Evaluation of ESCR of PE Resins Using Tensile Strain ...

1
Evaluation of ESCR of PE Resins Using Tensile Strain Hardening and Extensional Viscosity Pouyan Sardashti 1 , Costas Tzoganakis 1 , Maria Anna Polak 2 , and Alexander Penlidis 1 Institute for Polymer Research University of Waterloo Converging Flow Technique: Evaluation of Extensional Viscosity Using Cogswell Methodology (Capillary Rheometry) ESCR is the resistance to initiation of cracking and embrittlement of polymeric components; herein applied to polyethylene (PE) resins Main fracture mechanism involved in polymers (25% of all fractured Mechanical Approach: Tensile Strain Hardening Stiffness Test (TSHS) 1: Department of Chemical Engineering, 2: Department of Civil Engineering, University of Waterloo Environmental Stress Cracking Resistance (ESCR) Environmental Stress Cracking Resistance (ESCR) Methodology Methodology Rheological Approach: Converging Flow Technique: Results Results Shear Rates polymers experience ESCR mechanism) Function of different micromolecular properties (MW, MWD, SCB, etc.) Occurs when polymers are subjected to low levels of stress over long periods of time, and aggressive environment Mechanism: Slow Crack Growth (SCG) Polymer chain rearrangement to minimize stress Craze initiation propagation brittle fracture Linear Elastic Region Cold Drawing/ Plastic Deformation Strain Hardening Region Stress/Load Displacement/Strain Extensional rheometers: Sentmanat Extensional Rheometer (SER) Craze initiation, propagation, brittle fracture Displacement/Strain Displacement/Strain Stress/Load Sentmanat Extensional Rheometer (SER) Rheotons (Fiber Spinning) Objective: Evaluation of ESCR Objective: Evaluation of ESCR RESULTS RESULTS A potential standard test for evaluation of ESCR Evaluation of ESCR from simple testing in a reliable and more practical fashion Relationship between melt strain hardening and ESCR Insight into the influences of chain entanglements on ESCR Extensional Rheometry: Sentmanat Extensional Rheometer (SER) Need to identify the extent of entanglements Conventional Methods: Low accuracy, high uncertainty, long testing periods Notch Constant Load Test (NCLT), Pennsylvania Notch Test (PENT), Full Notch Creep Test (FNCT), Notched Pipe Test (NPT) Potential Extensional Characterization Methods: Uniaxial Tensile Testing Tensile Strain Hardening Stiffness Test (TSHS) Rheological Techniques Gel Permeation Chromatography (GPC) NMR Resin M n (g/mol) M w (g/mol) M z (g/mol) PDI M w /M n SCB (/1000C) HDPE 25,236 118,501 336,312 4.70 1.8 LLDPE 18,334 90,101 279,526 4.91 3.5 NMR: Nuclear Magnetic Resonance SCB: Short Chain Branching 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 2 3 4 5 6 7 8 dwt/dLog(Mw) LLDPE HDPE Correlation between strain hardening and extent of 4 5 6 7 8 Converging Flow Technique Extensional Rheometry Materials Materials HDPE: High Density Polyethylene (HD 8660.29, ExxonMobil) LLDPE: Linear Low Density Polyethylene (LL 8550.24, ExxonMobil) 7 mm/min 10 mm/min (MPa) s (MPa) HD LLD HS (MPa) 0.019 0.013 Tensile Strain Hardening Stiffness Test (TSHS) Room Temperature 7 and 10 mm/min Crosshead Speed Hardening Stiffness (HS)= Log(MW) Future Steps Future Steps Investigation of the validity of the techniques on a broader ranger of PE resins (ESCR between 50 and 800 hours) Optimization of the TSHS test based on specimen dimensions and crosshead rates Development of a standard test for evaluation of the ESCR of PE resins HDPE 1 HDPE 2 HDPE 1 HDPE 2 hardening and extent of entanglements 0 50 100 150 200 250 0 1 2 3 0 1 2 3 4 5 HD HDP LLD Cheng, J.; Polak, M.; Penlidis, A. J. Macromol Sci. Pure & Appl Chem 2008, 45, 599. Cogswell, F. N. J.NonNewtonian Fluid Mech 1972, 12, 64. Cheng, J. J. Mechanical and Chemical Properties of High Density Polyethylene Effects of Microstructure on Creep Characteristics; PhD Dissertation, Dept of Chem Eng, University of Waterloo: Waterloo, Ont., 2008. Wright, D. C. 1996. Environmental Stress Cracking of Plastics, Smithers Rapra Technology, 1996. Bernnat,A., Wagner,M.H. Prog Trends Rheol V, Proc Eur Rheol Conf. 5 th , 1998. REFERENCE REFERENCE Density (g/cm 3 ) ESCR (h) Differential Scanning Calorimetry (DSC) Resin Crystallinity (%) Melting Point ( o C) Lamella Thickness (nm) HDPE 0.942 35 56.1 127.5 4.2 LLDPE 0.936 15 48.4 125.5 3.6 ESCR: Notch Constant Load Test (NCLT) Lamella Thickness: GibbsThomson Equation and DSC Analysis Shifted Strain (%) Shifted Strain (%) Shifted Stress Shifted Stres LLDPE LLDPE IPR 2011

Transcript of Evaluation of ESCR of PE Resins Using Tensile Strain ...

