Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6....

34
1/34 Fujitsu ASSP Product Power Management MB39A103 Evaluation Board ver2.0E Evaluation board Manual Evaluation board Manual MB39A103 MB39A103 Rev 2.0E December, 2001

Transcript of Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6....

Page 1: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

1/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

Evaluation board ManualEvaluation board Manual

MB39A103MB39A103

Rev 2.0EDecember, 2001

Page 2: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

2/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

MB39A103 Evaluation board MB39A103 Evaluation board MB39A103 SpecificationsMB39A103 Specifications1. 1. Pin Assignments Pin Assignments 2. Package & Dimension2. Package & Dimension3. Pin Descriptions 3. Pin Descriptions 4. Block Diagram 4. Block Diagram 5. Setting Method5. Setting Method

1) 1) Output VoltageOutput Voltage2) Triangular Wave Oscillation Frequency 2) Triangular Wave Oscillation Frequency 3) Soft3) Soft--Start Time Start Time 4) 4) CTL Functional MatrixCTL Functional Matrix5) 5) Functional Matrix of Protection enable Functional Matrix of Protection enable 6 Time Constant For Timer6 Time Constant For Timer--Latch ShortLatch Short--CircuitCircuit

Protection Circuit Protection Circuit

MB39A103 Evaluation board ExplanationsMB39A103 Evaluation board Explanations1. 1. Evaluation Board SpecificationsEvaluation Board Specifications2. 2. Pin DescriptionsPin Descriptions3. 3. SwSw Information Information 4. Setup & Confirmation Method 4. Setup & Confirmation Method 5. Parts Layout Block5. Parts Layout Block6. Circuit Diagram6. Circuit Diagram7. Circuit Parts List 7. Circuit Parts List 8. Initialization8. Initialization9. Reference Data 9. Reference Data 10. Parts Select Method 10. Parts Select Method

Page 3: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

3/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

SpecificationsSpecificationsMB39A103MB39A103

Page 4: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

4/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

(TOP VIEW)

CS2 1 30 CS1

-INE2 2 29 -INE1

FB2 3 28 FB1

DTC2 4 27 DTC1

VCC 5 26 VCCO

CTL 6 25 OUT1

VREF 7 24 OUT2

RT 8 23 OUT3

CT 9 22 OUT4

GND 10 21 GNDO

CSCP 11 20 -INS

DTC3 12 19 DTC4

FB3 13 18 FB4

-INE3 14 17 -INE4

CS3 15 16 CS4

(FPT-30P-M04)

1. 1. Pin AssignmentsPin Assignments

2. 2. Package & DimensionPackage & Dimension

Page 5: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

5/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

Pin No Pin Name I/O Description 27 DTC1 I CH1 dead time control terminal. 28 FB1 O CH1 error amplifier output terminal. 29 -INE1 I CH1 error amplifier inverted input terminal. 30 CS1 - CH1 soft-start setting capacitor connection terminal.

CH1

25 OUT1 O CH1 totem pole type output terminal. 4 DTC2 I CH2 dead time control terminal. 3 FB2 O CH2 error amplifier output terminal. 2 -INE2 I CH2 error amplifier inverted input terminal. 1 CS2 - CH2 soft-start setting capacitor connection terminal.

CH2

24 OUT2 O CH2 totem pole type output terminal. 12 DTC3 I CH3 dead time control terminal. 13 FB3 O CH3 error amplifier output terminal. 14 -INE3 I CH3 error amplifier inverted input terminal. 15 CS3 - CH3 soft-start setting capacitor connection terminal.

CH3

23 OUT3 O CH3 totem pole type output terminal 19 DTC4 I CH4 dead time control terminal. 18 FB4 O CH4 error amplifier output terminal. 17 -INE4 I CH4 error amplifier inverted input terminal. 16 CS4 - CH4 soft start setting capacitor connection terminal.

CH4

22 OUT4 O CH4 totem pole type output terminal

9 CT - Triangular wave oscillation frequency setting capacitor connection terminal. OSC

8 RT - Triangular wave oscillation frequency setting resistor connection terminal.

6 CTL I Power supply control terminal. 11 CSCP - Timer latch short-circuit detection capacitor connection terminal. Control 20 -INS I Short-circuit detection comparator inverted input terminal. 26 VCCO - Output block power supply terminal.

5 VCC - Power supply terminal for reference power supply and control circuit.

7 VREF O Reference voltage output terminal. 21 GNDO - Output block ground terminal.

Power

10 GND - Ground terminal.

3. 3. Pin DescriptionsPin Descriptions

Page 6: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

6/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

4. 4. Block DiagramBlock Diagram

VIN(1.7V to 5V)

Drive1

ErrorAmp1

(1.24V)

-INE1 VCCO

OUT1

PWMComp.1

<CH1>

OSC

(0.9V)

(0.4V)UVLO2

SCP

PowerON/OFF

CTL

RT CT

VR1

ErrorAmpReference (1.24V)

VREF

VCC

VREF

bias

(2.0V)

Accuracy±1%

Accuracy±10%1MHz

correspondence

CTL

GND

Pch

Power supplyErrorAmpSCPComp

H:ON (Power ON)L:OFF(Standby)VTH=1.4V

Charge Current(1µA)

VREF29A

30

28

27

CS1

FB1

DTC1

26

25

CH1 ON/OFFControl Input(L:ON,H:OFF)

Drive2

ErrorAmp2

(1.24V)

-INE2

OUT2

PWMComp.2

VREF2B

1

3

4

CS2

FB2

DTC2

24

L priority

Drive3

ErrorAmp3

(1.24V)

-INE3

OUT3

PWMComp.3

VREF14C

15

13

12

CS3

FB3

DTC3

23

Drive4

ErrorAmp4

(1V)

-INE4

PWMComp.4

Nch

VREF17D

16

18

19

CS4

FB4

DTC4

L priority GNDO21

OUT422

5

6

10798

VREF

20 (100kΩ) SCP

Comp.-INS

(1.24V)

