Evolution of biological regulatory networks

48
EVOLUTION OF BIOLOGICAL REGULATORY NETWORKS J. Demongeot AGIM, CNRS/UJF Grenoble 26/11/2011 Valparaiso

description

J. Demongeot AGIM, CNRS/UJF Grenoble. Evolution of biological regulatory networks. IMMUNETWORKS: ThE ROLE OF CIRCUITS. Robustness Role of circuits Role of n-switches Role of microRNAs Role of viruses Don’t forget resilience JD, E. Goles , M. Morvan, M. Noual & S. Sené - PowerPoint PPT Presentation

Transcript of Evolution of biological regulatory networks

Page 1: Evolution of  biological regulatory  networks

Valparaiso

EVOLUTION OF BIOLOGICAL REGULATORY NETWORKSJ. Demongeot

AGIM, CNRS/UJFGrenoble

26/11/2011

Page 2: Evolution of  biological regulatory  networks

Valparaiso

IMMUNETWORKS: THE ROLE OF CIRCUITS26/11/2011

Page 3: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Robustness- Role of circuits- Role of n-switches- Role of microRNAs- Role of viruses- Don’t forget resilienceJD, E. GOLES, M. MORVAN, M. NOUAL & S. SENÉ Attraction Basins as Gauges of Environmental Robustness in Biological Complex Systems.PloS ONE, 5, e11793 (2010).

- Don’t forget resistanceJJD & S. SENÉThe singular power of the environment on nonlinear Hopfield networks.In : CMSB’11,ACM Proceedings, New York, 55-64 (2011).

Page 4: Evolution of  biological regulatory  networks

Valparaiso

RAG control networkC. Georgescu et al. PNAS 2008

26/11/2011

Page 5: Evolution of  biological regulatory  networks

Valparaiso

V(D)J Recombination Mechanism

Germinal Configuration

Jm CVn TCRα

V-J Réarrangement

V(D)J Recombinase RAG (Recombination Activating gene)

TREC T-cell-Receptor Excisional Circle gene

N. PASQUAL ET AL. J. Exp. Medicine, 196, 1163-1174 (2002)T.P. BAUM ET AL. BMC Bioinformatics, 7, 224-228 (2006)

F. THUDEROZ ET AL. PLoS Comp. Biol., 6, e1000682 (2010)

26/11/2011

Page 6: Evolution of  biological regulatory  networks

Valparaiso

Distal J Genes

Proximal J Genes

V and J gene use: Experimental quantifications in BalbC mouse

Proximal

V Genes

Distal

V Genes

Diversity of the TCR α Combinatorial Repertoire

Peripheral

TRAV 21

TRAV 1TRAV14-1TRAV14-2TRAV14-3

TRAV14-D1TRAV14-D2TRAV14-D3

26/11/2011

Page 7: Evolution of  biological regulatory  networks

Negative 6

Negative 2

Valparaiso26/11/2011

Page 8: Evolution of  biological regulatory  networks

JD et al. Journal of Theoretical Biology 280, 19-33 (2011)F. Thuderoz et al. PloS Comp. Biol. 6 (2010)T.P. Baum et al. Nucleic Acids Res. 32, 51-54 (2004).

Valparaiso26/11/2011

RAG-1

TCRa

Runx1RRunx1

Page 9: Evolution of  biological regulatory  networks

Parallel iterations

Valparaiso26/11/2011

Noual, JD, SenéDAM (accepted)

Page 10: Evolution of  biological regulatory  networks

Valparaiso

l = 3 × r / 2

26/11/2011

Page 11: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Positive circuits

Negative circuits

Page 12: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Frustration

Page 13: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 14: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 15: Evolution of  biological regulatory  networks

