Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be...

17
Excited states and symmetry Excited states and symmetry considerations PIRE Workshop PIRE Workshop 30/June/2011 Felix Plasser

Transcript of Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be...

Page 1: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Excited states and symmetryExcited states and symmetry considerations

PIRE WorkshopPIRE Workshop30/June/2011Felix Plasser

Page 2: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Electronic Schrödinger equationElectronic Schrödinger equation

Eˆ H NN rrErr ,...,,..., 11 H

• Eigenvalue problem• last time: how do we find the wave function with the lowest eigenvalue (energy)?g ( gy)

• this time: excited statesh h ?– what are they?

– how can they be computed?

Page 3: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Excited statesExcited states

• formal: Solutions to the electronic Schrödinger equation other than the ground stateq g

• physical: rearrangement in the electronic structure compared to the ground statestructure compared to the ground state– electronic defect → electron‐hole pair

• quantum chemistry: electron is taken from an occupied orbital („hole“) and put into a virtualoccupied orbital („hole ) and put into a virtual orbital („electron“)

Page 4: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Types of excited statesTypes of excited states• valence states – occuring between bonding and anti‐valence states  occuring between bonding and antibonding valence MOs– ππ* ‐ typically the only possibility for bright states, i.e. 

h t b ti d i iphoton absorption and emission occurs– nπ* ‐ often lower lying than ππ* but usually not directly accessible by lighty g

– πσ* ‐ stable if bonds are elongated, may lead to dissociationcharge transfer if donor and acceptor orbitals are– charge transfer – if donor and acceptor orbitals are spatially separated, may lead to complete charge separation

• Rydberg states ‐ diffuse character, associated with higher quantum numbers

• core excited states induced by X rays• core excited states – induced by X‐rays

Page 5: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Absorption and EmissionAbsorption and Emission• 2 criteria for absorption (or stimulated emission)p ( )

– photon energy corresponds to transition energy– the transition can interact with light (i.e. an oscillating electric field)electric field)

• Transition dipole moment– estimation of the interaction with an electric fieldestimation of the interaction with an electric fieldfor a transition between states Ψi and Ψf

x

• Typically only ππ* states have high transition dipole 

fzyitrans

moments and therefore give strong peaks– but other states may be enhanced by intensity borrowing and vibronic effectsand vibronic effects

Page 6: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

ExamplesExamples* “ ππ*, CT, A‘nπ*, CT, A“

HOMO (π) HOMO (π*)HOMO‐1 (n)a“ a“a‘

Page 7: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

ExamplesExamples

• Which symmetry group?

C2h → irred. representa ons: Ag , Au , Bg , Bud “ f tig – „gerade“ – even function

u – „ungerade“ – odd functionA – symmetric with C2 rotationy 2B – antisymmetric with C2 rotation

Page 8: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

ExamplesExamples

• Label the orbitals– qualitative type + symmetryq yp y y

π, au n, ag π*, bg π*, aunπ*, Bgππ*, Bu ππ* A, u ππ , Ag

Page 9: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

SymmetrySymmetry• Why use explicit symmetry?• Why use explicit symmetry?

– Selec on rules → informa on about which states may b t i ll ti (UV IR R ) ith tbe spectroscopically active (UV, IR, Raman, ...) without any calculationsSi ifi t t ti l d → ith t– Significant computational speed‐up → with symmetry it is a‐priory known that a large fraction of the terms to be computed are zero (cf last lecture)to be computed are zero (cf. last lecture)

– Clear labels for the description of orbitals and statesibilit f l i ith t h i t ll h k th• possibility for analysis without having to manually check the 

character• steering possibilities in the calculationsteering possibilities in the calculation

Page 10: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Computation of excited states

• Configuration interaction (CI) based methods• Configuration interaction (CI) based methods– direct computation of the states possible– obtained as higher roots of the CI matrix– (standard) single‐reference CI, MCSCF, MR‐CI

• Multi‐configurational self‐consistent field (MCSCF)CI based method with optimization of the orbitals at the same– CI based method with optimization of the orbitals at the same time

– smaller configuration spacef l f d ff l– useful for difficult cases

• HF fails to describe the ground state (strong geometrical distortions, intersections, ...)hi h i i• higher excitations present

• multi‐reference (MR)‐CI– CI on top of MCSCFp

Page 11: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Computation of excited states

E l CASSCF∙∙virtual orbitals• Example CASSCF

– most popular MCSCF method∙

virtual orbitals

– distribute m electrons in norbitals according to all  4 electrons in 4 gpossible configurations CAS(m/n)

active orbitals (singlet coupling)

( / )– simultaneous optimization of orbital and CI coefficientsorbital and CI coefficients

∙∙∙

doubly occupied orbitals ∙

Page 12: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Computation of excited states

• Indirect approach– compute the light absorption properties of the p g p p pground state

• absorption at poles of the frequency dependentabsorption at poles of the frequency dependent polarizability

– no construction of the excited states neededno construction of the excited states needed– applicable to HF, DFT, and CC

N MP it d t t !• No MP excited states!

Page 13: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Computation of excited states

• HF, DFT– time‐dependent (TD) formalismp ( )– TDHF, TDDFTTDDFT widely used method because it gives good– TDDFT widely used method because it gives good accuracy also on large systems

b t th i t ti f t ti d i i• but there is no systematic way of testing and improving it

Page 14: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Computation of excited states

C l d l t (CC)• Coupled cluster (CC)– equation of motion (EOM) formalism available for non‐

perturbative methods• EOM‐CCSD, EOM‐CCSDT, ...

– additional CCn perturbative formalism for excited states• CC2, CC3, ..., ,• similar ADC(2)

– order of increasing computational cost (and accuracy)• CC2 ADC(2) < EOM‐CCSD < CC3 < EOM‐CCSDTCC2, ADC(2) < EOM CCSD < CC3 < EOM CCSDT

– CC2, ADC(2) → methods for reliable results up to large system sizesCCSD→ significantly more expensive than CC2 but also widely– CCSD → significantly more expensive than CC2  but also widely applicable

– CC3, EOM‐CCSDT → for benchmark calcula ons

Page 15: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Time dependent viewTime dependent view• Possibly several close lying excited states

• Photoabsorptioni t b i ht it d t t S* nπ*– into bright excited state

– possibly far from its minimum geometry

S2ππ* nπ

energy

g y• high vibrational energy

• Excited state dynamicsl“

S1nπ* ππ*

– Propagation to „conical“ intersection or

– relaxation and fluorescence csS0ππ*

relaxation and fluorescence• Ground state dynamics

– back to reactants or

displacement

– formation of photoproducts

Page 16: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Dynamics simulationsDynamics simulations

• Dynamics often necessary to describe ultrafast (< 1ps) processes happening after photo‐( p ) p pp g pexcitation– standard equilibrium approaches fail– standard equilibrium approaches fail

• Different treatment of nuclei– classical motion– semi‐classical coupling to electron dynamicsp g y– quantum‐mechanical wave packets

Page 17: Excited states and symmetry · it is a‐priory known that a large fraction of the terms to be computed are zero (cf. last lecture) – Clear labels for the description of orbitals

Dynamics exampleDynamics example• Dynamics after photoexcitation

– double proton transfer in the first excited electronic state

– ultrafast reaction• protons follow electrons shifted by the excitation