Evaluation on the water supply stab ility of nakdong river ...

11
J. Korea Water Resour. Assoc. Vol. 51, No. S-1 (2018), pp. 1105-1115 pISSN 1226-6280 doi: 10.3741/JKWRA.2018.51.S-1.1105 eISSN 2287-6138 Evaluation on the water supply stability of nakdong river basin based on future scenarios Choi, Si Jung a ㆍKang, Seong Kyu a* ㆍLee, Dong-Ryul a ㆍKang, Shin-Uk b a Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology b Strategic Research Group for Korea Water Grid, K-water Institute Paper number: 18-055 Received: 31 July 2018; Revised: 13 October 2018 / 30 October 2018; Accepted: 30 October 2018 Abstract In Korea, there are only a few cases that quantitative evaluate the impacts of climate change on water supply. Therefore, to ensure stable water supply in the future, a water resources plan is needed to establish by analyzing the scenarios that take into consideration the various situations in the future. In this study, we analyzed the changes of various situations for the Nakdong River basin, and constructed it for the future scenario. The stability of the water supply was analyzed through the analysis of water supply and demand prospect for each scenario path. We selected the areas expected to experience difficulty in supplying water supply and analyzed the scenarios of future water shortage by region and water sector. Also, the effect of increasing water supply capacity through optimal integrated operation of water supply facilities was analyzed and presented. Analysis of the results shows that there is a difficulty in supplying water due to future climate change experienced in the Nakdong River basin. Therefore it is necessary to prepare various countermeasures in order to mitigate or solve this problem. Keywords: Climate change, Future scenario, Water supply and demand prospect, Water shortage scenario 미래 시나리오 기반 낙동강 유역의 용수공급 안정성 평가 최시중 a ㆍ강성규 a* ㆍ이동률 a ㆍ강신욱 b a 한국건설기술연구원 국토보전연구본부, b K-water융합연구원 KWG 연구단 최근 국내에서는 기후변화가 용수공급에 미치는 영향을 정량적으로 평가한 사례가 많지 않으며 이와 관련된 다양한 정보를 제공하지 못하고 있는 실정이다. 따라서 미래의 안정적인 용수공급을 위해 미래 다양한 상황에 대한 분석을 통한 수자원 계획이 절실하다. 본 연구에서는 낙동강 유역을 대상으로 미래 다양한 상황을 시나리오로 구성하고 시나리오 경로에 대한 물 수급 전망을 통해 용수공급의 안정성을 분석하였다. 분석 결과를 통해 용수공급의 어려움을 겪을 것으로 예상되는 물 공급 취약지역을 선정하여 제시하였으며 지역별, 용도별 물 부족 시나리오를 전망하였다. 또한 용수공급시설물의 최적연계 운영을 통해 용수공급 능력 증대 효과도 분석하여 제시하였다. 향후 낙동강 유역에는 기후변화 등으로 인해 용수공급 의 어려움이 예상됨에 따라 이를 완화 또는 해소하기 위해서 보다 다양한 대책 마련이 필요할 것으로 판단된다. 핵심용어: 기후변화, 미래 시나리오, 물 수급 전망, 물 부족 시나리오 © 2018 Korea Water Resources Association. All rights reserved. *Corresponding Author. Tel: +82-31-910-0384 E-mail: [email protected] (S. K. Kang)

Transcript of Evaluation on the water supply stab ility of nakdong river ...

Page 1: Evaluation on the water supply stab ility of nakdong river ...

J. Korea Water Resour. Assoc. Vol. 51, No. S-1 (2018), pp. 1105-1115 pISSN 1226-6280

doi: 10.3741/JKWRA.2018.51.S-1.1105 eISSN 2287-6138

Evaluation on the water supply stability of nakdong river basin based on future

scenarios

Choi, Si JungaㆍKang, Seong Kyua*ㆍLee, Dong-RyulaㆍKang, Shin-Ukb

aDepartment of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building TechnologybStrategic Research Group for Korea Water Grid, K-water Institute

Paper number: 18-055

Received: 31 July 2018; Revised: 13 October 2018 / 30 October 2018; Accepted: 30 October 2018

Abstract

In Korea, there are only a few cases that quantitative evaluate the impacts of climate change on water supply. Therefore, to ensure stable

water supply in the future, a water resources plan is needed to establish by analyzing the scenarios that take into consideration the various

situations in the future. In this study, we analyzed the changes of various situations for the Nakdong River basin, and constructed it for

the future scenario. The stability of the water supply was analyzed through the analysis of water supply and demand prospect for each

scenario path. We selected the areas expected to experience difficulty in supplying water supply and analyzed the scenarios of future

water shortage by region and water sector. Also, the effect of increasing water supply capacity through optimal integrated operation of

water supply facilities was analyzed and presented. Analysis of the results shows that there is a difficulty in supplying water due to future

climate change experienced in the Nakdong River basin. Therefore it is necessary to prepare various countermeasures in order to

mitigate or solve this problem.

