Examining the Science Underlying Myocardial Ischemia.

15
Examining the Science Underlying Myocardial Ischemia

Transcript of Examining the Science Underlying Myocardial Ischemia.

Page 1: Examining the Science Underlying Myocardial Ischemia.

Examining the Science Underlying Myocardial Ischemia

Page 2: Examining the Science Underlying Myocardial Ischemia.

Severe obstruction (angina, no rupture) vs mild obstruction (no angina, likely to rupture)

RevascularizationAnti-anginal Rx

Exertional angina• (+) ETT

Severe fibrotic plaque• Severe obstruction• No lipid• Fibrosis, Ca2+

Pharmacologic stabilizationEarly identification of high-risk?

Plaque rupture• Acute MI• Unstable angina• Sudden death

Vulnerable plaque• Minor obstruction• Eccentric plaque• Lipid pool• Thin cap

Courtesy of PH Stone, MD.

Page 3: Examining the Science Underlying Myocardial Ischemia.

Major cardiac events occur in non-target areas following successful PCI

Hazardrate (%)

Cutlip DE et al. Circulation. 2004;110:1226-30.

Substantial number of cardiac events could be preventedif non-obstructive, high-risk lesions were identified

Target lesion event

Non-target lesion event

0

5

10

15

20

1 2 3Year

4 5

Page 4: Examining the Science Underlying Myocardial Ischemia.

Local determinants of the natural history of individual coronary lesionsOpportunities for identification and intervention

Courtesy of PH Stone, MD and R Gerrity, PhD.

Quiescent,stable plaque No symptoms

Fibrotic/scarred plaque Angina

Thin capFibroatheroma MI, sudden death

Quiescen

ce

Inflammation

Proliferation

Calcification

Local factorsLocal factorsShear stress

•Proliferation•Inflammation•Remodeling

Page 5: Examining the Science Underlying Myocardial Ischemia.

Proposed classification scheme for atherosclerotic plaque

Plaque trajectory Histopathology

Progression rate

Vascular remodeling

Proclivity to rupture

Clinical manifestation

Quiescent plaque

Small lipid core

Thick fibrous cap

Minimal Compensatory expansive remodeling

Low Asymptomatic

Stenotic plaque

Small lipid core

Very thick fibrous cap

Gradual Constrictive remodeling

Low Stable angina

High-risk plaque

Large lipid core

Thin and inflamed fibrous cap

Increased Excessive expansive remodeling

High ACS

Chatzizisis YS et al. J Am Coll Cardiol. 2007;49:2379-93.

Page 6: Examining the Science Underlying Myocardial Ischemia.

The spectrum of CAD

Chatzizisis YS et al. J Am Coll Cardiol. 2007;49:2379-93.ESS = endothelial shear stress

Page 7: Examining the Science Underlying Myocardial Ischemia.

Substrate• Vulnerable ischemic zone• Intracoronary thrombus• Autonomic influence• Hemodynamic compromise

Ventricular arrhythmogenesis in ischemic myocardium

Adapted from Luqman N et al. Int J Cardiol. 2007;119:283-90.

VPC = ventricular premature contractionVT = ventricular tachycardia

Risk factors• Age• Heredity• Gender• Smoking• Lipids• Hypertension• Diabetes• Obesity

•Clinical or subclinical susceptibility •Structural substrate present

High risk of transient acute ischemia reperfusion

Triggers• VPC• VT• Reentry

+ Ventricular fibrillation

Page 8: Examining the Science Underlying Myocardial Ischemia.

Causes and consequences of myocardial ischemia: New understanding

Consequences of ischemia

Electrical instabilityMyocardial dysfunctionIschemia

Heart rateBlood pressurePreloadContractility

Development of ischemia

O2 demand

O2 supply

Na+ and Ca2+ overload

Belardinelli L et al. Heart. 2006;92(suppl IV):iv6-14.

Page 9: Examining the Science Underlying Myocardial Ischemia.

Overview of the sodium channel

out

in

out

in

Na+/Ca2+

Exchanger

Ca2+

Ca2+

Ca2+

Ca2+

Na+

Na+

Na+

Na+Na+

Na+

Na+

Restingclosed

Na+

ActivatedActivatedInactivated

Na+

Na+

Na+ Ca2+

Ca2+

[Na+]= 140 mM ~10mM

Courtesy of L Belardinelli, MD.

Ca2+

[Na+]

Page 10: Examining the Science Underlying Myocardial Ischemia.

Origin of late INa

• During the plateau phase of the action potential, a small proportion of sodium channels either do not close, or close and then reopen

• These late channel openings permit a sustained Na+ current to enter myocytes during systole

Belardinelli L et al. Heart. 2006;92(suppl IV):iv6-14.

Sodiumcurrent

0

Late

Peak

Page 11: Examining the Science Underlying Myocardial Ischemia.

Sodiumcurrent

0

Late

Peak

0

Late

Peak

Sodiumcurrent

Ischemia

Myocardial ischemia causes enhanced late INa

Enhanced late INa appears to be a major contributor to increased intracellular Na+ during ischemia

Belardinelli L et al. Heart. 2006;92(suppl IV):iv6-14.

Page 12: Examining the Science Underlying Myocardial Ischemia.

Role of altered ion currents in adverse consequences of myocardial ischemia

[Na+]i = intracellular [Na+]NCX = Na+/Ca2+ exchanger APD = action potential duration Belardinelli L et al. Heart. 2006;92(suppl IV):iv6-14.

Disease(s) and pathological states linked to imbalance of O2 supply/demand

Cytosolic Ca2+

NCX

Late INa

Na+ entry ([Na+]i)

Mechanical dysfunction• Abnormal contraction and relaxation• Diastolic tension

Electrical instability• Afterpotentials• Beat-to-beat APD• Arrhythmias (VT)

Page 13: Examining the Science Underlying Myocardial Ischemia.

Diastolic relaxation failure adversely affects myocardial O2 supply and demand

• Sustained contraction of ischemic tissue during diastole:– Increases MVO2

– Compresses intramural small vessels• Reduces myocardial blood flow

Courtesy of PH Stone, MD.

Exacerbates ischemia

MVO2 = myocardial oxygen consumption

Page 14: Examining the Science Underlying Myocardial Ischemia.

Fraser H et al. J Mol Cell Cardiol. 2006;41:1031-8.

Late INa inhibition blunts Ca2+ accumulation

Time of perfusion (min)

ATX-II alone (n = 11)

ATX-II + ranolazine 4 μM (n = 9) or 9 μM (n = 9)

*P < 0.05 vs ATX-II aloneATX-II = sea anemone toxin (selectively late INa)

Indo fluorescence(F405/F485

ratio)

0.30

0.25

0.20

0.15

0.100 10 20 30 40 50

LV work(L/min per

mm Hg)

12

8

4

0

ATX-II

RAN

0 10 20 30 40 50

RAN

ATX-II

**

*

*

Page 15: Examining the Science Underlying Myocardial Ischemia.

Ranolazine blunts sotalol-induced action potential prolongation in dogs

Antzelevich C et al. Circulation 2004;110:904-10.

Control

d-Sotalol

+ Ranolazine 5 uM

+ Ranolazine 10 uM

50 mV

1 sec

Transmembrane action potentials (superimposed)