11CSCP

Short-Circuit Detection ControlInput (L:Short)

H:at SCP

H:UVLO release

Threshold VoltageAccuracy ±1.5%

Accuracy±1%

CTL3

CTL2

CTL1

Io=130mAat VCCO=4V

Io=130mAat VCCO=4V

Io=130mAat VCCO=4V

Io=130mAat VCCO=4V

Nch

Nch

UVLO1

B

Vo1 2.5V

A

Vo23.3V

DVo4-115V

Vo4-25V

C Vo3-115V

Vo3-25V

<CH2>

<CH3>

<CH4>

(10µA)

(10µA)

(10µA)

(10µA)

L priority

L priority

L priority

L priority

L priority

L priority

Threshold VoltageAccuracy ±1.5%

Threshold VoltageAccuracy ±1.5%

Threshold VoltageAccuracy ±1.5%

CH2 ON/OFFControl Input(L:ON,H:OFF)

CH3 ON/OFFControl Input(L:ON,H:OFF)

Transformer

Up/Down Conversion

Up/Down Conversion

Transformer

Vo4-3-7.5V

Page 7: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

7/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

To prevent rush currents when the IC is turned on, you can set a soft-start by connecting soft-start capacitor(CS ) to the CS terminal . When IC is turned on, charging starts on capacitor (Cs) connected to the CS terminal. The output voltage does a soft-start with the error amplifier in proportion to to the CS terminal voltage regardless of the load current on the DC/DC converter.The soft-start time is obtained from the following formula.

Soft-start time (time to output 100%) : tsts(s) ≅≅≅≅ 0.124 × CS (µF)

3) 3) SoftSoft--Start Time Start Time

1) 1) Output VoltageOutput Voltage5. 5. Setting Method Setting Method

2)2) Triangular Wave Oscillation FrequencyTriangular Wave Oscillation FrequencyThe triangular wave oscillation frequency can be set by the timing resistor (RT ) connected the RT terminal (pin 8) and timing capacitor (CT ) connected the CT terminal (pin 9) .

Triangular wave oscillation frequency : fosc

fosc(kHz) ≅≅≅≅ 1200000/(CT(pF) × RT(kΩ) )

ErrorAmp

(1.24V)

-INEX

CSX

Vo

R1

R2

Vo(V)=R2

1.24(R1+R2)

Page 8: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

8/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

4) 4) CTL Functional MatrixCTL Functional MatrixON/OFF of each channel are set according to a setting condition of the CTL terminal(pin 6), the CS1 terminal(pin30), the CS2 terminal(pin 1), the CS2 terminal(pin 15), and the CS4 terminal(pin 16).

5) 5) Functional Matrix of Protection enableFunctional Matrix of Protection enable

* The method of releasing the latch after protection operates is as follows.

  1. The latch after all protection operates by making the CTL terminal “L" is released.

  2. The latch after all protection operates by turning on VCC again is released.

CTL CS1 CS2 CS3 CS4 Power CH1 CH2 CH3 CH4

L -* -* -* -* OFF OFF OFF OFF OFF

H GND GND GND GND ON OFF OFF OFF OFF

H Hi-Z GND GND GND ON ON OFF OFF OFF

H GND Hi-Z GND GND ON OFF ON OFF OFF

H GND GND Hi-Z GND ON OFF OFF ON OFF

H GND GND GND Hi-Z ON OFF OFF OFF ON

H Hi-Z Hi-Z Hi-Z Hi-Z ON ON ON ON ON

* : Undefined

Function OUT1 OUT2 OUT3 OUT4

Short-Circuit Protection H L L L

UVLO H L L L

Page 9: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

9/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

6)6) Constant For TimerConstant For Timer--Latch ShortLatch Short--Circuit Protection CircuitCircuit Protection CircuitThe output level of the error amplifier of each channel always does the comparison operation with short-circuit protection comparator (SCP Comp.) as the reference voltage.

While the DC/DC converter load conditions are stable on all channels, the short-circuit detection comparator output remains at “L” level, and the CSCP terminal (pin 11) is held at “L” level.

If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to drop, the output from the short detection comparator goes to “H” level. Charging starts on short-circuit protection capacitor (Cscp) connected to the CSCP terminal at 1µA.

Short-Circuit Detection Time :tPE

tPE (s) ≅≅≅≅ 0.70 × CSCP (µF)

When the capacitor CSCP is charged to the threshold voltage (VTH ≅ 0.70V), the SR latch is set, and the external FET is turned off (dead time is set to 100%). At this time, the SR latch input is closed and the CSCP terminal is held at “L” level.

The latch of the timer latch type short-circuit protection circuit can be released by intercepting powersupply (VCC) or setting the CTL terminal “L" level.

< Timer latch type short-circuit protection circuit>

Vo1

ErrorAmp

+

−-INEX

CSCP

R1

R2 ( 1.24 V)

FBX

SCPComp.

(1.1V:FB1 to FB3)

(1.0V:FB4)

+

−+

S RLatch UVLO

CTLVREF

each channel

Drive

(1µA)

11

CSCP

Page 10: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

10/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

ExplanationsExplanations

MB39A103 Evaluation boardMB39A103 Evaluation board

Page 11: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

11/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

DIP Switch Function Table

Symbol Descriptions

VIN Power supply pinVIN = 1.7V to 5V (3V typ.)

