g.(1) Answer the equation of motion about ๐œƒ.(2) Answer c such that the pendulum is 

    critically damped (๐œƒ is small enough). (3) When the system is underdamped, 

    find the frequency of free vibration ๐‘ . (4) Find the solution of free vibration ๐œƒ ๐‘ก with the initial condition ๐œƒ 00 and ๐œƒ 0 ๐œ” . m

    k

    c

    ๐œƒ ๐‘™๐‘™

    Basic

    Q2: An inverted pendulum is supported by two springs as shown in the figure.  Assume small angles of vibration and neglect the rod mass. Answer the following problems.

    a) Derive the equation of motion of the system about ๐œƒ. 

    b) What is the relation among ๐‘™ , ๐‘™ , ๐‘š, and ๐‘˜ for the characteristic roots to include at least one positive real value?

    c) Describe the behavior of the system when the characteristic roots include positive real values.

    ๐‘š๐‘˜ ๐‘˜๐‘™๐‘™ ๐‘™

    ๐œƒ

    ๐œƒ๐‘”

    Intermediate

    Q7: Consider a disk that rotates on the floor without slippage. Its centeris connected to walls by way of springโ€damper systems withoutfriction of which spring and damping coefficients are k and c,respectively. The diskโ€™s radium and mass are r and m, respectively.(1) Obtain the equation of motion of the disk in terms of x.(2) When the system is critically damped, answer the following two

    problems.(1) Solve the motion of the disk with initial conditions being๐‘ฅ 0 0 and ๐‘ฅ 0 ๐‘ฃ .(2) Find tโ€™ at which the displacement of the disk becomes

    greatest.(3) When the system is underdamped (ฮถ < 1), solve the response of

    the system with the initial conditions being ๐‘ฅ 0 0 and๐‘ฅ 0 ๐‘ฃ .Intermediate

  • (4) Find the logarithmic decrement (ๅฏพๆ•ฐๆธ›่กฐ็Ž‡) ฮด, which is thelogarithmic ratio of two successive amplitudes.

    ๐›ฟ ln ๐‘Ž๐‘Žx(t)

    t

    a1 a2 a3r

    Q13: A homogeneous stick of mass m and length L revolves around O.The stick is supported by a spring and two dampers. Gravityacceleration g acts on the stick.

    (1) Answer the mass moment of inertial of the stick around O.

    (2) Answer the damped natural angular frequency of the stick. You may use a small angle assumption.

    ฮธ

    L/4

    L/2

    L

    O

    Intermediate

    Q19: A hammer strikes a metal plate at the initial speed of v0. Thehammer mass is ๐‘š and the plate mass is ๐‘š . The metal plate issupported by the stiffness ๐‘˜ and damping ๐‘. Answer the expressionof the plate about x, of which equilibrium position is ๐‘ฅ 0. Do thisfor two values of the coefficient of restitution (1) e = 1 and (2) e = 0.Note, when e = 0, mp and mh moves as a mass of mp+mh. When e =1, mh rebounds after an extremely short contact period. Note that๐‘ 2 ๐‘š ๐‘˜ and ๐‘ 2 ๐‘š ๐‘š ๐‘˜.

    Intermediate

    Q25 Consider a cart system with Coulombโ€™s friction. It is supported by a spring of coefficient k. The position of the cart is denoted by x and its origin is the equilibrium position of the system with no friction. Answer the following problems.(1) Find the equation of motion of the system when the friction 

    force is given by ๐‘“ ๐‘ฅ 0๐‘“ ๐‘ฅ 0 .(2) Solve the above equation about x at ๐‘ก 0, with initial 

    position ๐‘ฅ 0 0 and velocity ๐‘ฅ 0 ๐‘ฃ 0 .(3) Find the maximum position of the cart at ๐‘ก 0, .

    Intermediate

  • Q17: Consider an inverted pendulum supported by a rotational spring of constant k. The rotational spring produces the restoring torque proportional to the deflection angle. A mass of m is on the tip of the rod of length l. The rotational angle of the pendulum is denoted by ฮธ, and ฮธ = 0 when the pendulum stands straight. The spring is at its natural length when ฮธ = ฮธ0. The gravitational acceleration g acts on the mass. Answer the following problems. (1) Answer the mass moment of inertia of the pendulum about the 

    pivot.(2) Establish the equation of motion about ฮธ.(3) Consider a case where ฮธ0 = 0. The spring is at its natural length 

    when the pendulum stands straight.3โ€1)  Establish the equation of motion for a small angle (sinฮธ ~

    ฮธ).3โ€2)  Answer the characteristic root of the system.

    ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! 2017ๅนด ๅๅคๅฑ‹ๅคงๅญฆ ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒ

    3โ€3)  Depending on the k value, the behavior of the system can be categorized into three cases. Describe all of them.

    3โ€4)  In the case where the pendulum vibrates around ฮธ = 0, answer the natural angular frequency.

    (4) Consider a case where the pendulum is statically equivalent at ๐œƒ .  We discuss the behavior at ๐œƒ .4โ€1)  Answer the equation of motion about ฮธ.4โ€2)  Answer the natural angular frequency of the system.

    mฮธ

    kl

    m

    k

    ๐‘ฅ ๐‘กQ25 (Figure) Q27 Consider a 1โ€dof springโ€massโ€damper system in the figure. The

    mass is supported by two springs, a beam, and dashpot. The massmoves only horizontally and its displacement is small. The length,Youngโ€™s modulus, and second moment of are L, E, and I,respectively. Answer the following problems.

    ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒใ‚’่งฃใ„ใฆใฟใ‚ˆใ†! 2019ๅนด ๆฑๅŒ—ๅคงๅญฆ ๅคงๅญฆ้™ขๅ…ฅ่ฉฆๅ•้กŒ

  • (1) Find the equivalent spring coefficient of the beam: ๐‘˜ .(2) Find the collective spring coefficient of the entire system, K using๐‘˜ .(3) Find the critical damping coefficient of the system, Cc, using K.(4) When the system is underdamped, find the period of damped

    natural vibration T.(5) Find the ratio of vibratory amplitudes at two time points: ๐‘ฅ ๐‘ก๐‘‡ to ๐‘ฅ ๐‘ก .

    A: Translate the following paragraph into Japanese.