Keywords: Climate change, Future scenario, Water supply and demand prospect, Water shortage scenario

미래 시나리오 기반 낙동강 유역의 용수공급 안정성 평가

최시중aㆍ강성규a*ㆍ이동률aㆍ강신욱b

a한국건설기술연구원 국토보전연구본부, bK-water융합연구원 KWG 연구단

요 지

최근 국내에서는 기후변화가 용수공급에 미치는 영향을 정량적으로 평가한 사례가 많지 않으며 이와 관련된 다양한 정보를 제공하지 못하고 있는

실정이다. 따라서 미래의 안정적인 용수공급을 위해 미래 다양한 상황에 대한 분석을 통한 수자원 계획이 절실하다. 본 연구에서는 낙동강 유역을

대상으로 미래 다양한 상황을 시나리오로 구성하고 각 시나리오 경로에 대한 물 수급 전망을 통해 용수공급의 안정성을 분석하였다. 분석 결과를

통해 용수공급의 어려움을 겪을 것으로 예상되는 물 공급 취약지역을 선정하여 제시하였으며 지역별, 용도별 물 부족 시나리오를 전망하였다. 또한

용수공급시설물의 최적연계 운영을 통해 용수공급 능력 증대 효과도 분석하여 제시하였다. 향후 낙동강 유역에는 기후변화 등으로 인해 용수공급

의 어려움이 예상됨에 따라 이를 완화 또는 해소하기 위해서 보다 다양한 대책 마련이 필요할 것으로 판단된다.

핵심용어: 기후변화, 미래 시나리오, 물 수급 전망, 물 부족 시나리오

© 2018 Korea Water Resources Association. All rights reserved.

*Corresponding Author. Tel: +82-31-910-0384

E-mail: [email protected] (S. K. Kang)

Page 2: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-11151106

1. 서 론

기후변화는 장기적인 수자원 관리에 큰 어려움을 줄 수 있는

세계적인 스트레스 요인이다. 인간의 생계와 활동을 유지하기

위해 전 세계에 수자원시설이 건설되어 운영되고 있지만 관측

된 수문자료를 기반으로 하는 경험적 운영 정책에 의존하여 관

리되었다(Cosgrove and Louck, 2015; Cully et al., 2016). 하지

만 기후변화와 같은 변동성에 의해 기존의 용수공급시설물 운

영 방식의 효율은 떨어질 수 있다(Georgakakos et al., 2012).

따라서 미래 안정적인 용수공급을 위해서는 기후변화의 위험

을 줄일 수 있는 적응정책의 개발이 중요하다고 할 수 있다.

이를 위해서는 무엇보다도 기후변화에 의한 수자원 영향

평가가 필요하다. 기후변화에 의한 영향을 정량적으로 평가

하여 어느 정도의 용수공급시설물을 추가로 건설해야 하는지

어느 정도의 규모로 건설해야 하는지 등 미래의 안정적인 용

수공급을 위한 수자원계획을 수립하여야 한다. 최근까지 국

내외의 여러 연구자들에 의해 기후변화가 수자원에 미치는

영향을 평가한 사례는 많다(Medellin-Azuara et al., 2008;

Yilmaz and Harmanciouglu, 2010; Ashofteh et al., 2015;

Nam et al., 2014; No et al., 2013). 하지만 이들 대부분의 연구

는 대기 순환 모형 모의 결과 중 일부만을 활용하여 분석함으로

써 이를 활용한 적응대책 수립에 있어 의사결정자들에게 편향

된 정보를 제공할 수 있는 위험이 있다(Brown et al., 2012).

최근 여러 가정 하에 대안적인 타당한 조건을 나타내는 미

래 가능한 상황을 시나리오로 구성하여 이에 대한 분석을 통

해 불확실성을 해결하고자 하는 노력을 하고 있다. 시나리오

계획(scenario planning)은 기후변화와 관련된 것들을 포함

하여 수자원 관리의 불확실성을 해결하는데 도움을 줄 수 있

는 하나의 의사결정지원 방법이다(Peterson et al., 2003;

Alcamo and Henrichs, 2008; Price and Isaac, 2012). 시나리

오 계획법은 다른 의사결정지원 방법과 유사하지만 불확실성

을 바탕으로 구축된 다양한 시나리오를 개발하고 이에 대한

분석을 수행한다는 것에서 차이를 보인다. 시나리오 계획법

이 반드시 항상 최선의 방법을 제시하는 것은 아니지만 불확

실한 기후변화 영향이 장기적 정책 및 투자 선택에 영향을 미

칠 시기를 고려하는데 적합하다(Wiseman et al., 2011). 발생

가능하고 다양한 미래의 현상, 범위를 현재의 기술로 규정하

고 예상되는 관련 문제를 전략적으로 대처하여 오류를 최소화

하는 것이 최선의 방법이며, 미래의 다양한 시나리오에 대한

분석을 통해 합리적인 계획을 수립할 필요가 있다.

본 연구에서는 미래의 다양한 상황을 시나리오로 구성하고

각 시나리오 경로별 물 수급 전망을 수행함으로써 미래 용수공

급의 안정성을 평가하였다. 미래 시나리오 경로 구성에 있어서

는 다양한 기후변화 시나리오와 함께 수요변화 시나리오를 고

려하였으며 대상유역으로 낙동강 유역을 선정하였다. 다양한

시나리오 분석을 통해 낙동강 유역의 용수공급시설물의 공급

신뢰도를 평가하였으며 물 수급 네트워크의 취약성을 평가하

였다. 미래 지역별, 용도별 물 부족 시나리오를 전망하였으며

미래 물 공급 취약지역을 분석하여 제시함과 동시에 용수공급

시설물의 최적연계 운영체계 개발을 통한 효과를 분석하였다.