VoX DC/DC converter output pin

CTLPower supply control pinVCTL = 0V to 0.8V : Standby modeVCTL = 2.0V to VIN : Operation mode

GNDX DC/DC converter ground pinICGND MB39A103 ground pin

SW Name Function ON OFF1 CS1 CH1 control Output ON2 CS2 CH2 control3 CS3 CH3 control5 CTL Power supply control Operation mode Standby mode

Input voltageOscillation frequency

Output voltageOutput current(max)

1. 1. Evaluation Board SpecificationsEvaluation Board Specifications

Function table of the Pin terminal2. 2. Pin DescriptionsPin Descriptions

3. 3. SwSw InformationInformation

Output ONOutput ON

Output OFFOutput OFFOutput OFF

CH1 CH2 CH3 CH4

2.5V 15V, 5V 15V, 5V, -7.5V250mA 10mA, 50mA 10mA, 50mA, -5mA

VIN=1.7V to 5V(3V typ.)fosc=500kHz

3.3V500mA

Page 12: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

12/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

* The power supply side terminal is connected with VIN•GND.Please connect the Vo side with a necessary load device or measurement machine.

* SW5(CTL) is made OFF(standby mode), and SW1 to SW3(CS1 to CS3) is put into the state of turning off (output OFF).

* Please turn on SW4 always.

* Please turn on the power to VIN (power supply), make SW5 ON(Operation mode), and turn on SW1 to

SW3 (output ON).

IC operates normally if Vo1=2.5V(Typ.), Vo2=3.3V (Typ.), Vo3-1=15V (Typ.), Vo3-2=5V (Typ.),

Vo4-1=15V (Typ.), Vo4-2=5V (Typ.), and Vo4-3=-7.5V(Typ.) are output.

* Please confirm each output referring to various setting etc. of the attached paper.

4.4. Setup & Confirmation MethodSetup & Confirmation Method

(1) Set up

(2) Confirmation Method

Page 13: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

13/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

Note) Only parts C1 and C2 are arranged on the back of the board.

5. 5. Parts Layout BlockParts Layout Block

Board parts block diagram

Page 14: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

14/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

Board Layout

Top Side

Bottom Side

Inside VIN & GND(Layer 2)

Inside GND(Layer 3)

Page 15: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

15/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

6. 6. Circuit DiagramCircuit Diagram

Note) The constant of the unsurface mounted component is described with XXX.

Vo4-115V

Vo4-25V

Vo4-3-7.5V

Io4-2=50mA

Io4-3=-5mA

Io4-1=10mA

-INE1 VCCO

OUT1

VIN(1.7V to 5V)

RT CT

VCC

VREF

Accurary±1%

Accurary±10%1MHz

correspondence

CTL

GND

H:ON (Power ON)L:OFF(Standby)VTH=1.4V

Charge Current(1 µ A)

A

CS1

FB1

DTC1

25

-INE2

OUT2

B

CS2

FB2

DTC2

24

-INE3

OUT3

C

CS3

FB3

DTC3

23

B

-INE4D

CS4

FB4

DTC4

GNDO21

OUT422

5

-INS

CSCP

Short-Circuit Detection ControlInput (L:Short)

Vo1 2.5V

A

Vo23.3V

Io1=250mA

R11

R3

R2

R1

R15

R13 R14

R17

R18

R35

R36

R21

R20R19

R24

R23

R27

R25

R30

R29

R33

R32R31

C20

C22

C24

C26

C28

R37 C29C30

C2

C1 Q1 L2

L3

L4

C5

C6

D122µH

R4

C34700pF

C4

P1

R12

C164700pF

C17

D7

P2

C18

C19

P11

P10

R16

C21

R22

C23

P5

P6

P7

P8

P9

R28

C25

R34

C27

IC GND

C31XXX

GND

GND1

GND2

Q5

α

β

γ

δ

It is IC operation, and a state of all channel ON in the above figure.

P12

29

30

28

27

2

1

3

4

14

15

13

12

17

16

18

19

10798

20

11

26

6

R26

Drive1

ErrorAmp1

(1.24V)

PWMComp.1

<CH1>

OSC

(0.9V)

(0.4V) UVLO2

SCP

PowerON/OFF

CTLVR1

ErrorAmpReference (1.24V)

VREF

bias

(2.0V)

Pch

Power supplyErrorAmpSCPComp.

VREF

(10µA)

Drive2

ErrorAmp2

(1.24V)

PWMComp.2

<CH2>VREF

(10µA)

L priority

L priority

L priority

L priority

Drive3

ErrorAmp3

(1.24V)

PWMComp.3

<CH3>VREF

(10µA)

L priority

L priority

Drive4

ErrorAmp4

(1V)

PWMComp.4

<CH4>

Nch

VREF

(10µA)

L priority

L priority

VREF (100kΩ) SCP

Comp.

(1.24V)

H:at SCP

H : UVLO release

offset ±10mV

Accuracy±1%

offset ±10mV

offset ±10mV

offset ±10mV

Io=130mAat VCCO=4V

Io=130mAat VCCO=4V

Io=130mAat VCCO=4V

Io=130mAat VCCO=4V

Nch

Nch

UVLO1

C

Vo3-115V

Vo3-25V

Io3-2=50mA

D5

D6T2 C14

C15P3

D

D2

D3

D4

T1 C9

C10

C11

Io2=500mA

GND4

C12XXX

R10

R5

C8

C7XXX

R6

R9

C13

GND3

D8

< Zeta Conversion >

< Sepic Conversion >

< Transformer >

< Transformer >

Q2

Q4

Io3-1=10mA

OFFSW1

ON

OFFON

OFFON

ONOFF

12

34

56

α

β

γ

δ

CS1 OPEN

CS2 OPEN

CS3 OPEN

"ON" always

CTL

ON

C32P4

4.7µF

L110µF

15µH0Ω

150Ω

1µF

0Ω0.1µF

0Ω 10µH

300Ω

1µF

15µH10µF

4.7µF

1µF 2.2µF

2.2µF

1µF

0.1µF

2.2µF

2.2µF

2.2µF

2.2µF

0.1µF100pF24kΩ

0.01µF

20kΩ33kΩ

2kΩ

0.047µF

0.1µF

15kΩ

43kΩ2.4kΩ

20kΩ33kΩ

0.047µF

2kΩ0.1µF

15kΩ

43kΩ2.4kΩ

13kΩ18kΩ

1kΩ

0.1µF

0.1µF

15kΩ

22kΩ3kΩ

13kΩ18kΩ

0.1µF

0.1µF

1kΩ

15kΩ

12kΩ3.3kΩ

Page 16: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

16/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

7. 7. Circuit Parts ListCircuit Parts List

< Continued >

Component(Circuit diagram mark) Rated1 Rated2 Rated3 Value Deviation Characteristic