    The free response of damped vibration system has equation

    Its characteristic roots are

    There are three cases depending on the sign of the expressionunder the square root.i ๐‘ 4๐‘š๐‘˜ (this will be underdamping, c is small relative to m

    and k)ii ๐‘ 4๐‘š๐‘˜ (this will be overdamping, c is large relative to m andk)iii ๐‘ 4๐‘š๐‘˜ (this will be critical damping, c is just between overand under damping).

    ๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ 0..

    i) UnderdampingDamping force generates heat and dissipates energy. When thedamping constant is small, the system oscillates, but withdecreasing amplitude. Over time, it comes to rest at equilibrium.

    ii) OverdampingWhen the damping is large the damping force is so great that thesystem cannot oscillate.

    iii) Critical dampingAs in the overdamped case, this does not oscillate. For fixed m andk, choosing c to be the critical damping constant gives the fastestreturn of the system to its equilibrium position. In engineeringdesign, this is often a desirable property.

    B: Translate the following paragraph about springโ€massโ€damper systems.

    Consider a springโ€massโ€damper system described by๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ 0where m, k, and c are the mass, spring coefficient, and dampingcoefficient, respectively. This equation is rewritten as๐‘ฅ 2๐œ๐‘๐‘ฅ ๐‘ ๐‘ฅ 0where ๐‘ ๐‘˜/๐‘š and ๐œ ๐‘/2 ๐‘š๐‘˜. ๐œ is a dimensionless valuecalled the damping ratio and defined by the ratio of c and thecritical damping coefficient. The characteristic roots are๐‘  ๐œ๐‘ ๐‘–๐‘ 1 ๐œ .Its imaginary part is the frequency of the oscillation. This frequencyis called the damped natural angular frequency and is smaller thanundamped natural frequency.

  • COLUMN: ๆˆฆ็•ฅ็š„ๅญฆ็ฟ’

    ๆˆฆ็•ฅ็š„ๅญฆ็ฟ’ใจใฏ๏ผŒ่‰ฏใ„ๆˆ็ธพ๏ผˆAใ‚‚ใ—ใใฏB๏ผ‰ใงๅ˜ไฝใ‚’ๅ–ๅพ—ใ—ใฆใ„ใใŸใ‚ใฎๅŠน็Ž‡็š„ใชๅญฆ็ฟ’ใฎใ“ใจใงใ™๏ผŽไพ‹ใˆใฐ๏ผŒ้ŽๅŽปใฎ่ฉฆ้จ“ๅ•้กŒใ‚’ไธญๅฟƒใซๅ‹‰ๅผทใ—ใŸใ‚Š๏ผŒใ“ใฎๆผ”็ฟ’ๅ•้กŒใ‚’่งฃใใจใใ‚‚๏ผŒ่งฃๆณ•ใ‚„ใใฎๆ‰‹้ †ใใฎใ‚‚ใฎใ‚’่จ˜ๆ†ถใ™ใ‚‹ใ“ใจใซๅŠชใ‚ใŸใ‚Šใ™ใ‚‹ๅญฆ็ฟ’ๆณ•ใงใ™๏ผŽๆˆฆ็•ฅ็š„ๅญฆ็ฟ’ใฎๅ•้กŒใฏ๏ผŒใชใœใใฎใ‚ˆใ†ใช่งฃๆณ•/ๅŽŸ็†ใซใชใ‚‹ใฎใ‹ใ‚’็œŸใซ็†่งฃใ—ใ‚ˆใ†ใจใ™ใ‚‹ๅงฟๅ‹ข๏ผˆใ™ใชใ‚ใกๆˆ้•ทใฎๆฉŸไผš๏ผ‰ใ‚’ๅคฑใฃใฆใ—ใพใ†ใ“ใจใงใ™๏ผŽๅทฅๅญฆ่€…ใ‚‚ใ—ใใฏๆŠ€่ก“่€…ใจใ—ใฆๆ–ฐใ—ใ„ๅ•้กŒใซ้ขใ—ใŸใจใ๏ผŒ็š†ใ•ใ‚“ใ‚’ๅพŒๆŠผใ—ใ—ใฆใใ‚Œใ‚‹ใฎใฏๅŽŸ็†ใฎๆทฑใ„็†่งฃใงใ™๏ผŽ

    ๐‘š๐‘ฅ ๐‘ ๐‘ ๐‘ฅ ๐‘˜๐‘ฅ 0๐‘ 2 ๐‘š๐‘˜๐‘ ๐‘˜๐‘š๐œ ๐‘ ๐‘2 ๐‘š๐‘˜๐‘š๐‘ฅ ๐ถ ๐ถ๐ถ ๐ถ ๐‘ฅ 0

    AnswerQ1(1) ๐‘š๐‘ฅ 2๐‘๐‘ฅ 0(2)

    (3)

    Q2 ๐‘š๐‘™ ๐œƒ 2๐‘˜๐‘™ ๐‘š๐‘”๐‘™ ๐œƒ 0a) 2๐‘˜๐‘™ ๐‘š๐‘”๐‘™ 0b)c) The pendulum falls down or does not remain around ๐œƒ 0.The general solution is ๐œƒ ๐ด exp ๐œ† ๐‘ก ๐ด exp ๐œ† ๐‘ก.If ๐œ† or ๐œ† includes a positive real value, ๐œƒ diverges over time.

    Q3 ๐œŒ 401.2 0.05 2003๐ผ ๐œŒ ๐‘Ÿ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ. 19.23 kgm.๐ผ ๐œƒ ๐‘ ๐œƒ ๐‘˜๐œƒ 0ฮถ 1 ๐‘2 ๐‘€๐พEquation of Motion

    ๐‘ 2 ๐ผ๐‘˜ 32.3 Nms/rad

    Q4: Translate the following paragraph into Japanese.