2. 연구 지역 및 자료

미래 다양한 시나리오에 대해 용수공급의 안정성을 평가

하기 위해 대상유역을 낙동강 유역으로 선정하였다. 낙동강

Table 1. List of the GCM models

Model name Resolution Institution RCP

CanESM2 2.813°×2.791° Canadian Centre for Climate Modelling and Analysis 4.5

CMCC-CMS 1.875°×1.865° Centro Euro-Mediterraneo per I Cambiamenti Climatici 4.5/8.5

CESM1-BGC1.250°×0.942° National Center for Atmospheric Research

4.5

CESM1-CAM5 8.5

FGOALS-s2 2.813°×1.659° LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 4.5

GFDL-ESM2G 2.500°×2.023° Geophysical Fluid Dynamics Laboratory 4.5/8.5

HadGEM2-ES 1.875°×1.250° Met Office Hadley Centre 4.5/8.5

INM-CM4 2.000°×1.500° Institute for Numerical Mathematics 4.5/8.5

IPSL-CM5A-LR 3.750°×1.895°Institut Pierre-Simon Laplace

4.5/8.5

IPSL-CM5A-MR 2.500°×1.268° 4.5/8.5

MPI-ESM-LR 1.875°×1.865° Max Planck Institute for Meteorology (MPI-M) 4.5/8.5

MRI-CGCM3 1.125°×1.122° Meteorological Research Institute 8.5

Page 3: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-1115 1107

유역은 총 33개의 중권역으로 구성되어 있으며 다양한 용수

공급시설물이 건설되어 운영 중에 있어 물 공급 네트워크가

비교적 복잡한 유역이다. 또한 우리나라에서 두 번째로 용수

수요량이 큰 지역으로 미래의 상황 변화가 용수공급의 안정성

에 미치는 영향 평가뿐만 아니라 기후변화 등으로 인한 용수

공급시설물의 용수공급 능력 변화를 평가하기에 적합하다.

현재의 기술로 규정할 수 있는 미래의 발생가능하고 다양

한 상황을 시나리오로 구성하고 구성된 시나리오 경로별 분석

을 위해서 본 연구에서는 크게 기후변화에 따른 공급변화 시

나리오와 사회/경제조건 변화에 따른 수요변화 시나리오만

을 고려하고자 하였다. 기후변화 시나리오로는 국토교통과

학기술진흥원의 물관리연구사업 일환으로 기후변화 대비 수

자원 적응기술 개발 연구단에서 통계적 상세화를 통해 제공하

는 19가지 대표 시나리오를 선정하였으며 분석에 포함된

GCM에 대한 정보는 Table 1과 같다. 수요변화 시나리오에

대해서는 Choi et al. (2017)이 제시한 낙동강 유역의 미래 수

요량 산정 결과를 활용하여 180개 미래 수요변화 시나리오 중

가장 큰 수요를 나타내는 고수요 시나리오, 가장 적은 값을 나

타내는 저수요 시나리오 및 평균적인 값을 나타내는 기준수요

시나리오를 분석에 활용하였다.

3. 연구 방법 및 적용

3.1 미래 시나리오 경로 구성 및 물 수급 전망

Kim et al. (2010)은 기후변화가 한강 유역의 이수적 측면에

미치는 영향을 분석한 바 있으며 A2 기후변화 시나리오,

SLURP 모형 및 K-WEAP 모형을 활용하여 물수지 분석을 수

행하여 한강 유역의 물 부족량은 장기적으로 증가한다고 예상

하였다. 하지만 미래에는 예기치 못한 많은 상황이 발생할 수

있는 불확실성이 내포되어 있기 때문에 몇몇 시나리오에 대한

분석만으로 용수공급의 안정성을 평가하기 어렵다. 따라서

본 연구에서는 현재의 기술로 예측 가능한 미래의 다양한 상

황을 시나리오로 구성하여 분석을 수행하고자 하였다. 국토

교통과학기술진흥원의 물관리연구사업 일환으로 기후변화

대비 수자원 적응기술 개발 연구단에서 19개 기후변화 시나

리오의 미래 기상상황을 반영하여 강우-유출모형인 PRMS

(Bae et al., 2008)를 통해 산정된 자연유출량을 활용하여 19개

의 미래 공급 시나리오를 구성하고, 3개의 미래 수요변화 시나

리오를 결합한 총 57개의 미래 시나리오를 구성하였다. 구성

된 미래 시나리오 경로는 Fig. 1과 같다.

미래의 다양한 시나리오에 대한 용수공급 안정성을 분석

하기 위해서는 용수공급시설물을 포함한 수자원시스템에 대

한 물 수급 전망을 수행하여야 하며 물 수급 전망을 위해서 다

양한 형태의 시뮬레이션 모형이나 최적화 모형을 활용한다

(Dandy et al., 1997; Labadie, 2004). 본 연구에서는 물 수급

Fig. 1. Configuring future scenario paths

Fig. 2. Procedure of Future water supply and demand prospects

(MOLIT, 2016)

Page 4: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-11151108

전망을 위해 MOLIT (2016)에서 수행하였던 물 수급 전망 절

차와 방법을 그대로 활용하였다. 미래 다양한 시나리오 경로

에 대한 분석을 수행하고자 분석기간을 2017∼2099년으로 설

정하였으며 이를 다시 S1 (2017∼2040), S2 (2041∼2070), S3

(2071∼2099)로 구분하였다. 물 수급 전망 절차는 Fig. 2와 같다.

물 수급 전망을 위해 K-WEAPccia (Korea-Water Evaluation And

Planning System-Climate Change Impact Assessment)를 사용

하였으며 이는 기존의 K-WEAP 모형(Choi et al., 2012)에 기후

변화 영향을 평가할 수 있도록 다양한 모듈을 추가한 모형이다.

3.2 용수공급시설물 최적연계 운영체계 및 신뢰도 평가

국내 수자원장기종합계획에서는 물 수급 전망 시 저수지

운영방식을 물 부족량 공급 방식(deficit supply) 방식을 채택

하고 있다. 이 운영 방식은 이상적인 저수지 운영 방식으로 하

류로의 무효 방류가 없다는 점에서 미래의 물 수요에 대해 현

재의 물 공급 시스템으로 공급할 수 있는 최대능력을 반영하

기 위함이라 할 수 있다. 이와 같은 방식으로 저수지를 운영한

후 물 공급 안정성을 제시할 경우 이는 해당 저수지에 기대할

수 있는 최대 물 공급 능력을 의미한다고 볼 수 있다(Lee et al.,

2014).