1 M1 IC MB39A103PFT - - - - - - FPT-30P-M04 FUJITSU

2 Q1 PNP CPH3106 PC=0.9W VCEO=-12V IC=-3A - - - - SANYO3 Q2 Nch FET MCH3405 PD=0.8W VDSS=10V VGSS=±10V ID=1.8A - - - SANYO4 Q4 Nch FET MCH3405 PD=0.8W VDSS=10V VGSS=±10V ID=1.8A - - - SANYO5 Q5 NPN CPH3206 PC=0.9W VCEO=15V IC=3A - - - SC-62 SANYO6 D1 SBD SBS004 VF(max)=0.35V, at IF=1A VRRM=15V IO=1A - - - SOT-23 SANYO7 D2 SBD SB05-05CP VF(max)=0.55V, at IF=0.5A VRRM=50V IO=500mA - - - SOT-23 SANYO8 D3 SBD SB05-05CP VF(max)=0.55V, at IF=0.5A VRRM=50V IO=500mA - - - SOT-23 SANYO9 D4 SBD SB05-05CP VF(max)=0.55V, at IF=0.5A VRRM=50V IO=500mA - - - SOT-23 SANYO

10 D5 SBD SB05-05CP VF(max)=0.55V, at IF=0.5A VRRM=50V IO=500mA - - - SOT-23 SANYO11 D6 SBD SB05-05CP VF(max)=0.55V, at IF=0.5A VRRM=50V IO=500mA - - - SOT-23 SANYO12 D7 SBD SBS004 VF(max)=0.35V, at IF=1A VRRM=15V IO=1A - - - SOT-23 SANYO13 D8 SBD SBS004 VF(max)=0.35V, at IF=1A VRRM=15V IO=1A - - - SOT-23 SANYO14 L1 Inductor RLF5018T-220MR63 IDC1=0.63A IDC2=0.86A - 22µH ±20% RDC=0.16Ω - TDK15 L2 Inductor RLF5018T-150MR76 IDC1=0.76A IDC2=1.0A - 15µH ±20% RDC=0.12Ω - TDK16 L3 Inductor SLF6028T-100M1R3 IDC1=1.3A IDC2=1.8A - 10µH ±20% RDC=0.0532Ω - TDK17 L4 Inductor RLF5018T-150MR76 IDC1=0.76A IDC2=1.0A - 15µH ±20% RDC=0.12Ω - TDK18 T1 Transformer CLQ52 5388-T095 - - - - - - - SUMIDA19 T2 Transformer CLQ52 5388-T095 - - - - - - - SUMIDA20 C1 Ceramic condenser C1608JB1H104K 50V - - 0.1µF ±10% B characteristic 1608 TDK21 C2 Ceramic condenser C1608JB1H104K 50V - - 0.1µF ±10% B characteristic 1608 TDK22 C3 Ceramic condenser C1608JB1H472K 50V - - 4700pF ±10% B characteristic 1608 TDK23 C4 Ceramic condenser C3216JB1E105K 25V - - 1µF ±10% B characteristic 3216 TDK24 C5 Ceramic condenser C3216JB1A475M 10V - - 4.7µF ±20% B characteristic 3216 TDK25 C6 Ceramic condenser C3216JB0J106K 6.3V - - 10µF ±10% B characteristic 3216 TDK26 C7 Ceramic condenser - - - - - - - - - Not mounting

27 C8 Ceramic condenser C3216JB1E105K 25V - - 1µF ±10% B characteristic 3216 TDK28 C9 Ceramic condenser C3216JB1E225K 25V - - 2.2µF ±10% B characteristic 3216 TDK29 C10 Ceramic condenser C3216JB1E225K 25V - - 2.2µF ±10% B characteristic 3216 TDK30 C11 Ceramic condenser C3216JB1E225K 25V - - 2.2µF ±10% B characteristic 3216 TDK31 C12 Ceramic condenser - - - - - - - - - Not mounting

32 C13 Ceramic condenser C3216JB1E105K 25V - - 1µF ±10% B characteristic 3216 TDK33 C14 Ceramic condenser C3216JB1E225K 25V - - 2.2µF ±10% B characteristic 3216 TDK34 C15 Ceramic condenser C3216JB1E225K 25V - - 2.2µF ±10% B characteristic 3216 TDK35 C16 Ceramic condenser C1608JB1H472K 50V - - 4700pF ±10% B characteristic 1608 TDK36 C17 Ceramic condenser C3216JB1E105K 25V - - 1µF ±10% B characteristic 3216 TDK37 C18 Ceramic condenser C3216JB1A475M 10V - - 4.7µF ±20% B characteristic 3216 TDK38 C19 Ceramic condenser C3216JB0J106K 6.3V - - 10µF ±10% B characteristic 3216 TDK39 C20 Ceramic condenser C1608JB1H104K 50V - - 0.1µF ±10% B characteristic 1608 TDK40 C21 Ceramic condenser C1608JB1H104K 50V - - 0.1µF ±10% B characteristic 1608 TDK41 C22 Ceramic condenser C1608JB1H104K 50V - - 0.1µF ±10% B characteristic 1608 TDK42 C23 Ceramic condenser C1608JB1H104K 50V - - 0.1µF ±10% B characteristic 1608 TDK43 C24 Ceramic condenser C1608JB1H104K 50V - - 0.1µF ±10% B characteristic 1608 TDK44 C25 Ceramic condenser C1608JB1H473K 50V - - 0.047µF ±10% B characteristic 1608 TDK45 C26 Ceramic condenser C1608JB1H104K 50V - - 0.1µF ±10% B characteristic 1608 TDK46 C27 Ceramic condenser C1608JB1H473K 50V - - 0.047µF ±10% B characteristic 1608 TDK47 C28 Ceramic condenser C1608JB1H103K 50V - - 0.01µF ±10% B characteristic 1608 TDK48 C29 Ceramic condenser C1608CH1H101J 50V - - 100pF ±5% CH characteristic 1608 TDK