Evaluation of ESCR of PE Resins UsingTensile Strain Hardening and Extensional Viscosity

Pouyan Sardashti1, Costas Tzoganakis1, Maria Anna Polak2, and Alexander Penlidis1 University of Waterloo 

Institute for Polymer Research

University of Waterloo

Converging  Flow  Technique:  Evaluation  of  Extensional  Viscosity  Using 

Cogswell Methodology (Capillary Rheometry)

ESCR  is  the  resistance  to  initiation  of  cracking  and  embrittlement  of polymeric components; herein applied to polyethylene (PE) resins

• Main  fracture  mechanism  involved  in  polymers  (25%  of  all  fractured 

Mechanical Approach:• Tensile Strain Hardening Stiffness Test (TSHS)

1: Department of Chemical Engineering, 2: Department of Civil Engineering, University of Waterloo

Environmental Stress Cracking Resistance (ESCR)Environmental Stress Cracking Resistance (ESCR) MethodologyMethodology

Rheological Approach:• Converging Flow Technique:

ResultsResults

Shear Rates

polymers experience ESCR mechanism)

• Function of different micromolecular properties (MW, MWD, SCB, etc.)

• Occurs when  polymers  are  subjected  to  low  levels  of  stress  over  long periods of time, and aggressive environment

Mechanism: Slow Crack Growth (SCG)

• Polymer chain rearrangement to minimize stress  

• Craze initiation propagation brittle fracture

Linear Elastic Region

Cold Drawing/ Plastic Deformation

Strain Hardening Region

Stress/Load 

Displacement/Strain

• Extensional rheometers: 

• Sentmanat Extensional Rheometer (SER)• Craze initiation, propagation, brittle fracture Displacement/Strain 

Displacement/Strain 

Stress/Load 

Sentmanat Extensional Rheometer (SER)

• Rheotons (Fiber Spinning)

Objective: Evaluation of ESCRObjective: Evaluation of ESCR RESULTSRESULTS

A potential standard test for evaluation of ESCR

Evaluation of ESCR from simple testing in a reliable 

and more practical fashion

Relationship between melt strain hardening and ESCR

Insight into the influences of chain entanglements on 

ESCR

Extensional Rheometry: Sentmanat Extensional Rheometer (SER) Need to identify the 

extent of entanglements

Conventional  Methods:  Low  accuracy,  high  uncertainty,    long  testing periods• Notch Constant  Load  Test  (NCLT),  Pennsylvania Notch  Test  (PENT),  Full 

Notch Creep Test (FNCT), Notched Pipe Test (NPT)

Potential Extensional Characterization Methods: • Uniaxial Tensile Testing

• Tensile Strain Hardening Stiffness Test (TSHS)• Rheological Techniques

Gel Permeation Chromatography (GPC) NMR

ResinMn

(g/mol)Mw

(g/mol)Mz

(g/mol)PDI 

Mw/Mn

SCB (/1000C)

HDPE 25,236 118,501 336,312 4.70 1.8

LLDPE 18,334 90,101 279,526 4.91 3.5

NMR: Nuclear Magnetic ResonanceSCB: Short Chain Branching

0

0.1

0.20.3

0.4

0.5

0.6

0.70.8

0.9

2 3 4 5 6 7 8

dwt/dLog(M

w)

LLDPE

HDPE

Correlation between strain hardening and extent of

4

5

HD HDP LLD

6

7

8

HD HDP LLD

g q• Converging Flow Technique• Extensional Rheometry 

MaterialsMaterials

HDPE: High Density Polyethylene (HD 8660.29, ExxonMobil)

LLDPE: Linear Low Density Polyethylene (LL 8550.24, ExxonMobil)7 mm/min 10 mm/min

(MPa)

s (M

Pa)

HD LLDHS (MPa) 0.019 0.013

Tensile Strain Hardening Stiffness Test (TSHS)

• Room Temperature

• 7 and 10 mm/min Crosshead Speed

Hardening Stiffness (HS)=

Log(MW) Future StepsFuture Steps

Investigation of the validity of the techniques on a broader ranger of PE 

resins (ESCR between 50 and 800 hours)

Optimization of the TSHS test based on specimen dimensions and crosshead 

rates

Development of a standard test for evaluation of the ESCR of PE resinsHDPE 1 HDPE 2 HDPE 1

HDPE 2

hardening and extent of entanglements 

0 50 100 150 200 2500

1

2

3

0

1

2

3

4

5

HD HDP LLD

Cheng, J.; Polak, M.; Penlidis, A. J. Macromol Sci. Pure & Appl Chem 2008, 45, 599. 

Cogswell, F. N. J.Non‐Newtonian Fluid Mech 1972, 12, 64. 

Cheng, J. J. Mechanical and Chemical Properties of High Density Polyethylene Effects of Microstructure on 

Creep Characteristics; PhD Dissertation, Dept of Chem Eng, University of Waterloo: Waterloo, Ont., 2008. 

Wright, D. C. 1996. Environmental Stress Cracking of Plastics, Smithers Rapra Technology, 1996.

Bernnat,A., Wagner,M.H. Prog Trends Rheol V, Proc Eur Rheol Conf. 5th , 1998.

REFERENCEREFERENCEDensity(g/cm3)

ESCR  (h)

Differential Scanning Calorimetry (DSC)

Resin Crystallinity (%)

Melting Point (oC)

Lamella Thickness (nm)

HDPE 0.942 35 56.1 127.5 4.2

LLDPE 0.936 15 48.4 125.5 3.6

ESCR: Notch Constant Load Test (NCLT)Lamella Thickness: Gibbs‐Thomson Equation and DSC Analysis

Shifted Strain (%) Shifted Strain (%)

Shifted

 Stress 

Shifted

 Stres

LLDPELLDPE

IPR 20

11