    ๆธ›่กฐๆŒฏๅ‹•็ณปใฎ่‡ช็”ฑๅฟœ็ญ”ใฏ๏ผŒไธ‹่จ˜ใฎๅผใง่กจ็พใ•ใ‚Œใ‚‹:

    ใ“ใฎ็‰นๆ€งๆ–น็จ‹ๅผใฎๆ นใฏ๏ผŒ

    ใƒซใƒผใƒˆใฎไธญใฎ็ฌฆๅทใซใ‚ˆใฃใฆ๏ผŒ3ใคใฎๅ ดๅˆใŒใ‚ใ‚‹๏ผŽi ๐‘ 4๐‘š๐‘˜ (ใ“ใ‚Œใฏไธ่ถณๆธ›่กฐใงใ‚ใ‚Š๏ผŒc ใฏ m ใจ k ใซๆฏ”ในใฆๅฐใ•ใ„)ii ๐‘ 4๐‘š๐‘˜ (ใ“ใ‚Œใฏ้Žๆธ›่กฐใงใ‚ใ‚Š๏ผŒc ใฏ m ใจ k ใซๆฏ”ในใฆๅคงใใ„)iii ๐‘ 4๐‘š๐‘˜ (ใ“ใ‚Œใฏ่‡จ็•Œๆธ›่กฐใงใ‚ใ‚Š๏ผŒc ใฏไธ่ถณๆธ›่กฐใจ้Žๆธ›่กฐใฎ่ชฟๅบฆ้–“ใงใ‚ใ‚‹).

    ๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ 0..

  • i) ไธ่ถณๆธ›่กฐๆธ›่กฐๅŠ›ใฏ็†ฑใ‚’็™บ็”Ÿใ•ใ›๏ผŒใ‚จใƒใƒซใ‚ฎใƒผใ‚’ๆ•ฃ้€ธใ•ใ›ใ‚‹๏ผŽๆธ›่กฐไฟ‚ๆ•ฐใŒๅฐใ•ใ„ใจใ๏ผŒใ‚ทใ‚นใƒ†ใƒ ใฏๆŒฏๅ‹•ใ™ใ‚‹ใŒ๏ผŒใใฎๆŒฏๅน…ใฏๆธ›ๅฐ‘ใ—ใฆใ„ใ๏ผŽๆ™‚้–“ใŒ็ตŒใคใจ๏ผŒๅนณ่กก็Šถๆ…‹ใง้™ๆญขใ™ใ‚‹๏ผŽ

    ii) ้Žๆธ›่กฐๆธ›่กฐใŒๅคงใใ„ๆ™‚๏ผŒๆธ›่กฐๅŠ›ใฏๅคงใใใชใ‚Š๏ผŒใ‚ทใ‚นใƒ†ใƒ ใฏๆŒฏๅ‹•ใงใใชใ„๏ผŽ

    iii) ่‡จ็•Œๆธ›่กฐ้Žๆธ›่กฐใฎๅ ดๅˆใจๅŒๆง˜ใซ๏ผŒใ“ใ‚ŒใฏๆŒฏๅ‹•ใ—ใชใ„๏ผŽm ใจ k ใŒๅ›บๅฎšใ•ใ‚Œใฆใ„ใ‚‹ใจใ, c ใ‚’่‡จ็•Œๆธ›่กฐไฟ‚ๆ•ฐใจใชใ‚‹ใ‚ˆใ†ใซ้ธๆŠžใ™ใ‚‹ใจ๏ผŒใ‚ทใ‚นใƒ†ใƒ ใฏๆœ€ใ‚‚ๆ—ฉใ๏ผŒๅนณ่กกไฝ็ฝฎใซๆˆปใ‚‹๏ผŽๅทฅๆฅญใƒ‡ใ‚ถใ‚คใƒณใงใฏ๏ผŒใ“ใ‚Œใฏใ—ใฐใ—ใฐๆœ›ใพใ—ใ„ๆ€ง่ณชใงใ‚ใ‚‹๏ผŽ

    Q5 1800๐‘ฅ 20000๐‘ฅ 18000๐‘ฅ 0By solving the characteristic roots of the above equation of motion1800๐‘  20000๐‘  18000 0๐‘  0.99๐‘  10.12๐‘ฅ ๐‘ก ๐ด๐‘’ ๐ต๐‘’ ๐‘ฅ 0 ๐ด ๐ต 0๐‘ฅ 0 ๐ด๐‘  ๐ต๐‘  22๐‘ฅ ๐‘ก 2.41 ๐‘’ . ๐‘’ .

    ๐‘ฅ ๐‘ก 2.41 0.99๐‘’ . 10.12๐‘’ . 0When the car stops ๐‘ฅ ๐‘ก 0. ๐‘ก 0.254 s๐‘ฅ ๐‘ก 0.254 2.41 ๐‘’ . ๐‘’ . 1.69 m

    ๐ด 133 , ๐ด 73 ๐ด 1, ๐ด 1๐ด 83 , ๐ด 23(a) (b)

    (c)

    Q6๐‘ฅ ๐‘ก ๐ด ๐‘’ ๐ด ๐‘’

    0

    1

    2

    3

    0 1 2 3 4 5

    x(t)

    t

    a

    b c

    Q7

    (1) 32 ๐‘š๐‘ฅ ๐‘๐‘ฅ 2๐‘˜๐‘ฅ 0(2โ€1)๐‘ฅ ๐‘ฃ ๐‘กexp ๐‘3๐‘š ๐‘ก (2โ€2)๐‘กโ€ฒ 1๐œ”(3) ๐‘ฅ ๐‘ฃ๐œ” 1 ๐œ exp ๐œ” ๐œ๐‘ก sin ๐œ” 1 ๐œ ๐‘ก ๐œ” 2

    ๐‘˜3๐‘š(4) ๐›ฟ 2๐œ‹๐œ1 ๐œ

    ๐œ ๐‘2 3๐‘š๐‘˜๐‘ฅ ๐‘ฃ ๐‘กexp 2 ๐‘˜3๐‘š ๐‘ก

    or

  • Q8 ๐‘ฅ ๐‘ก ๐ด ๐‘ก๐ด ๐‘’ ๐ด 3, ๐ด 11

    0

    1

    2

    3

    4

    0 1 2 3 4 5

    x(t)

    t

    Q9: Translate the following paragraph about springโ€massโ€dampersystems.