Parts No. RemarkNo. Item VendorPackageSpecification

Page 17: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

17/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

< Continued >

Component(Circuit diagram mark) Rated1 Rated2 Rated3 Value Deviation Characteristic

52 R1 Jumper - 1/16W - - 0 Ω max 50mΩ - 1608 -

53 R2 Jumper - 1/16W - - 0 Ω max 50mΩ - 1608 -

54 R3 Jumper - 1/4W - - 0 Ω max 50mΩ - 3216 -

55 R4 Resistor PR0816P-151-D 1/16W - - 150Ω ±0.5% ±25ppm/ºC 1608 ssm56 R5 Jumper - 1/4W - - 0 Ω max 50mΩ - 3216 -

57 R6 Jumper - 1/16W - - 0 Ω max 50mΩ - 1608 -

58 R9 Jumper - 1/4W - - 0 Ω max 50mΩ - 3216 -

59 R10 Jumper - 1/16W - - 0 Ω max 50mΩ - 1608 -

60 R11 Jumper - 1/4W - - 0 Ω max 50mΩ - 3216 -

61 R12 Resistor PR0816P-301-D 1/16W - - 300Ω ±0.5% ±25ppm/ºC 1608 ssm62 R13 Resistor PR0816P-332-D 1/16W - - 3.3kΩ ±0.5% ±25ppm/ºC 1608 ssm63 R14 Resistor PR0816P-123-D 1/16W - - 12kΩ ±0.5% ±25ppm/ºC 1608 ssm64 R15 Resistor PR0816P-153-D 1/16W - - 15kΩ ±0.5% ±25ppm/ºC 1608 ssm65 R16 Resistor PR0816P-102-D 1/16W - - 1kΩ ±0.5% ±25ppm/ºC 1608 ssm66 R17 Resistor PR0816P-183-D 1/16W - - 18kΩ ±0.5% ±25ppm/ºC 1608 ssm67 R18 Resistor PR0816P-133-D 1/16W - - 13kΩ ±0.5% ±25ppm/ºC 1608 ssm68 R19 Resistor PR0816P-302-D 1/16W - - 3kΩ ±0.5% ±25ppm/ºC 1608 ssm69 R20 Resistor PR0816P-223-D 1/16W - - 22kΩ ±0.5% ±25ppm/ºC 1608 ssm70 R21 Resistor PR0816P-153-D 1/16W - - 15kΩ ±0.5% ±25ppm/ºC 1608 ssm71 R22 Resistor PR0816P-102-D 1/16W - - 1kΩ ±0.5% ±25ppm/ºC 1608 ssm72 R23 Resistor PR0816P-183-D 1/16W - - 18kΩ ±0.5% ±25ppm/ºC 1608 ssm73 R24 Resistor PR0816P-133-D 1/16W - - 13kΩ ±0.5% ±25ppm/ºC 1608 ssm74 R25 Resistor PR0816P-242-D 1/16W - - 2.4kΩ ±0.5% ±25ppm/ºC 1608 ssm75 R26 Resistor PR0816P-433-D 1/16W - - 43kΩ ±0.5% ±25ppm/ºC 1608 ssm76 R27 Resistor PR0816P-153-D 1/16W - - 15kΩ ±0.5% ±25ppm/ºC 1608 ssm77 R28 Resistor PR0816P-202-D 1/16W - - 2kΩ ±0.5% ±25ppm/ºC 1608 ssm78 R29 Resistor PR0816P-333-D 1/16W - - 33kΩ ±0.5% ±25ppm/ºC 1608 ssm79 R30 Resistor PR0816P-203-D 1/16W - - 20kΩ ±0.5% ±25ppm/ºC 1608 ssm80 R31 Resistor PR0816P-242-D 1/16W - - 2.4kΩ ±0.5% ±25ppm/ºC 1608 ssm81 R32 Resistor PR0816P-433-D 1/16W - - 43kΩ ±0.5% ±25ppm/ºC 1608 ssm82 R33 Resistor PR0816P-153-D 1/16W - - 15kΩ ±0.5% ±25ppm/ºC 1608 ssm83 R34 Resistor PR0816P-202-D 1/16W - - 2kΩ ±0.5% ±25ppm/ºC 1608 ssm84 R35 Resistor PR0816P-333-D 1/16W - - 33kΩ ±0.5% ±25ppm/ºC 1608 ssm85 R36 Resistor PR0816P-203-D 1/16W - - 20kΩ ±0.5% ±25ppm/ºC 1608 ssm86 R37 Resistor PR0816P-243-D 1/16W - - 24kΩ ±0.5% ±25ppm/ºC 1608 ssm87 SW1 DIP SWITCH DMS-6H - - - - - - - MATSUKYU

88 PIN Wiring terminal WT-2-1 - - - - - - - Mac-Eight

SpecificationPackage Vendor RemarkNo. Item Parts No.