용수공급시설의 최적연계 운영체계를 평가하기 위해 저수

지 운영에 대해서는 물 부족량 공급 방식을 채택하였으며 이

와 함께 유역 내에 건설되어 운영 중이거나 계획된 저수지 군

의 연계운영 방식을 제안하였다. 보장공급 방식(Firm supply)

의 경우 각 저수지별로 설정되어 있는 계획공급량만을 하류로

방류하기 때문에 유역 내의 저수지 군을 연계운영하지 못하는

반면 물 부족량 공급 방식은 저수지 하류 수요처의 수요량을

충족시키기 위해 저수지의 저수량이 충분할 경우 지속적으로

공급할 수 있다. 이 때 유역 내 저수지가 여러 개 존재할 경우

저수지 하류의 수요처 수요량을 만족시키기 위해 각 저수지별

로 어느 정도의 물을 공급해야 하는지가 중요하다. 이를 위해

저수지의 연계운영이 필요하며 본 연구에서는 유역 내의 저수

지 군의 동일 유효저수율을 반영하고자 하였다. 동일 유효저

수율을 고려한다는 것은 장래 물이 부족할 경우를 대비해 각

저수지별 저수량을 최대화함으로써 용수공급의 안정성을 높

인다는 것이다. 유효저수율은 Eq. (1)과 같이 나타낼 수 있다.

(1)

여기서, 은 유효저수율, 는 모의시간별 저수지 저수량,

는 저수지에 설정되어 있는 사수량(사수위 아래 저수량),

은 저수지의 유효저수용량(저수위∼상시만수위 저수

량),

는 취수 또는 물 공급 시설이 있는 저수지의 비상용수

공급가능량(사수위 ∼저수위 저수량)으로 확보되어 있지 않

은 저수지도 존재한다.

유역 내 저수지 군의 동일 유효저수율 적용을 통해 모의시

간별로 유효저수율이 상대적으로 높은 저수지에서 우선적으

로 하류 수요처의 수요량을 만족시키기 위해 물을 공급하며

유효저수율이 상대적으로 낮은 저수지에서는 저수지의 저수

량을 채워 유역 내의 각 저수지들의 유효저수율을 분석 기간

동안 동일하게 유지함으로써 최대 물 공급가능량을 고려한다

는 것이다.

따라서 제안된 최적연계 운영체계를 고려한 미래 시나리

오 경로별 물 수급 전망의 물 부족량 결과와 계획공급량만을

공급하는 보장공급 방식을 고려한 물 부족량과의 차이를 통해

최적연계 운영 효과를 제시하였다.

용수공급시설물의 용수공급능력을 평가하기 위해서는 다

양한 지표들이 개발되어 제시되고 있으며 대표적인 지표로는

신뢰도, 회복도, 취약도가 있다. 그 중 주로 사용되는 신뢰도를

평가함으로써 미래 시나리오에 따른 낙동강 유역의 용수공급

시설물의 용수공급능력을 간접적으로 평가하였으며 신뢰도

는 Eq. (2)와 같이 정의할 수 있다.

× (2)

여기서, 은 신뢰도, 는 공급실패 기간,

는 전체 분석 기간을 뜻한다. Lee et al.

(2014)은 용수공급시설물의 공급실패를 용수공급시설물의

수위가 저수위 이하로 하강하였을 때라 정의하였다. 이는 모

든 용수공급시설물에 대한 계획공급량이 설정되어 있지 않기

때문이며 저수량이 저수위 이하로 하강하는 상황이 발생하였

을 경우 하류 수요처에 대한 정상적인 물 공급이 어려운 상황

이 초래할 가능성이 높기 때문이라고 제시하였다.

4. 결과 및 토의

4.1 용수공급시설물의 신뢰도 평가

현재의 물 공급 시스템으로 공급할 수 있는 최대 능력을 반

영하기 위해 본 연구에서는 제안된 최적연계 운영체계를 고려

한 미래 시나리오 경로별 물 수급 전망을 수행하였다. Fig. 3은

기간별, 미래 시나리오 경로별 용수공급시설물 공급신뢰도

Page 5: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-1115 1109

의 최솟값과 최댓값을 도시한 결과이다. 미래 시나리오 경로

에 따라 기간에 따라 용수공급시설물의 공급신뢰도가 크게

변화하는 것을 확인할 수 있으며 특히 몇몇 용수공급시설물의

경우 신뢰도가 낮게 나타났다. 대표적인 시설물로는 감포댐,

김천부항댐, 대곡댐, 대암댐, 밀양댐, 사연댐, 선암댐, 안계댐,

운문댐 등이며 이들 시설물은 대부분 용수공급전용댐으로 향

후 기후변화로 인해 댐 유입량이 현저히 줄어든다면 수요처에

대한 용수공급의 안정성이 낮아질 것으로 분석되었다. 다목

적댐인 김천부항댐의 경우 최소 39.0%, 최대 60.6%의 매우

낮은 공급신뢰도를 나타냈으며 밀양댐의 경우 최소 51.9%,

최대 99.6%로 공급신뢰도의 변동 폭이 매우 큰 시설물로 분석

되었다. 김천부항댐과 밀양댐의 경우 댐 하류에 비교적 큰 값

의 하천유지유량이 고시되어 있어 이를 충족시켜 주기 위해

이들 댐에서 물을 공급한다면 취수 수요처에서의 미래 물 부

족이 발생할 수도 있다는 것을 의미한다.