    ๆฌกใฎๅผใง่กจใ•ใ‚Œใ‚‹ใฐใญโ€ใƒžใ‚นโ€ใƒ€ใƒณใƒ‘็ณปใ‚’่€ƒใˆใ‚‹.๐‘š๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ 0.ใ“ใ“ใง๏ผŒ m, k, ใŠใ‚ˆใณ c ใฏใใ‚Œใžใ‚Œ๏ผŒ่ณช้‡๏ผŒใฐใญไฟ‚ๆ•ฐ๏ผŒๆธ›่กฐไฟ‚ๆ•ฐใงใ‚ใ‚‹๏ผŽใ“ใฎๅผใฏ๐‘ฅ 2๐œ๐‘๐‘ฅ ๐‘ ๐‘ฅ 0ใจๆ›ธใๆ›ใˆใ‚‰ใ‚Œ๏ผŒ๐‘ ๐‘˜/๐‘š ใŠใ‚ˆใณ ๐œ ๐‘/2 ๐‘š๐‘˜ ใงใ‚ใ‚‹๏ผŽ๐œ ใฏๆธ›่กฐๆฏ”ใจๅ‘ผใฐใ‚Œใ‚‹็„กๆฌกๅ…ƒ้‡ใงใ‚ใ‚Š๏ผŒc ใจ่‡จ็•Œๆธ›่กฐไฟ‚ๆ•ฐใฎๆฏ”ใงๅฎš็พฉใ•ใ‚Œใ‚‹๏ผŽ็‰นๆ€งๆ–น็จ‹ๅผใฎๆ นใฏ๐‘  ๐œ๐‘ ๐‘–๐‘ 1 ๐œใงใ‚ใ‚‹๏ผŽใ“ใฎ่™šๆ•ฐ้ƒจใŒๆŒฏๅ‹•ใฎๅ‘จๆณขๆ•ฐใงใ‚ใ‚‹๏ผŽใ“ใฎๅ‘จๆณขๆ•ฐใฏ๏ผŒๆธ›่กฐๅ›บๆœ‰่ง’ๅ‘จๆณขๆ•ฐใจๅ‘ผใฐใ‚Œ๏ผŒๆธ›่กฐใฎ็„กใ„ๅ›บๆœ‰ๅ‘จๆณขๆ•ฐใ‚ˆใ‚Šใ‚‚ๅฐใ•ใใชใ‚‹๏ผŽ

    (1)

    (2)

    ๐‘š ๐‘ฅ ๐‘๐‘ฅ ๐‘˜๐‘ฅ 0๐‘

    Q10

    ๐œ” ๐‘ 1 ๐œ ๐œ ๐‘2 ๐‘š ๐ผ๐‘… ๐‘˜Q11: Derive the equation of motion for ฮธ. When ฮธ = 0, the spring is at

    its natural length. Assume that ฮธ is small. Mass of the lever isnegligible. Gravitational acceleration is g. Answer the dampednatural angular frequency.

    m

    l1

    l2

    l3

    ฮธ

    c

    k

    ๐œ” ๐‘ 1 ๐œ๐‘ ๐‘š๐‘”๐‘™ ๐‘˜๐‘™๐‘š๐‘™๐œ ๐‘๐‘™2 ๐‘š๐‘™ ๐‘š๐‘”๐‘™ ๐‘˜๐‘™

    ๐‘š๐‘™ ๐œƒ ๐‘๐‘™ ๐œƒ ๐‘š๐‘”๐‘™ ๐‘˜๐‘™ ๐œƒ 0

  • Q12: Consider a lever system shown in the figure. Obtain its equationof motion in terms of x, and determine the damped naturalangular frequency. x = 0, when the lever is at its rest (staticallyequilibrium) position.

    xma mb

    ab

    kc

    ๐‘š ๐‘š ๐‘๐‘Ž ๐‘ฅ ๐‘๐‘ฅ ๐‘˜ ๐‘๐‘Ž ๐‘ฅ 0๐œ” ๐‘ 1 ๐œ ๐‘ ๐พ๐‘€ ๐œ ๐‘2 ๐‘€๐พ๐‘€ ๐‘š ๐‘š ๐‘๐‘Ž ๐พ ๐‘˜ ๐‘๐‘Ž

    ใƒ€ใƒณใƒ‘ใฎๅˆๆˆๆธ›่กฐไฟ‚ๆ•ฐใฏ๏ผŒ้€Ÿๅบฆใฎ้–ขไฟ‚ใ‹ใ‚‰ ใฎ้–ขไฟ‚

    ใŒๆˆใ‚Š็ซ‹ใคใฎใง๏ผŒ ๐‘ ๐‘ ๐‘๐‘ ๐‘ใจใชใ‚‹๏ผŽๅ‚พใ๐œƒใซใคใ„ใฆ๏ผŒ่ฟ‘ไผผใชใ—ใง่กจใ—ใŸ้‹ๅ‹•ๆ–น็จ‹ๅผใฏ๏ผŒใจใชใ‚‹๏ผŽๅพฎๅฐๆŒฏๅ‹•ใงใ‚ใ‚‹ใฎใง๏ผŒไปฅไธ‹ใฎใ‚ˆใ†ใซๆ•ด็†ใงใใ‚‹๏ผŽ

    ใ‚†ใˆใซ๏ผŒๆธ›่กฐๅ›บๆœ‰่ง’ๆŒฏๅ‹•ๆ•ฐใฏ

    (1) ๅŽŸ็‚นOใพใ‚ใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆ๐ผ ใฏ๐ผ ๐‘š๐ฟ ๐‘Ÿ ๐‘‘๐‘Ÿ 13 ๐‘š๐ฟ

    (2)

    016223

    1 22

    21

    212

    LkLmgL

    ccccmL

    Q13

    2cos

    sin2

    4cossin

    4sin

    231

    21

    212

    22 L

    dt

    Ld

    ccccLLkLmg

    dtdmL

    2

    21

    21

    )(43

    41

    823

    ccmcckLmg

    mLd

    Q14

    ใƒ†ใ‚ญใ‚นใƒˆ P51โ€2.9a 

    m

    k

    c

    2k

    ๐ถ 2 ๐‘€๐พโˆด ๐‘ 2 20 3 10000400 15 Ns/m

    ๐‘š ๐‘ฅ ๐‘๐‘ฅ 3๐‘˜๐‘ฅ 0 ๐‘€ ๐‘š๏ผŒ ๐ถ ๐‘๏ผŒ ๐พ 3๐‘˜ใจใŠใใจ่‡จ็•Œๆธ›่กฐใจใชใ‚‹ๆ™‚๏ผŒ ๏ผŽ

    Q15

    ml

    ll

    (1) ๐œƒใซ้–ขใ—ใฆใฎ้‹ๅ‹•ๆ–น็จ‹ๅผใ‚’ๆฑ‚ใ‚ใ‚ˆ

    (2)

    ๐ผ ๐‘š๐‘™๐ผ ๐œƒ ๐‘€ ๐‘€ ๐œƒ๐‘€๐‘€ ๐‘€ ๐‘˜ 23 ๐‘™๐œƒ 23 ๐‘™ 49 ๐‘˜๐‘™ ๐œƒ๐‘€ ๐‘ 13 ๐‘™๐œƒ 13 ๐‘™ 19 ๐‘๐‘™ ๐œƒ9๐‘š๐œƒ ๐‘๐œƒ 4๐‘˜๐œƒ 0๐ถ 2 9๐‘š 4๐‘˜12 ๐‘š๐‘˜

  • Q16(1) Answer the equation of motion about ๐œƒ.(2) Answer c such that the pendulum is critically damped.