Page 18: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

18/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

Vo1 (V) = 1.24 / R15 × (R13 + R14 + R15)

(1) Output voltage setting

(3) Soft-start time

(2) Oscillation frequency

fosc (kHz) = 1200000 / (C29(pF) × R37(kΩ))

≅ 2.5 (V)

ts (s) = 0.124 × C20 (µF) ≅ 12.4 (ms)

≅ 500 (kHz)

Vo2 (V)  = 1.24 / R21 × (R19 + R20 + R21)

CH1

CH2 ≅ 3.3 (V)

CH1

CH2 ts (s) = 0.124 × C22 (µF) ≅ 12.4 (ms)

(4) Short-circuit detection time

tscp (s) = 0.70 × C28 (µF) ≅ 7.0 (ms)

Vo3-2 (V) = 1.24 / R27 × (R25 + R26 + R27) ≅ 5.0 (V)

Vo4-2 (V) = 1.24 / R33 × (R31 + R32 + R33)

CH3

CH4 ≅ 5.0 (V)

ts (s) = 0.124 × C24 (µF) ≅ 12.4 (ms) CH3

CH4 ts (s) = 0.124 × C26 (µF) ≅ 12.4 (ms)

8.8. InitializationInitialization

Page 19: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

19/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

Total efficiency-iiiinput voltage

60

65

70

75

80

85

90

95

100

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Input voltage VIN(V)

Tota

l effi

cien

cy η

(%)

CH1:ZETAVo1=2.5V, Io1=250mACH2:SEPICVo2=3.3V, Io2=500mACH3:TransformerVo3-1=15V, Io3-1=10mAVo3-2=5V, Io3-2=50mACH4:Transformer(Include tttthe own pow er supply)Vo4-1=15V, Io4-1=10mAVo4-2=5V, Io4-2=50mAVo4-3=-7.5V, Io4-3=-5mAfosc=500kHz

(1) (1) Conversion efficiency Conversion efficiency –– Input voltageInput voltage

Total efficiencyTotal efficiency

Each channel efficiencyEach channel efficiency

9. 9. Reference DataReference Data

Each channel efficiency----input voltage

60

65

70

75

80

85

90

95

100

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Input voltage VIN(V)

Each

cha

nnel

effi

cien

cy η

(%)

Note) Concerned channel and CH4 (ownpower supply) are turned on.External SW Tr driving current is contains .IC consumption current is included in CH4.

CH1

CH3CH4

CH2

Page 20: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

20/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

CH3/CH4 output voltage-load current((((Load regulation))))

0

1

2

3

4

5

6

7

0 10 20 30 40 50

Load current Io(mA)

DC

/DC

con

verte

r out

put v

olta

ge (V

)

Note) Transformer using channel acquires onlythe output to which the feedback control is done.Vo3-1 and Vo4-1 : Io=10mA fixVo4-3 : Io=-5mA fix

Vo4-2=5V setting

Vo3-2=5V setting

(2) (2) Load regulation (VLoad regulation (VININ=3V)=3V)

CH1CH1

CH2CH2

CH3,CH4CH3,CH4

CH1111 output voltage-load current((((Load regulation))))

0

1

2

3

4

5

0 50 100 150 200 250 300

Load current Io(mA)

DC

/DC

con

verte

r out

put v

olta

ge (V

)

Vo1=2.5V setting

CH2 output voltage-load current((((Load regulation))))

2

3

4

5

0 100 200 300 400 500

Load current Io(mA)

DC

/DC

con

verte

r out

put v

olta

ge (V

)

Vo2=3.3V setting

Page 21: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

21/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

(3) (3) Line regulationLine regulation

Output is a feedback control. Output is a feedback control.

Output is a feedback control none. Output is a feedback control none.

Output voltage-input voltage((((Line regulation:output is feedback control ))))

1

2

3

4

5

6

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Input voltage VIN(V)

DC

/DC

con

verte

r out

put v

olta

ge (V

)

Vo1=2.5V setting

Vo3-2=5V setting

Vo2=3.3V setting

Vo4-2=5V setting

Output voltage-input voltage((((Line regulation:output is feedback control none))))

12

13

14

15

16

17

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Input voltage VIN(V)

DC

/DC

con

verte

r out

put v

olta

ge (V

)

Vo4-1=15V setting

Vo3-1=15V setting

Output voltage-input voltage((((Line regulation:output is feedback control none ))))

-10

-9

-8

-7

-6

-5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Input voltage VIN(V)

DC

/DC

con

verte

r out

put v

olta

ge (V

)

Vo4-3=-7 .5V set t ingVo4-3=-7 .5V set t ingVo4-3=-7 .5V set t ingVo4-3=-7 .5V set t ing

VCC(own power supply voltgae)-input voltage((((Line regulation:output is feedback control none))))

3

4

5

6

7

8

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0Input voltage VIN(V)

VC

C(o

wn

pow

er s

uppl

y vo

ltage

) (V)

Output is a feedback control none. Output is a feedback control none.

Output is a feedback control none. Output is a feedback control none.

Page 22: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

22/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

10. 10. Parts Select MethodParts Select Method

PNP Tr Inductor(L1)

Board Photograph

Schottky Barrier Diode

Schottky Barrier Diode

Output Smoothing Condenser

Output Smoothing Condenser

Transformer

Output Smoothing Condenser

CH1

CH2

CH3

CH4

NPN Tr Inductor(L2)

Inductor(L3)Inductor(L4)

N-ch MOS FET

Schottky Barrier Diode

Base current setting resistor

Page 23: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

23/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

CH1 : 2.5V output(Zeta)VIN(min)=1.7V,Io=250mA,fosc=500kHz

1. PNP Tr(CPH3106(SANYO))VCEO=-12V, VCBO=-15V, IC=-3A,hFE=200(min)

Collector-emitter voltage and collector-base voltageCollector-emitter voltage and collector-base voltage of Tr should be in the rated voltage value of Tr.When the collector-emitter voltage of Tr is assumed to be VCEO, and the collector-base voltage is assumed to beVCBO, VCEO and VCBO are obtained by the following formula.

The parts selection method is written in the following.

Collector current : Peak valueThe peak value of the collector current of Tr should be in the rated current value of Tr. When the peak value of the collector current of Tr is assumed to be IC, IC is obtained by the following formula.