4.2 미래 지역별, 용도별 물 부족 시나리오 전망

57개 미래 시나리오 경로별 물 수급 전망을 통해 지역별,

용도별 물 부족 분석을 수행하였으며 용도별로 해당 기간에

한번이라도 물 부족이 발생한 시나리오의 개수를 평가하였

다. 물 부족 시나리오 전망을 통해 장래에 어느 지역이 어느

용도에서 물이 부족할 것인지를 예상할 수 있으며 이를 통해

향후 다양한 수자원 계획 수립을 위한 정보를 제공할 수 있다.

Fig. 4는 지역별, 용도별 물 부족 시나리오 전망 결과를 도시한

것이다. 용도별 물 부족이 발생하는 지역은 기간별로 대동소

이하며 물 부족 시나리오 경로 개수가 기간에 따라 다소 차이

를 나타냈다.

생활 및 공업용수의 경우 병성천(2006)과 감천(2010) 유역

에서 분석된 57개 시나리오 경로에 대해 모두 물 부족이 예상

되었다. 병성천 유역의 경우 광역상수도 등과 같은 대단위 물

공급 시설이 존재하지 않아 자체 수원만으로 용수를 공급해야

하는 지역으로 미래 기후변화 등으로 인해 하천유출량이 감소

하게 된다면 생활 및 공업용수 공급이 어려울 것으로 예상된

다. 감천 유역의 경우 용수공급시설물 신뢰도 평가 결과에서

도 나타났듯이 상류의 김천부항댐에서 안정적인 용수공급이

어려울 것으로 예상됨에 따라 물 부족이 발생할 것으로 분석

(a) S1 (2017-2040) (b) S2 (2041-2070)

(c) S3 (2071-2099)

Fig. 3. Reliability of water supply facilities in the future

Page 6: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-11151110

되었다.

농업용수 공급과 관련해서는 영강(2005), 병성천(2006),

감천(2010), 형산강(2101), 회야강(2301) 및 왕피천(2401)

유역에서 모든 기간에 대한 물 부족 전망 시나리오가 57개로

분석되었다. 이 지역들은 대부분 도서산간 지역, 대단위 공업

단지 지역 및 해안 지역으로 다른 지역보다 농업용저수지 저

수량 및 지하수 이용량이 적어 대부분 하천을 통해 물을 공급

받는 지역이기 때문에 기후변화로 인해 농업용수 공급의 어려

움이 예상되는 지역이다.

하천유지유량의 경우 생활 및 공업용수, 농업용수 보다 기

후변화에 더 취약한 것으로 분석되었다. 내성천(2004) 유역

의 월포지점, 영강(2005) 유역의 점촌지점, 위천(2008) 유역

(a) Domestic and Industrial water demand

(b) Agricultural water demand

(c) Instream flow

Fig. 4. Expected water shortage scenarios of S1 (left), S2 (middle), and S3 (right)

Page 7: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-1115 1111

의 용곡지점, 감천(2010) 유역의 선산지점, 합천댐(2015) 유

역의 거창2지점, 남강(2019) 유역의 정암지점, 밀양강(2021)

유역의 밀양2지점, 형산강(2101) 유역의 경주2지점 및 왕피

천(2401) 유역의 울진지점은 분석 결과 모든 기간에 대해 모든

시나리오 경로에 대해 물 부족이 발생할 것으로 예상되었다.

4.3 미래 물 공급 취약지역 선정 및 물 부족 시나리오

전망

미래 지역별, 용도별 물 부족 시나리오 전망 결과를 토대로

미래 물 공급 취약지역을 선정하였다. 취약지역은 두 개 이상

의 용도별 물 부족이 모든 미래 시나리오 경로에서 발생하는

지역으로 선정하였다. 이는 현재 기술로 예측할 수 있는 미래

의 어떤 상황에서도 안정적인 용수공급이 어려울 것으로 예상

되는 지역으로 영강(2005), 병성천(2006), 감천(2010), 형산

강(2101) 및 왕피천(2401) 유역이다. 이들 지역은 용수공급

시설물 부족 지역, 도서산간지역, 대단위 공업단지 조성 지역

및 향후 하천유지유량 확보 필요량이 큰 유역들이다.

Table 2는 선정된 미래 물 공급 취약지역에 대해 분석된 미

래 물 부족 시나리오 전망을 간단한 통계치로 제시한 것이다.

미래 생활 및 공업용수에 대한 물 부족이 가장 클 것으로 예상

되는 유역은 형산강 유역으로 기간별 차이는 있으나 0.1∼

64.5 백만m3/년으로 분석되었다. 반면에 영강과 병선천 유역

의 경우 최대 9.2 백만m3/년으로 수요관리 등으로 충분히 해소

할 수 있을 것으로 기대되며 농업용수의 경우도 형산강 유역

에서 가장 큰 0.1∼90.3 백만m3/년의 물 부족이 예상되어 형산

강 유역에 대한 안정적인 용수공급 대책이 시급할 것으로 판

단된다. 감천 유역의 경우 가장 큰 하천유지유량 부족이 전망

되는 지역으로 고시된 선산 하천유지유량 값은 8.00 m3/s로 매

Table 2. Future water shortage scenarios for vulnerable areas (Unit: Million ㎥/year)

Period Water sector Water shortage and scenario 2005 basin 2006 basin 2010 basin 2101 basin 2401 basin

S1

(2017-2040)