    (1)๐‘š๐‘™ ๐œƒ ๐ถ๐‘™ ๐œƒ ๐‘˜๐‘™ ๐‘š๐‘”๐‘™ ๐œƒ 0(2)๐‘ 2 ๐‘€๐พ๐‘๐‘™ 2 ๐‘š๐‘™ ๐‘˜๐‘™ ๐‘š๐‘”๐‘™โˆด ๐‘ 2๐‘™ ๐‘š๐‘™ ๐‘˜๐‘™ ๐‘š๐‘”๐‘™

    Q17.(1) ๐ผ ๐‘š๐‘™ (2) ๐ผ๐œƒ ๐‘˜ ๐œƒ ๐œƒ ๐‘š๐‘”๐‘™sin๐œƒ(3โ€1)๐ผ๐œƒ ๐‘˜๐œƒ ๐‘š๐‘”๐‘™๐œƒ (3โ€2) ๐œ† ๐‘š๐‘”๐‘™ ๐‘˜๐‘š๐‘™(3โ€3)

    Case 1: ๐‘š๐‘”๐‘™ ๐‘˜ 0็‰นๆ€งๆ–น็จ‹ๅผใฎๆ นใŒๆญฃใฎๅฎŸ้ƒจใ‚’ๆœ‰ใ—๏ผŒ่™š้ƒจใ‚’ๆœ‰ใ•ใชใ„ใฎใง๏ผŒ่งฃใฏ็™บๆ•ฃใ™ใ‚‹๏ผŽใ™ใชใ‚ใก๏ผŒใฐใญๅฎšๆ•ฐใŒๅฐใ•ใ๏ผŒๆŒฏๅญใ‚’ๆ”ฏใˆใ‚‹ใ“ใจใŒใงใใชใ„ใฎใง๏ผŒๆŒฏๅญใŒ่ปขๅ€’ใ™ใ‚‹๏ผŽ

    Case 2: k = mgl็‰นๆ€งๆ–น็จ‹ๅผใฎๆ นใŒ0ใซใชใ‚‹ใฎใง๏ผŒ่ง’ๅบฆใฏๅค‰ๅŒ–ใ—ใชใ„๏ผŽใคใพใ‚Š๏ผŒๆŒฏๅญใฏ็œŸไธŠใ‚’ๅ‘ใ„ใŸใพใพ้™ๆญขใ™ใ‚‹๏ผŽ

    Case 3: ๐‘š๐‘”๐‘™ ๐‘˜ 0็‰นๆ€งๆ–น็จ‹ๅผใฎๆ นใŒ่™š้ƒจใฎใฟใซใชใ‚‹ใฎใง๏ผŒฮธ = 0 ใ‚’ไธญๅฟƒใซๆŒฏๅ‹•ใ™ใ‚‹๏ผŽใฐใญๅฎšๆ•ฐใŒ้‡ๅŠ›ใซๅฏพใ—ใฆๅๅˆ†ใซๅคงใใ„๏ผŽ

    (3โ€4)

    ๐œ” ๐‘˜ ๐‘š๐‘”๐‘™๐ผ ใŸใ ใ—๏ผŒk โ€“ mgl > 0(4โ€1)๐ผ๐œƒ ๐‘˜ ๐œƒ ๐œ‹2 0 ้‡ๅŠ›ใฎๅฝฑ้Ÿฟใ‚’่€ƒๆ…ฎใ—ใชใใฆใ‚‚่‰ฏใ„ๆกไปถใงใ‚ใ‚‹๏ผŽ

    ๐œ” ๐‘˜๐ผ(4โ€2)

    Q18.Hint: Use ๐œ† ๐œ” ๐œ ๐œ” ๐œ 1 when ๐œ 1๐œ† ๐œ” ๐œ ๐‘–๐œ” 1 ๐œ when ๐œ 1(1) ๐œ , ๐œ” 2 10, ๐œ” 6(2) ๐œ” 10, ๐œ 1(3) ๐œ , ๐œ”

  • Q19.ใ‚ทใ‚นใƒ†ใƒ ใฏไธ่ถณๆธ›่กฐ๏ผˆ๐‘ 2 ๐‘š๐‘˜๏ผ‰ใงใ‚ใ‚‹ใฎใง๏ผŒไธ€่ˆฌ่งฃใฏ๐‘ฅ ๐‘ก A๐‘’ cos ๐‘ ๐‘ก ๐œ™ใจใชใ‚‹๏ผŽ

    (1) e = 1 ใฎๅ ดๅˆ่ก็ชๅ‰ๅพŒใฎ้‹ๅ‹•้‡ใŒไฟๅญ˜ใ•ใ‚Œ๏ผŒๅ็™บไฟ‚ๆ•ฐใฎๆกไปถใ‚‚ๆบ€ใŸใ•ใ‚Œใ‚‹ใ“ใจใ‹ใ‚‰๏ผŒใƒใƒณใƒžใจๆฟใฎ่ก็ชๅ‰ใฎ้€Ÿๅบฆใ‚’ใใ‚Œใžใ‚Œ๏ผŒvh, vp ใจใ—๏ผŒ่ก็ชๅพŒใฏvโ€™h, vโ€™p ใจใ™ใ‚‹ใจ๏ผŒ1 ๐‘ฃ ๐‘ฃโ€ฒ๐‘ฃ ๐‘ฃใŠใ‚ˆใณ ๐‘ฃ ๐‘š ๐‘ฃ ๐‘š ๐‘ฃโ€ฒ ๐‘š ๐‘ฃโ€ฒ ๐‘šใŒๆบ€ใŸใ•ใ‚Œใชใ‘ใ‚Œใฐใชใ‚‰ใชใ„๏ผŽ๐‘ฃ 0ใ‹ใค๐‘ฃ ๐‘ฃ ใงใ‚ใ‚‹ใฎใง๏ผŒใ“ใ‚Œใ‚‰ใ‚’ๆบ€ใŸใ™่งฃใจใ—ใฆ๏ผŒ ๐‘ฃโ€ฒ 2๐‘ฃ ๐‘š๐‘š ๐‘š๐‘ฃโ€ฒ ๐‘ฃ ๐‘š ๐‘š๐‘š ๐‘šใŒๅพ—ใ‚‰ใ‚Œใ‚‹๏ผŽ