ONIN(min)21

OIN(min)

IN(min)OC tV

L1

L1

21I

VVV

I ××××××××

++++++++××××

++++≥≥≥≥

0.732A≥≥≥≥

0.6010500

1711015

11022

1210.25

1.7712.5

36-6- ××××××××

××××××××

××××++++

××××++++××××++++≥≥≥≥ ..

OFF

ONINO t

tVV ××××====

OIN

OON VV

Vtt++++

××××====

*)

OIN

O

VVV

fosc1

++++××××====

OIN(max)CBOCEO VVVV ++++≥≥≥≥====

525 .++++≥≥≥≥

7.5V≥≥≥≥

Page 24: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

24/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

Diode current : Peak valueThe peak value of the diode current should be in the rated current value of the diode. When the peak value of the diode current is assumed to be IFSM, IFSM is obtained by the followingformula.

Diode current : Average valueThe average value of the diode current should be in the rated current value of the diode. When the average value of the diode current is assumed to be IF, IF is obtained by the following formula.

2. Schottky Barrier Diode(SBS004(SANYO))VF=0.35V(max) : at IF = 1A, VRRM=15V, IF = 1A, IFSM=10A,

Repetition peak reverse voltageThe repetition peak reverse voltage of the diode should be in the rated voltage value of the diode. When the repetition peak reverse voltage of the diode is assumed to be VRRM,VRRM is obtained by the following formula.

OFFO21

OIN(min)

IN(min)OFSM tV

L1

L1

21I

VVV

I ××××××××

++++++++××××

++++≥≥≥≥

0.60)(110500

12.51015

11022

1210.25

1.71.72.5

36-6- −−−−××××××××

××××××××

××××++++

××××++++××××++++≥≥≥≥

0.732A≥≥≥≥

OF II ≥≥≥≥

0.25A≥≥≥≥

OIN(max)RRM VVV ++++≥≥≥≥

7.5V≥≥≥≥

2.55 ++++≥≥≥≥

Page 25: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

25/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

3. Inductor (L1 : RLF5018T-220MR63 : TDK)22µH(tolerance : ±20%), rated current = 0.63A

Inductor current : peak valueThe peak value of the inductor current should be in the rated current value of the inductor.

Load current value which becomes continuous current condition.

When the peak value of the inductor current is assumed to be IL, IL is obtained by the following formula.

The condition of L because of a continuous current in the range of the use voltage

ONOO

2IN(max) t

V2IV

L ××××≥≥≥≥

0.33310500

12.50.252

53

2

××××××××

××××××××××××

≥≥≥≥

13.3uH≥≥≥≥

ONO

2IN(max)

O t2LV

VI ××××≥≥≥≥

0.33310500

12.510222

536

2

××××××××

××××××××××××××××

≥≥≥≥ −−−−

0.151A≥≥≥≥*) The continuous current condition becomes a large current value compared with

the current value obtained by L2.

ONIN(min)

OIN(min)

OL t

2LV

IV

VI ××××++++≥≥≥≥

0.6010500

110222

1.70.251.72.5

36 ××××××××

××××××××××××

++++××××≥≥≥≥ −−−−

0.414A≥≥≥≥

Page 26: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

26/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

4. Inductor (L2 : RLF5018T-150MR76 : TDK)15µH(tolerance : ±20%), rated current = 0.76A

Inductor current : peak valueThe peak value of the inductor current should be in the rated current value of the inductor.

Load current value which becomes continuous current condition.

When the peak value of the inductor current is assumed to be IL, IL is obtained by the following formula.

The condition of L because of a continuous current in the range of the use voltage

*) The continuous current condition becomes a large current value compared with

the current value obtained by L1.

ONO

IN(max) t2I

VL ××××≥≥≥≥

0.33310500

10.2525

3 ××××××××

××××××××

≥≥≥≥

6.7uH≥≥≥≥

ONIN(max)

O t2L

VI ××××≥≥≥≥

0.33310500

110152

536 ××××

××××××××

××××××××≥≥≥≥ −−−−

0.111A≥≥≥≥

ONIN(max)

OL t2L

VII ××××++++≥≥≥≥

0.33310500

110152

50.25 36 ××××××××

××××××××××××

++++≥≥≥≥ −−−−

0.361A≥≥≥≥

Page 27: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

27/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

5. Base current setting resistor(RR0816P151D:ssm) 150Ω

The collector peak current which flows to external Tr becomes 0.732A at the Vin=1.7V. If hfe is 200, 3.66mA or more should be able to flow into the base. When the current base setting resistor is assumed to be RB, RB is obtained by the following formula.

B

BEIN(min)B

IV-VR ≤≤≤≤

0.003660.7-1.7≤≤≤≤

Ω273.2≤≤≤≤

Page 28: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

28/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

CH2:3.3V output(Sepic)VIN(min)=1.7V,Io=500mA,fosc=500kHz

1. NPN Tr(CPH3206(SANYO))VCEO=15V, VCBO=15V, IC=3A,hFE=200(min)

Collector-emitter voltage and collector-base voltageCollector-emitter voltage and collector-base voltage of Tr should be in the rated voltage value of Tr.When the collector-emitter voltage of Tr is assumed to be VCEO, and the collector-base voltage is assumed to beVCBO, VCEO and VCBO are obtained by the following formula.

Collector current : Peak valueThe peak value of the collector current of Tr should be in the rated current value of Tr. When the peak value of the collector current of Tr is assumed to be IC, IC is obtained by the following formula.

ONIN(min)21

OIN(min)

IN(min)OC tV

L1

L1

21I

VVV

I ××××××××

++++++++××××

++++≥≥≥≥

1.66A≥≥≥≥

0.6610500

1711015

11010

1210.5

1.7713.3

36-6- ××××××××

××××××××

××××++++

××××++++××××++++≥≥≥≥ ..