Domestic

/Industrial

Min. water shortage 0.1 0.1 0.1 0.3 0.0

Max. water shortage 7.3 9.2 25.6 44.2 0.0

# of scenarios occurring water shortage 39 57 57 25 0

Agricultural

Min. water shortage 0.1 0.1 0.1 0.1 0.1

Max. water shortage 18.4 37.4 58.2 88.7 35.9

# of scenarios occurring water shortage 57 57 57 57 57

Instream flow

Min. water shortage 0.1 0.0 1.7 0.1 0.1

Max. water shortage 64.2 0.0 221.2 60.9 6.1

# of scenarios occurring water shortage 57 0 57 57 57

S2

(2041-2070)

Domestic

/Industrial

Min. water shortage 0.1 0.1 0.1 0.2 0.0

Max. water shortage 7.6 6.0 29.2 64.5 0.0

# of scenarios occurring water shortage 44 57 57 24 0

Agricultural

Min. water shortage 0.1 0.1 0.1 0.1 0.1

Max. water shortage 19.7 37.6 58.8 90.3 34.3

# of scenarios occurring water shortage 57 57 57 57 57

Instream flow

Min. water shortage 0.1 0.0 0.1 0.1 0.1

Max. water shortage 62.8 0.0 220.6 61.4 8.4

# of scenarios occurring water shortage 57 0 57 57 57

S3

(2071-2099)

Domestic

/Industrial

Min. water shortage 0.1 0.1 0.1 0.1 0.0

Max. water shortage 5.4 5.6 25.8 43.7 0.0

# of scenarios occurring water shortage 36 57 56 26 0

Agricultural

Min. water shortage 0.1 0.1 0.1 0.2 0.1

Max. water shortage 16.3 36.2 56.5 89.3 39.0

# of scenarios occurring water shortage 57 57 57 57 57

Instream flow

Min. water shortage 0.3 0.0 0.6 0.1 0.1

Max. water shortage 63.8 0.0 222.9 61.3 9.1

# of scenarios occurring water shortage 57 0 57 57 57

Page 8: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-11151112

우 큰 값인데 반해 현재 확보 가능량은 0.39 m3/s, 향후 확보 필요

량은 7.61 m3/s로 미래에 이를 충족시키기가 어려울 것으로

예상되며 특히 상류의 김천부항댐의 공급신뢰도가 매우 낮을

것으로 분석됨에 따라 이와 같은 결과가 도출되었다. Fig. 5는

미래 물 공급 취약지역 중 형산강 유역에 대한 미래 용도별 물

부족 시나리오 전망 결과를 도시한 것으로 형산강 유역은 시

나리오 경로별 용도별 물 부족량이 크게 변화하는 것으로 나

타났다. 생활 및 공업용수뿐만 아니라 농업용수 및 하천유지

유량의 물 부족 시나리오 전망치의 편차가 너무 크기 때문에

합리적인 대책 수립에 어려움을 겪을 것으로 예상된다.

4.4 최적연계 운영체계 효과 분석

최적연계 운영 효과를 분석하기 위해서는 57개 미래 시나

리오 경로에 대한 분석을 수행하여야 하나 최적연계 운영체계

를 통해 용수공급시설물의 공급능력 증대를 개략적으로 파악

하기 위해 12개의 미래 시나리오 경로를 선정하였다. 용수공

급시설물의 운영방식에 있어서는 기존 운영 방식인 계획공급

량을 공급하는 보장공급 방식에 의한 미래 시나리오 경로별

물 수급 전망 결과와 최적연계 운영체계를 반영한 결과를 비

교함으로써 최적연계 운영 효과를 분석하였다. 낙동강 유역

전체의 기간별 최대 물 부족량을 산정하고 두 운영방식에 의

한 차이를 최적연계 운영에 따른 추가 공급가능량으로 평가하

였다. 이 때 최적연계 운영을 위해 분석된 용수공급시설물은

10개의 다목적댐과 10개의 용수전용댐, 8개의 보이다.

Table 3은 12개의 미래 시나리오 경로별 최적연계 운영에

의해 추가로 공급가능한 양을 기간별로 분석하여 제시한 결과

이다. 최적연계 운영을 통해서 기존 운영 방식보다 추가적인

용수공급이 가능할 것으로 나타났으며 최적연계 운영 효과는

미래 시나리오 경로별 기간별로 차이는 있으나 적게는 4.16

백만m3/년, 많게는 484.93 백만m3/년으로 분석되었다. 따라

서 향후 기술 개발로 인해 수문기상 예측, 수문분석 정확도 향

상, 용도별 수요량 예측, 통합 댐 운영 개발 등이 가능하다면

이를 통해 더 많은 용수를 필요한 수요처로 공급할 수 있게 될

것으로 예상됨에 따라 신규수원 개발 등의 수자원계획 수립을

통한 경제적 손실을 줄일 수 있을 것으로 판단된다.

(a) Domestic/Industrial water demand (b) Agricultural water demand

(c) Instream flow

Fig. 5. Prospect of water shortage scenarios in vulnerable area (2101 basin)

Page 9: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-1115 1113

4.5 낙동강 유역 물 부족 시나리오 전망

미래 시나리오 경로별 지역별 용도별 물 부족 시나리오 전

망 결과를 기간별 수요변화 시나리오별로 종합하여 낙동강

유역 전체에 대한 물 부족 시나리오를 분석하였다. Table 4는

낙동강 유역의 물 부족 시나리오 중 최소 및 최댓값을 제시한

결과이며, Fig. 6은 물 부족 변동 폭을 도시한 것이다.