    Q19ๅˆๆœŸๅค‰ไฝใฏ ๐‘ฅ 0ใงใ‚ใ‚‹๏ผŽใ—ใŸใŒใฃใฆ๏ผŒ้‡‘ๅฑžๆฟใฎๅฟœ็ญ”ใฏไธ‹่จ˜ใฎใ‚ˆใ†ใซใชใ‚‹:๐‘ฅ ๐‘ก 2๐‘ฃ ๐‘š๐‘š ๐‘š ๐‘ ๐‘’ sin ๐‘ ๐‘ก๐‘ ๐‘˜๐‘š , ๐œ ๐‘2 ๐‘š ๐‘˜ , ๐‘ ๐‘ 1 ๐œ(2) e = 0 ใฎๅ ดๅˆ

    ใƒใƒณใƒžใจ้‡‘ๅฑžๆฟใฏ่ก็ชๅพŒใซใฏไธ€ไฝ“ใจใชใฃใฆๆŒฏๅ‹•ใ™ใ‚‹๏ผŽใƒใƒณใƒžใฎ่ก็ชๅ‰ๅพŒใง้‹ๅ‹•้‡ใŒไฟๅญ˜ใ•ใ‚Œใชใ‘ใ‚Œใฐใชใ‚‰ใชใ„ใฎใง๏ผŒ้‡‘ๅฑžๆฟใจใƒใƒณใƒžใฎ่ก็ช็›ดๅพŒใฎ้€Ÿๅบฆใ‚’vใจใ™ใ‚‹ใจ๏ผŒ ๐‘š ๐‘ฃ ๐‘ฃ ๐‘š ๐‘šใŒๆˆ็ซ‹ใ™ใ‚‹๏ผŽ่ก็ชๅพŒใฏ(1)ใจๅŒๆง˜ใซ่‡ช็”ฑๆŒฏๅ‹•ใซใชใ‚‹ใŸใ‚๏ผŒ้‡‘ๅฑžๆฟใฎๅฟœ็ญ”ใฏไธ‹่จ˜ใฎใ‚ˆใ†ใซใชใ‚‹:๐‘ฅ ๐‘ก ๐‘š ๐‘ฃ๐‘š ๐‘š ๐‘ ๐‘’ sin ๐‘ ๐‘ก๐‘ ๐‘˜๐‘š ๐‘š , ๐œ ๐‘2 ๐‘š ๐‘š ๐‘˜ , ๐‘ ๐‘ 1 ๐œ

    Q20(1) ไธ่ถณๆธ›่กฐ็ณป(2) ้Žๆธ›่กฐ็ณป(3) ่‡จ็•Œๆธ›่กฐ็ณป

    Q211) Z. ๆœ€ใ‚‚ๆ—ฉใๅนณ่กก็‚นใซๅŽๆŸใ™ใ‚‹ใฎใŒ๏ผŒ่‡จ็•Œๆธ›่กฐใฎ็‰นๅพดใงใ‚ใ‚‹๏ผŽ2) X. ใ“ใฎ3ๆกไปถใฎไธญใง๏ผŒๆŒฏๅ‹•ใŒ็”Ÿใ˜ใ‚‹ใฎใฏใ“ใฎไธ่ถณๆธ›่กฐใฎใฟใงใ‚

    ใ‚‹๏ผŽ3) Y. ็ฒ˜ๆ€งใŒๅคงใใ๏ผŒๅŽๆŸใซๆ™‚้–“ใ‚’่ฆใ™ใ‚‹ใฎใŒ้Žๆธ›่กฐใงใ‚ใ‚‹๏ผŽ

    (1)

    Q22 ๐‘“๐‘ฅ ๐‘˜ ๐‘–๐œ”๐‘(2) ๐‘“๐‘ฅ 1๐‘˜ 1๐‘–๐œ”๐‘ ๐‘–๐‘˜๐‘๐œ”๐‘˜ ๐‘–๐‘๐œ”(3) ๐‘“๐‘ฅ 1๐‘˜ 1๐‘˜ ๐‘–๐œ”๐‘(4) ๐‘“๐‘ฅ ๐‘˜ 1๐‘˜ 1๐‘–๐œ”๐‘

    (2)ใฎ็›ดๅˆ—ๆŽฅ็ถšใฏ๏ผŒๆŒฏๅ‹•ใฎๅ‘จๆณขๆ•ฐใŒๅฐใ•ใ„ใจใใฏ๏ผŒๆŸ”ใ‚‰ใ‹ใ๏ผˆๆŠตๆŠ—ใŒๅฐใ•ใ„๏ผ‰๏ผŒๅ‘จๆณขๆ•ฐใŒๅคงใใใชใ‚‹ใซใคใ‚Œใฆ๏ผŒๆœฌๆฅใฎใฐใญใฎๅ‰›ๆ€งใŒๆฉŸ่ƒฝใ™ใ‚‹ใจใ„ใ†็‰นๆ€งใ‚’ๆœ‰ใ™ใ‚‹๏ผŽ

    ๐œ”

    ๐œ™๐‘“/๐‘ฅ๐‘˜0

    0

    ๐œ‹2

  • Q23(1) ๐ผ ๐‘š๐‘Ÿ ๐‘š 2๐‘Ÿ 5๐‘š๐‘Ÿ(2) ๐ผ๐œƒ 4๐‘๐‘Ÿ ๐œƒ 4๐‘˜๐‘Ÿ ๐œƒ 0(3)