OFF

ONINO t

tVV ××××====

OIN

OON VV

Vtt++++

××××====

*)

OIN

O

VVV

fosc1

++++××××====

OIN(max)CBOCEO VVVV ++++≥≥≥≥====

3.35 ++++≥≥≥≥

8.3V≥≥≥≥

Page 29: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

29/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

Diode current : Peak valueThe peak value of the diode current should be in the rated current value of the diode. When the peak value of the diode current is assumed to be IFSM, IFSM is obtained by the followingformula.

Diode current : Average valueThe average value of the diode current should be in the rated current value of the diode. When the average value of the diode current is assumed to be IF, IF is obtained by the following formula.

2. Schottky Barrier Diode(SBS004(SANYO))VF=0.35V(max) : at IF = 1A, VRRM=15V, IF = 1A, IFSM=10A,

Repetition peak reverse voltageThe repetition peak reverse voltage of the diode should be in the rated voltage value of the diode. When the repetition peak reverse voltage of the diode is assumed to be VRRM,VRRM is obtained by the following formula.

OFFO21

OIN(min)

IN(min)OFSM tV

L1

L1

21I

VVV

I ××××××××

++++++++××××

++++≥≥≥≥

0.66)(110500

13.31015

11010

1210.5

1.71.73.3

36-6- −−−−××××××××

××××××××

××××++++

××××++++××××++++≥≥≥≥

1.66A≥≥≥≥

OF II ≥≥≥≥

0.5A≥≥≥≥

OIN(max)RRM VVV ++++≥≥≥≥

8.3V≥≥≥≥

3.35 ++++≥≥≥≥

Page 30: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

30/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

3. Inductor (L3 : SLF6028T-100M1R3 : TDK)10µH(tolerance : ±20%), rated current = 1.3A

Inductor current : peak valueThe peak value of the inductor current should be in the rated current value of the inductor.

Load current value which becomes continuous current condition.

When the peak value of the inductor current is assumed to be IL, IL is obtained by the following formula.

The condition of L because of a continuous current in the range of the use voltage

*) The continuous current condition becomes a large current value compared with

the current value obtained by L4.

ONOO

2IN(max) t

V2IV

L ××××≥≥≥≥

0.39810500

13.30.52

53

2

××××××××

××××××××××××

≥≥≥≥

6.0uH≥≥≥≥

ONO

2IN(max)

O t2LV

VI ××××≥≥≥≥

0.39810500

13.310102

536

2

××××××××

××××××××××××××××

≥≥≥≥ −−−−

0.302A≥≥≥≥

ONIN(min)

OIN(min)

OL t

2LV

IV

VI ××××++++≥≥≥≥

0.6610500

110102

1.70.51.73.3

36 ××××××××

××××××××××××

++++××××≥≥≥≥ −−−−

1.08A≥≥≥≥

Page 31: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

31/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

4. Inductor (L4 : RLF5018T-150MR76 : TDK)15µH(tolerance : ±20%), rated current = 0.76A

Inductor current : peak valueThe peak value of the inductor current should be in the rated current value of the inductor.

Load current value which becomes continuous current condition.

When the peak value of the inductor current is assumed to be IL, IL is obtained by the following formula.

The condition of L because of a continuous current in the range of the use voltage

*) The continuous current condition becomes a large current value compared with

the current value obtained by L3.

ONO

IN(max) t2I

VL ××××≥≥≥≥

0.39810500

10.52

53 ××××

××××××××

××××≥≥≥≥

3.98uH≥≥≥≥

ONIN(max)

O t2L

VI ××××≥≥≥≥

0.39810500

110152

536 ××××

××××××××

××××××××≥≥≥≥ −−−−

0.133A≥≥≥≥

ONIN(max)

OL t2L

VII ××××++++≥≥≥≥

0.39810500

110152

50.5 36 ××××××××

××××××××××××

++++≥≥≥≥ −−−−

0.633A≥≥≥≥

Page 32: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

32/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

5. Base current setting resistor(RR0816P361D :ssm) 300Ω

The collector peak current which flows to external PNP becomes 1.66A at the Vin=1.7V(Vcco=4.2V). If hfe is 200, 8.3mA or more should be able to flow into the base. When the current base setting resistor is assumed to be RB, RB is obtained by the following formula.

B

BECCO(min)B

IV-VR ≤≤≤≤

0.00830.7-4.2≤≤≤≤

Ω421.7≤≤≤≤

Page 33: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

33/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

CH3,CH4 : ((((Transformer conversion)

1. N-ch MOS FET(MCH3405(SANYO) )VDS=20V, VGS=±10V, ID=1.8A, RDS(on)=390mΩ(max), Qg=4.5nC(max)Ratings of the drain current of FET should be 0.9V or more. Moreover, ratings of drain-source voltage and gate-source voltage of FET should be 8V or more.

2. Schottky Barrier Diode(SB05-05CP(SANYO))VRRM=50V, IF=500mA, IFSM=5A,Ratings of the diode are VRRM (repetition peak reverse voltage)= each 43V, IF (average output current)=50mA, and should be IFSM (serge forward current)=0.3A or more.

VIN(max)=5VVIN(min)=1.7V

VO3-1, VO4-1 = 15VVO3-2 , VO4-2 = 5VVO4-3 = -7.5V

Io3-1 , IO4-1 = 10mAIo3-2 , IO4-2 = 50mAIo4-3 = -5mA, ,

Page 34: Evaluation board Manual MB39A103€¦ · Setup & Confirmation Method 5. Parts Layout Block 6. Circuit Diagram 7. Circuit Parts List 8. Initialization 9. Reference Data 10. Parts Select

34/34Fujitsu ASSP Product

Power Management

MB39A103 Evaluation Board ver2.0E

All Rights Reserved.The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU

sales representatives before ordering.The information and circuit diagrams in this document are presented as examples of semiconductor device

applications, and are not intended to be incorporated in devices for actual use.Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and

other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:Customers considering the use of our products in special applications where failure or abnormal operation may

directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.