낙동강 유역의 미래 시나리오에 대한 물 수급 전망 결과 S1

에 대해서는 0.09∼820.47 백만m3/년, S2의 경우 0.08∼

1,205.52 백만m3/년의 물 부족이 예상되었으며 S3에서는

0.02∼655.06 백만m3/년으로 전망되었다. 또한 기간별 수요

변화 시나리오별 물 부족량의 제3사분위에 해당하는 부족량

은 45.69∼85.56 백만m3/년으로 나타났고 제1사분위는 5.11

∼10.22 백만m3/년, 중앙값은 16.23∼30.70 백만m3/년으로

예상되었다. S2의 경우 강수가 적은 연도가 몇 년간 지속될 것

Table 3. Effect of increasing water supply capacity through optimal integrated operation (Unit: Million ㎥/year)

Scenario

S1 (2017-2040) S2 (2041-2070) S3 (2071-2099)

High

demand

Medium

demand

Low

demand

High

demand

Medium

demand

Low

demand

High

demand

Medium

demand

Low

demand

RCP 4.5

CanESM2 - - 19.82 - - 10.44 - - 8.03

CMCC-CMS 484.93 - - 374.89 - - 250.15 - -

FGOALS-s2 60.88 58.46 - 219.21 217.79 - 198.03 144.14 -

IPSL-CM5A-MR - 101.07 - - 128.95 - - 268.89 -

CESM1-BGC - - 40.57 - - 143.83 - - 4.76

RCP 8.5

CESM1-CAM5 - - 59.07 - - 32.36 - - 9.06

CMCC-CMS 42.42 - - 30.70 - - 44.36 - -

MPI-ESM-LR - - 72.51 - - 4.16 - - 331.68

MRI-CGCM3 - 53.71 - - 17.57 - - 18.64 -

INM-CM4 61.00 - - 31.44 - - 387.00 - -

HadGEM2-ES - 50.27 - - 89.89 - - 97.00 -

Table 4. Future water shortage scenarios in nakdong river basin (Unit: Million ㎥/year)

Water shortage

Period

High demand Medium demand Low demand

Min Max Min Max Min Max

S1 (2017-2040) 0.30 820.47 0.14 742.76 0.09 529.12

S2 (2041-2070) 0.14 1,205.52 0.10 813.70 0.08 597.56

S3 (2071-2099) 0.13 655.06 0.09 531.09 0.02 512.17

Fig. 6. Variation of future water shortage scenarios in nakdong river basin

Page 10: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-11151114

으로 전망되는 기후변화 시나리오에 의해 자연유출량 즉 용수

공급량이 크게 줄어들며 홍수기에 적은 강수로 인해 용수공급

시설물의 저수량이 감소하기 때문에 이와 같은 결과가 도출되

었다.

미래 시나리오에 따라 예상되는 물 부족량의 변동 폭이 매

우 크다는 것은 그만큼 미래에 대한 분석에 있어 불확실성이

크다는 것을 의미한다. 또한 어느 특정기간과 특정 미래 시나

리오 경로에 의해 물 부족량이 급증하는 것을 알 수 있다. 따라

서 향후 기후변화 적응을 위한 대책 수립을 위해서 보다 합리

적이고 타당한 이수안전도 채택이 무엇보다 중요하다.

5. 결 론

미래 기후변화 등으로 인해 안정적인 용수공급의 어려움

이 예상되고 있으나 그 피해가 어느 정도인지를 정확하게 파

악하기 어려우며 지금까지의 연구가 미래의 몇몇 시나리오를

통해 수자원 분야에 기후변화가 미치는 영향을 분석했다는

점에서 관련 정보를 활용한 미래 계획 수립에는 한계가 있다.

본 연구에서는 미래 발생가능하고 다양한 상황을 시나리

오로 구성하여 시나리오 경로별 분석을 통해 용수공급시설물

의 공급신뢰도 평가, 미래 지역별 용도별 물 부족 시나리오 전

망 및 미래 물 공급 취약지역을 선정하였다. 또한 용수공급시

설물의 최적연계 운영체계를 제시하고 기존 운영 방식과의

비교를 통해 추가 공급 가능량을 낙동강 유역을 대상으로 분

석하였다.

낙동강 유역의 용수공급시설물 공급신뢰도가 미래 시나리

오 경로에 따라 크게 차이를 보이긴 하나 대체적으로 낮아질

것으로 분석되었다. 가장 낮은 신뢰도를 나타낸 시설물은 김

천부항댐으로 장래 안정적인 용수공급을 위해 대책 마련이

시급한 것으로 분석되었다. 생활 및 공업용수보다는 농업용

수가 기후변화에 취약한 것으로 나타났으며 하천유지유량의

경우 기후변화에 의해 많은 물 부족이 발생할 것으로 예상되

었다. 미래 물 공급 취약지역으로 영강 유역, 병성천 유역, 감천

유역, 형산강 유역 및 왕피천 유역을 선정하였으며 이들 유역

은 우선적으로 물 부족 해소 및 완화를 위한 다양한 대안이 제

시될 필요가 있다. 용수공급시설물의 최적연계 운영을 통해

미래에 적게는 4.16 백만m3/년, 많게는 484.93 백만m3/년의

용수공급능력 증대를 가져올 수 있어 물 부족을 완화시킬 수

있다. 낙동강 유역은 기후변화 등으로 인해 물 부족이 크게 증

가할 것으로 예상되며 최대 1,205.52 백만m3/년이 발생할 것으

로 분석되었다. 하지만 예상 물 부족량의 변동 폭이 미래 시나

리오 경로별로 상이하기 때문에 기후변화 적응 전략 수립에 있

어서는 보다 합리적이고 타당한 이수안전도 채택이 필요하다.