    ๐œƒ ๐‘ก exp ๐œ” ๐œ๐‘ก ๐ด cos๐œ” ๐‘ก ๐ด sin๐œ” ๐‘ก้‹ๅ‹•ๆ–น็จ‹ๅผใฎไธ€่ˆฌ่งฃใฏไธ‹่จ˜ใฎ้€šใ‚Šใงใ‚ใ‚Š๏ผŒๆœชๅฎšๆ•ฐA1, A2ใฏๅˆๆœŸๆกไปถใ‹ใ‚‰ๆฑบๅฎšใ•ใ‚Œใ‚‹๏ผŽ

    ๐œƒ 0 ๐ด ๐œƒ๐œƒ 0 ๐ด ๐œ” ๐œ ๐ด ๐œ” 0๐œ” 4๐‘˜๐‘Ÿ๐ผ๐œ ๐‘๐‘Ÿ๐ผ๐‘˜๐œ” ๐œ” 1 ๐œ๐ด ๐œƒ , ๐ด

    Im

    Re

    A

    B

    CD

    E

    Roots locus of 1โ€DOF springโ€massโ€damper systems

    Motions (displacement) after being released from rest

    Time

    (A)

    (C)

    (B)

    (D)

    (E)

    Q24 The behaviors of 1โ€DOF systems can be understood from their characteristic roots. Complete the following roots locus by finding the correct combinations of the loci of roots (ใ„โ€”ใป) and the motions of 1โ€DOF springโ€massโ€damper systems (Aโ€”E). (4 pt).

    Q25(1) ๐‘š๐‘ฅ ๐‘˜๐‘ฅ ๐‘“ (๐‘ฅ 0)๐‘š๐‘ฅ ๐‘˜๐‘ฅ ๐‘“ (๐‘ฅ 0)(2) ๐‘ฅ ๐‘ก ๐‘ฃ๐œ” sin๐œ” ๐‘ก ๐‘“๐‘˜ cos๐œ” ๐‘ก ๐‘“๐‘˜ ๐œ” ๐‘˜๐‘š(3)

    (2)ใฎๅผใ‚’ๅค‰ๅฝขใ—๏ผŒ๐‘ฅ ๐‘ก ๐‘ฃ๐œ” ๐‘“๐‘˜ sin ๐œ” ๐‘ก ๐œ™ ๐‘“๐‘˜ใ‚’ๅพ—ใ‚‹ใจ๏ผŒx(t)ใฎๆœ€ๅคงๅ€คใฏ๏ผŒไธ‹่จ˜ใจใชใ‚‹ใ“ใจใŒๅˆ†ใ‹ใ‚‹๏ผŽ๐‘ฅ ๐‘ก ๐‘ฃ๐œ” ๐‘“๐‘˜ ๐‘“๐‘˜

    Q26(1)  ใ„: Overdamped

    (2)

    ๐‘ฅ 2 12 exp 2 2 ๐‘ก 2 12 exp 2 2 ๐‘ก

    ๐‘ฅ ๐ด exp 2 2 ๐‘ก ๐ด exp 2 2 ๐‘ก๐‘ฅ 0 ๐ด ๐ด 1๐‘ฅ 0 ๐ด 2 2 ๐ด 2 2 0General solution: 

  • Q27(1) ๐‘˜ 3๐ธ๐ผ๐ฟ(2) ๐พ ๐‘˜ ๐‘˜๐‘˜ ๐‘˜ ๐‘˜(3) ๐ถ 2 ๐‘š๐พ(4) ๐‘‡ 2๐œ‹๐‘ 2๐œ‹๐‘ 1 ๐œ๐‘ ๐‘š๐พ ๐œ ๐‘2 ๐‘š๐พ

    (5) ๐‘ฅ ๐‘ก ๐‘Ž๐‘’ cos ๐‘ ๐‘ก ๐œ™ใจใ—ใฆ๏ผŒ๐‘ฅ ๐‘ก ๐‘‡๐‘ฅ ๐‘ก exp ๐‘2๐‘š ๐‘‡exp ๐‘2๐‘š 2๐œ‹๐‘ 1 ๐œexp 2๐œ‹๐‘4๐‘š๐‘˜ ๐‘

    Q28 (1) ๐ผ๐œƒ ๐‘€ๅ›ž่ปข้‹ๅ‹•ใงใ‚ใ‚‹ใŸใ‚๏ผŒใƒขใƒผใƒกใƒณใƒˆใฎ้‹ๅ‹•ๆ–น็จ‹ๅผใ“ใ“ใง๏ผŒ ๐ผใฏๆŒฏใ‚Šๅญใฎๅ›บๅฎš่ปธๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆใงใ‚ใ‚Š๏ผŒ๐‘€ใฏๆŒฏใ‚Šๅญใซไฝœ็”จใ™ใ‚‹ใƒขใƒผใƒกใƒณใƒˆใงใ‚ใ‚‹๏ผŽๆŒฏใ‚Šๅญใฎๅ›บๅฎš่ปธๅ‘จใ‚Šใฎๆ…ฃๆ€งใƒขใƒผใƒกใƒณใƒˆ ๐ผ ๐‘š๐‘™ ใจ่กจใ•ใ‚Œ๏ผŒๆŒฏใ‚Šๅญใซไฝœ็”จใ™ใ‚‹ใƒขใƒผใƒกใƒณใƒˆ๐‘€ ใฏ

    ใƒปใฐใญใฎๅพฉๅ…ƒๅŠ›ใซใ‚ˆใ‚‹ใƒขใƒผใƒกใƒณใƒˆ๏ผš๐‘€ ๐‘˜ ยท ๐‘™๐œƒ ยท ๐‘™ใƒปใƒ€ใƒณใƒ‘ใฎๆธ›่กฐๅŠ›ใซใ‚ˆใ‚‹ใƒขใƒผใƒกใƒณใƒˆ๏ผš๐‘€ ๐‘ ยท ๐‘™๐œƒ ยท ๐‘™ใƒปใƒžใ‚นใซใ‚ˆใ‚‹ใƒขใƒผใƒกใƒณใƒˆ๏ผš๐‘€ ๐‘š๐‘” sin ๐œƒ ยท ๐‘™ ๐‘š๐‘”๐‘™๐œƒ