Valparaiso

NOT CODING GENOME: THE ROLE OF MICRORNAS26/11/2011

Page 16: Evolution of  biological regulatory  networks

ValparaisoOverview of mRNA and miRNA Processing

mRNA/miRNA pairingRNA binding oligopeptide

Non coding DNACoding DNA

pre-miRNA hairpinDrosha Enzyme

Exportine-5

miRNA

CATGGTAC

GUAC

tRNAs

mRNA

pri-miRNA

RISC

26/11/2011

Page 17: Evolution of  biological regulatory  networks

Valparaiso

H.I. Suzuki et al., J. Mol. Med. 2010

mitochondrion

26/11/2011

target tRNA

Page 18: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 19: Evolution of  biological regulatory  networks

MITOMIRS

5’ GAUUAGGGUGCUUAGCUGUUAA 3’ MIR 1977 (A. Henrion-Caude, Mirifix, PLoS ONE 2011, JD et al. ECAL, MIT Press 2011)

G

G

U

C

U

A

U

U

C

U

U

G

G

G G A

U

UA

A

G

ValparaisoA

26/11/2011

Page 20: Evolution of  biological regulatory  networks

NOT CODING MITOCHONDRIAL DNA

5’ AUCUGGUUCUUACUUCAGGGC mitomir 10 Central 116

RARYGGUACU RRYUUCRARYU tRNA Lewin

AUCUGGUUCU UACUUCAGGAC mitomir 12 CSB D 353

mitomir 10 E. Sbisa Gene 205 (1997)

mitomir 12 P. Cui BMC Genomics 8 (2007) Valparaiso26/11/2011

R = A or G; Y = U or C

Page 21: Evolution of  biological regulatory  networks

Valparaiso

THE ROLE OF VIRUSES26/11/2011

Page 22: Evolution of  biological regulatory  networks

Anatomie virale

Page 23: Evolution of  biological regulatory  networks

‘Patient Zero H1N1’ (5 ans) Edgar Hernandez

Page 24: Evolution of  biological regulatory  networks
Page 25: Evolution of  biological regulatory  networks
Page 26: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 27: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 28: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 29: Evolution of  biological regulatory  networks

10

+

+

Negative circuitof size 3

Valparaiso26/11/2011

GENERAL ARCHITECTURE

Page 30: Evolution of  biological regulatory  networks

Valparaiso

miR miR G1

G2

G3

G1

G2

G3

miR G1

G2

G3

Persistence of rhythm in case of weak inhibition

miR inhibition with parallel updating

Negative 3-switch Positive circuits

26/11/2011

Page 31: Evolution of  biological regulatory  networks

Valparaiso

NEUROGENETWORKS26/11/2011

Page 32: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 33: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 34: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 35: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

ROBUSTNESS

Page 36: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 37: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 38: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 39: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 40: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

[27] M. Cosnard, E. Goles, Discrete states neural networks and energies, Neural Networks 10 (1997) 327-34

Xn

X1

X2

Xi

-

1-

1

. . .

+ -

Page 41: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 42: Evolution of  biological regulatory  networks

Valparaiso

Engrailed network

26/11/2011

Page 43: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 44: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 45: Evolution of  biological regulatory  networks

Valparaiso

p27, Cdk2, pCyCE Cdk2, CyCE Cdk2, miRNA159, pCycA Cdk2, CycA Cdk2, Rbp-E2F, Rb-E2F, E2F, Rbp, Rb

Cell cycle control

miRNA 34

Coherentfeed-forwarddouble path Double

positive loop

p53

Parallel Sequential

mitomiRs

L. He et al. Nature 447, 1130-1134 (2007)

26/11/2011

Page 46: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

miRNA159=1 Parallel updating

Page 47: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

Page 48: Evolution of  biological regulatory  networks

Valparaiso 26/11/2011

ConclusionRobustness- Role of circuits- Role of n-switches- Role of microRNAs- Role of viruses- Don’t forget resilienceJD, E. GOLES, M. MORVAN, M. NOUAL & S. SENÉ Attraction Basins as Gauges of Environmental Robustness in Biological Complex Systems.PloS ONE, 5, e11793 (2010).

- Don’t forget resistanceJJD & S. SENÉThe singular power of the environment on nonlinear Hopfield networks.In : CMSB’11,ACM Proceedings, New York, 55-64 (2011).