미래에 대한 예측에는 많은 불확실성이 내포되어 있다는 것

을 확인할 수 있었으며 보다 다양한 미래 상황을 시나리오로

분석함으로써 예상되는 물 부족을 전략적으로 대처하여 후회

비용을 최소화할 필요가 있다. 본 연구에서 전망한 미래 지역별

용도별 물 부족 시나리오는 지역 수자원 관리 및 계획 수립에

다양한 정보를 제공할 수 있을 뿐만 아니라 지역별 용수공급의

취약성 정도를 파악하는데 유용할 것으로 판단된다.

감사의 글

본 연구는 국토교통부/국토교통과학기술진흥원의 지원

으로 수행되었습니다(과제번호 18AWMP-B083066-05).

References

Alcamo, J., and Henrichs, T. (2008). “Towards guidelines for

environmental scenario analysis.” Developments in Integrated

Environmental Assessment, Vol. 2, pp. 13-35.

Ashofteh, P., Haddad, O., and Mariño, M. (2015). “Risk analysis of

water demand for agricultural crops under climate change.”

Journal of Hydrologic Engineering, Vol. 20, 04014060.

Bae, D. H., Jung, I. W., and Chang, H. J. (2008). “Long-term trend of

precipitation and runoff in Korean river basins.” Hydrological

Process, Vol. 22, No. 14, pp. 2644-2656.

Brown, C., Ghile, Y., Laverty, M., and Li, K. (2012). “Decision

scaling: linking bottom-up vulnerability analysis with climate

projections in the water sector.” Water Resources Research,

Vol. 48, W09537.

Choi, S. J., Kim, J. H., and Lee, D. R. (2012) “Decision of the water

shortage mitigation policy using multi-criteria decision analysis.”

KSCE Journal of Civil Engineering, Vol. 16, No. 2, pp. 247-253.

Choi, S. J., Lee, D. R., and Kang, S. K. (2017). “Evaluation of

climate change impacts on water resources facility and water

supply network of nakdong river basin based on future scenarios.”

Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2,

pp. 449-459.

Cosgrove, W. J., and Loucks, D. P. (2015). “Water management:

Current and future challenges and research directions.” Water

Resources Research, Vol. 51, No. 6, pp. 4823-4839.

Culley, S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R.,

Giuliani, M. and Castelletti, A. (2016). “A bottom-up approach

to identifying the maximum operational adaptive capacity of

water resource systems to a changing climate.” Water Resources

Research, Vol. 52, No. 9, pp. 6751-6768.

Page 11: Evaluation on the water supply stab ility of nakdong river ...

S. J. Choi et al. / Journal of Korea Water Resources Association 51(S-1) 1105-1115 1115

Dandy, G. C., Connarty, M. C., and Loucks, D. P. (1997). “Comparison

of methods for yield assessment of multiple reservoir systems.”

Journal of Water Resources Planning and Management, Vol.

123, No. 6, pp. 350-358.

Georgakakos, A. P., Yao, H., Kistenmacher, M., Georgakakos, K.

P., Graham, N. E., Cheng, F.-Y., Spencer, C., and Shamir, E.

(2012). “Value of adaptive water resources management in

northern california under climatic variability and change: Reservoir

management.” Journal of Hydrology, Vol. 412-413, pp. 34-46.

Kim, S. J., Kim, B. S., and Jun, H. D. (2010). “The evaluation of

climate change impacts on the water scarcity of the han river

basin in South Korea Using High Resolution RCM Data.”

Journal of Korea Water Resources Association, Vol. 43, No.

3, pp. 295-308.

Labadie, J. W. (2004). “Optimal operation of multireservoir system:

state-of-the-art review.” Journal of Water Resources Planning

and Management, Vol. 130, No. 2, pp. 93-111.

Lee, D. R., Moon, J. W., and Choi, S. J. (2014). “Performance

evaluation of water supply for a multi-purpose dam by deficit-

supply operation.” Journal of Korea Water Resources Association,

Vol. 47, No. 2, pp. 195-206.

Medellin-Azuara, J., Jarou, J. J., Olivares, M. A., Madani, K., Lund,

J. R., Howitt, R. E., Tanaka, S. K., Jenkins, M. W., and Zhu, T.

(2008). “Adaptability and adaptations of California’s water

supply system to dry climate warming.” Climate Change, Vol.

87, pp. 75-90.

MOLIT (Ministry of Land, Infrastructure and Transport) (2016).

National Water Resources Plan(2001-2020): 3rd revision.

Nam, W. H., Hong, E. M., and Choi, J. Y. (2014). “Uncertainty of

water supply in agricultural reservoirs considering the climate

change.” Journal of the Korean Society of Agricultural Engineers,

Vol. 56, No. 2, pp. 11-23.

No, S. H., Jung, K. S., Park, J. H., and Ryoo, K. S. (2013). “Water

supply change outlook for geum river basin considering RCP

climate change scenario.” Journal of Korea Water Resources

Association, Vol. 46, No. 5, pp. 505-517.

Peterson, G. D., Cumming, G. S., and Carpenter, S. R. (2003).

Scenario planning: a tool for conservation in an uncertain

world. Conservation Biology, Vol. 17, No. 2, pp. 358-366.

Price, D. T., and Isaac K. J. (2012). Adapting sustainable forest

management to climate change: scenarios for vulnerability

assessment. Canadian Council of Forest Ministers, Ottawa, ON.

Wiseman, J., Biggs, C., Rickards, L., and Edwards, T. (2011). Scenarios

for Climate Adaptation Guidebook for Practitioners. Victoria

Centre for Climate Adaptation Research (VICCAR). University

of Melbourne, Carlton, Victoria.

Yilmaz, B., and Harmanciouglu, N. B. (2010). “An indicator based

assessment for water resources management in gediz river

basin, turkey.” Water Resources Management, Vol. 24, pp.

4359-4379.