    ใฎ3ใคใ‹ใ‚‰่กจใ•ใ‚Œใ‚‹๏ผŽไปฅไธŠใ‚’โ‘ ใซไปฃๅ…ฅใ—๏ผŒๆฑ‚ใ‚ใ‚‹้‹ๅ‹•ๆ–น็จ‹ๅผ๐‘š๐‘™ ๐œƒ ๐‘˜๐‘™ ๐œƒ ๐‘๐‘™ ๐œƒ ๐‘š๐‘”๐‘™๐œƒ

    โ‘ 

    ๐‘š๐‘™ ๐œƒ ๐‘๐‘™ ๐œƒ ๐‘˜๐‘™ ๐‘š๐‘”๐‘™ ๐œƒ 0 โ‘กm

    k

    c

    ๐œƒ ๐‘™๐‘™

    ๐‘€ ๐‘€

    ๐‘€

    Q28 (2) โ‘กใฎ้‹ๅ‹•ๆ–น็จ‹ๅผใ‚’ๅค‰ๅฝขใ—๏ผŒโ‘ข๐‘š๐œƒ ๐‘๐œƒ ๐‘˜ ๐‘š๐‘” ๐‘™โ„ ๐œƒ 0

    ่งฃใฎๅฝขใ‚’๐œƒ ฮ˜๐‘’ ใจไปฎๅฎšใ—๏ผŒโ‘ขใซไปฃๅ…ฅใ—ใฆๆ•ด็†ใ™ใ‚‹ใจ๏ผŒ็‰นๆ€งๆ–น็จ‹ๅผ๐‘š๐œ† ๐‘๐œ† ๐‘˜ ๐‘š๐‘” ๐‘™โ„ 0ใŒๅพ—ใ‚‰ใ‚Œใ‚‹๏ผŽใ“ใ‚Œใ‚ˆใ‚Š๏ผŒๆ น๐œ† ๐‘ ๐‘ 4๐‘š ๐‘˜ ๐‘š๐‘” ๐‘™โ„2๐‘šใ‚’ๅพ—ใ‚‹๏ผŽๆฑ‚ใ‚ใ‚‹่‡จ็•Œๆธ›่กฐไฟ‚ๆ•ฐ๐‘ ใฏ๏ผŒใ“ใฎ๐œ†ใŒ้‡ๆ นใจใชใ‚‹ใจใใฎ๐‘ใ‚ˆใ‚Š๏ผŒ๐‘ 4๐‘š ๐‘˜ ๐‘š๐‘” ๐‘™โ„

    ๐‘ 2 ๐‘š ๐‘˜๐‘™ ๐‘š๐‘”๐‘™

    โ‘ฃ

    โ‘ค

    Q28 (3) ๐œ† ๐‘ ๐‘ 4๐‘š ๐‘˜ ๐‘š๐‘” ๐‘™โ„2๐‘š ๐‘2๐‘š ๐‘– 4๐‘š ๐‘˜ ๐‘š๐‘” ๐‘™โ„ ๐‘2๐‘š ๐œ๐‘ ๐‘–๐‘ใ‚’ๅพ—ใ‚‹๏ผŽใ“ใ“ใง๏ผŒ ๐‘ ใฏ็ณปใฎๅ›บๆœ‰่ง’ๆŒฏๅ‹•ๆ•ฐ๏ผŒ๐œใฏๆธ›่กฐๆฏ”ใงใ‚ใ‚Š๏ผŒ

    โ‘ฅ

    โ‘ง

    ็ณปใŒไธ่ถณๆธ›่กฐใงใ‚ใ‚‹ๅ ดๅˆ๏ผŒ ๐‘ ๐‘ ใ“ใฎๆ™‚๏ผŒ

    โ‘ฆ

    ๐‘ 4๐‘š ๐‘˜ ๐‘š๐‘” ๐‘™โ„ ๐‘2๐‘š 4๐‘š๐‘™ ๐‘˜๐‘™ ๐‘š๐‘” ๐‘ ๐‘™2๐‘š๐‘™

    ๐‘ , ๐œ , ๐œ๐‘ ใงใ‚ใ‚‹๏ผŽโ‘ฅ๏ผŒโ‘ฆใ‚ˆใ‚Š๏ผŒๆฑ‚ใ‚ใ‚‹่‡ช็”ฑๆŒฏๅ‹•ใฎๅ‘จๆณขๆ•ฐ(ๆธ›่กฐๅ›บๆœ‰่ง’ๆŒฏๅ‹•ๆ•ฐ) ๐‘ ใฏ

  • Q28 (4)

    ๐œƒ ๐‘ก ๐œ”๐‘ ๐‘’ sin ๐‘ ๐‘ก2๐‘š๐‘™๐œ”4๐‘š๐‘™ ๐‘˜๐‘™ ๐‘š๐‘” ๐‘ ๐‘™ ๐‘’ sin 4๐‘š๐‘™ ๐‘˜๐‘™ ๐‘š๐‘” ๐‘ ๐‘™2๐‘š๐‘™ ๐‘ก

    (2)ใงไปฎๅฎšใ—ใŸ่งฃใฎๅฝข๐œƒ ฮ˜๐‘’ ใซ๏ผŒ๐œ† ๐œ๐‘ ๐‘–๐‘ ใ‚’ไปฃๅ…ฅใ™ใ‚‹๏ผŽ๐œƒ ฮ˜๐‘’ ฮ˜๐‘’ ฮ˜ ๐‘’ cos ๐‘ ๐‘ก ๐œ™โ‘จใ‚’๐‘กใงๅพฎๅˆ†ใ—๏ผŒ โ‘จ๐œƒ ๐œ๐‘ ฮ˜ ๐‘’ cos ๐‘ ๐‘ก ๐œ™ ๐‘ ฮ˜ ๐‘’ sin ๐‘ ๐‘ก ๐œ™

    โ‘ฉๅˆๆœŸๆกไปถ๐œƒ 0 0 and ๐œƒ 0 ๐œ” ใ‚’โ‘จ๏ผŒโ‘ฉใซไปฃๅ…ฅใ—๏ผŒ๐œƒ 0 ฮ˜ cos ๐œ™ 0 ๐œ™ ๐œ‹2๐œƒ 0 ๐œ๐‘ ฮ˜ cos ๐œ‹2 ๐‘ ฮ˜ sin ๐œ‹2 ๐œ”ฮ˜ ๐œ”๐‘ใ“ใ‚Œใ‚‰ใ‚’โ‘จใซไปฃๅ…ฅใ—๏ผŒ