EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto &...

18
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Transcript of EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto &...

Page 1: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

EVAT 554OCEAN-ATMOSPHERE

DYNAMICS

GYRE-SCALE OCEAN CIRCULATION

LECTURE 16

(Reference: Peixoto & Oort, Chapter 8,10)

Page 2: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Sverdrup Transport

cos2/

0

x

yM

What about the western boundary???

2/

2 0

20

xaxM

We are not conserving mass (note the behavior

at the western boundary!)

Page 3: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Sverdrup Transport

2/

2 0

20

xaxM

Problem is that we cannot satisfy two lateral boundary conditions with a solution to a first order equation

We need to take into account missing physicsBottom Friction!

cos2/

0

x

yM

Page 4: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Sverdrup Transport

2/

2 0

20

xaxM

Problem is that we cannot satisfy two lateral boundary conditions with a solution to a first order equation

Bottom Friction!

cos2/

0

x

yM

Page 5: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

Bottom Friction!

Assume a “Rayleigh” law for frictional stresses Ruzx

vR

zy

In areas of moderate flow, this will reduce to zero bottom stress, yielding the previous result

cos2/

0

x

yM

2/

2 0

20

xaxM

Page 6: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

2/

2 0

20

xaxM

Assume a “Rayleigh” law for frictional stresses

We might anticipate, however, that this solution

could breakdown where we know the Sverdrup solution must break

down…

Stommel ‘Bottom Friction’ model

Ruzx

vR

zy

cos2/

0

x

yM

Page 7: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

2/

2 0

20

xaxM

We thus assume the existence of a

boundary layer of zonal width ‘’ that provides the return flow of the

interior Sverdrup transport

Stommel ‘Bottom Friction’ model

cos2/

0

x

yM

/ˆexp11

cos2/

0 xyMx

2/

2

)/ˆexp(

0

200

xa

xxM

00/)(ˆ x

0

aR

Note that these expressions satisfy the requirement of no basin-integrated meridional transport at any latitude!

Ruzx

vR

zy

Page 8: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

We thus assume the existence of a

boundary layer of zonal width ‘’ that provides the return flow of the

interior Sverdrup transport

Stommel ‘Bottom Friction’ model

00/)(ˆ x

Note that these expressions satisfy the requirement of no basin-integrated meridional transport at any latitude!

Ruzx

vR

zy

xdyM ˆ1

0 xdxx ˆ/ˆexp11

cos2/1

0

0

)(11cos2/

0

x=0

/ˆexp11

cos2/

0 xyMx

0

aR

Page 9: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Useful to interpret the circulation in terms of

‘Vorticity’ (spin)

Stommel ‘Bottom Friction’ model

V

Absolute Vorticity=Planetary Vorticity( f)+Relative Vorticity (curl of velocity field)

Only friction can take away this vorticity (i.e., add negative vorticity) once it has been added

Windstress adds positive vorticity

Page 10: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

zxxpf

/v

zyypf

/u

Consider the fundamental equations

xzx

xxpxf

v

yzy

yypf

uyu

Add these together,

τz

pyxf2

u)uv(

Differentiate with respect to x and y respectively

Useful to interpret the circulation in terms of

‘Vorticity’ (spin)

V

Page 11: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

τz

pf2

u

Useful to interpret the circulation in terms of

‘Vorticity’ (spin)

V

Relative Vorticityu12

fzffp

τ

fzff

pfa

τ

12 Absolute Vorticity

τzff

p12

τz

pyxf2

u)uv(

Page 12: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

zxxpf

/v

zyypf

/u

Consider the fundamental equations

yzx

xypyf

vv

yzy

yypf

uyu

Now, differentiate with respect to y and x respectively

Subtract second from first,

xzx

xxpxf

v

Differentiate with respect to x and y respectively

xzy

yxpf

xu

xy

yx

zyxuf

v)v(

Page 13: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

Divergence Equation

If horizontal flow is non-divergent

xy

yx

z

v

Ruzx

vR

zy

Assume Rayleigh friction

Ryx

R

uvvx

R v x

R

vv

)exp(vv0

xR

/ˆexpvv0

x

0/ˆ axx

0

aR

xy

yx

zyxuf

v)v(

Page 14: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

/ˆexpvv0

x

This is only the boundary layer solution

HyM /v

cos2/

0

x

yMRecall the interior (Sverdrup) solution

Assuming vertically uniform flow (an idealization),

aHx

/

0

The full solution is thus,

aHx x

//ˆexpvv 0

0

0/ˆ axx

0

aR

ax

/

0

Page 15: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

0ˆv1

0 xd

We require no net meridional transport!

0ˆ/

/ˆexp0

v1

0

0

xdaH

xx

aHx

/

v 00 aH

x

/

v 00

/ˆexp11

/v 0 x

aHx

0

aR

aHx x

//ˆexpvv 0

0

Page 16: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

/ˆexp11

/v 0 x

aHx

0

aR

H

fR V

2/

We can use continuity of the horizontal flow field to derive an expression

for the zonal velocity

yv/-xu/

)/ˆexp(ˆ1

H1u

20

2

xx

y

We can thus define a streamfunction:/dxdv

/dydu

)/ˆexp(ˆ1

H1 0

xx

y

Page 17: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

Stommel ‘Bottom Friction’ model

/ˆexp11

/v 0 x

aHx

0

aR

H

fR V

2/

We can use continuity of the horizontal flow field to derive an expression

for the zonal velocity

-dv/dydu/dx

)/ˆexp(1

H1u

20

2

xx

y

We can thus define a streamfunction:/dxdv

/dydu

)/ˆexp(1

H1 0

xx

y

=0 0

Page 18: EVAT 554 OCEAN-ATMOSPHERE DYNAMICS GYRE-SCALE OCEAN CIRCULATION LECTURE 16 (Reference: Peixoto & Oort, Chapter 8,10)

In reality, Western Boundary Current Separates

Eddy-Resolving Ocean GCM

Stommel Model

Stommel ‘Bottom Friction’ model

Stommel Model obviously an idealization, but it captures the essence of westward intensification of

ocean currents