Evaluating Hazard Detection Effects of In-Vehicle Safety...

5
Evaluating Hazard Detection Effects of In-Vehicle Safety Automation Daniel Quinn Clemson University Clemson, South Carolina [email protected] Cazembe Kennedy Clemson University Clemson, South Carolina [email protected] Austin Guy Clemson University Clemson, South Carolina [email protected] Gary Vestal Clemson University Clemson, South Carolina [email protected] ABSTRACT Myriad factors increase drivers’ workload and decrease their ability to identify hazards. Drivers’ hazard perception under high workload conditions can benefit from the assistance of automated hazard detection systems. However, automation is inherently imperfect and system failures biases (falsealarm prone vs. missprone) may affect the performance benefits of these systems. The current study explored how systems with different failure biases affect drivers’ detection and recognition of onroad hazards. We hypothesized that automation false alarms better support driver hazard recognition than automation misses. Our results found no significant differences in detection or recognition times between the failure bias conditions. Lessons learned and directions for future research are discussed. CCS CONCEPTS ADDITIONAL KEYWORDS AND PHRASES Automation, Hazard Detection, Eye Tracking, Visual Attention, Workload 1 INTRODUCTION Recent safety recommendations by the National Highway Safety Administration (NHTSA, 2016) highlight the importance of visual attention on avoiding bicyclemotorist collisions. For example, risk of collision may decrease if drivers yield to and pass onroad bicycles the same as they would other vehicles (NHTSA, 2016). Before a driver can react to the presence of a potential onroad hazard (e.g., bicyclist), he or she must visually detect the object, then recognize it as a hazard. However, myriad distractions can occur under typical driving conditions (i.e., navigation system use; Peters & Peters, 2001) that increase drivers’ cognitive workload and inhibit their ability to recognize visual targets (Recarte & Nunes, 2003). The effect of workload on attention allocation is evidenced by changes in a variety of eye behaviors. For example, high workload may result in increased blink frequency, saccade speeds (Savage, Potter, & Tatler, 2013), and pupil diameter (Tsai, Viirre, Strychacz, Chase & Jung, 2007). Importantly, workload increases can produce visual tunneling, which refers to a reduction of the overall size of the attentive visual field (Rentanen and Goldberg, 1999; Tsai, Viirre, Strychacz, Chase & Jung, 2007). Visual tunneling primarily affects the vertical axis of the visual field, with additional reduction occurring on the horizontal axis (Rentanen and Goldberg, 1999, Tsai, Viirre, Strychacz, Chase & Jung, 2007; Savage, Potter, & Tatler, 2013). One study determined that workload can limit the overall visual field by as much as 14%, thereby potentially reducing drivers’ abilities to recognize hazards in their peripheral vision (Rentanen and Goldberg, 1999). Gaze fixation is also related to successful hazard detection. Fixations on visual targets tend to be longer for those that are task relevant (e.g., potential hazards while driving; Velichkovsky, Rothert, Kopf, Dornhoefer, & Joos, 2002) and shorter when simultaneous tasks are attended (Tsai, Viirre, Strychacz, Chase & Jung, 2007). Therefore, decreasing the harmful impacts of cognitive workload by removing distractions is one way to improve drivers’ ability to detect and recognize visual targets. However, a more practical solution may be to support drivers’ hazard detection abilities through the use of target detection automation. 2 BACKGROUND Automation can improve users’ abilities to detect visual targets under conditions of high workload (e.g., Parasuraman & Riley, 1997). Automation used in vision enhancement systems (VESs) can help drivers identify hazards during low speed and low visibility conditions (Tsimhoni & Green, 2002). One type of VES projects infrared or thermal imagery of the roadway to a secondary display (e.g., a realtime infrared video image of the roadway projected on a headsup display). However, these types of VESs replicate the full roadway and divide drivers’ visual attention between the road and the display. Therefore, they are unsafe at high speed and increase driver workload (Rumar, 2002). Other VES displays are highly specific and display only taskrelevant information in the visual field. For example, Caird, Horrey, and Edwards (2001) determined that automation which detects highvalue targets (e.g., bicyclists) can effectively enhance drivers’ target recognition and response timing. However, automation is inherently imperfect, and it is important to consider how system failures affect the drivers’ perceptions and behaviors. People are less likely to trust and use automation that is unreliable than that which is reliable (Lee & See, 2004). When systems are unreliable, two types of automation failures, false alarms and misses, affect how drivers rely on systems and comply with system alarms (Wickens & Dixon, 2007). These failures result from system sensitivity to signals in the environment (signal detection theory; see Nevin, 1969) Highly sensitive systems are more likely to alert drivers to hazards that are not present (e.g. falsealarmprone). Minimally

Transcript of Evaluating Hazard Detection Effects of In-Vehicle Safety...

Page 1: Evaluating Hazard Detection Effects of In-Vehicle Safety ...andrewd.ces.clemson.edu/courses/cpsc412/fall17/teams/...successfully support hazard perception than missJprone systems.

Evaluating Hazard Detection Effects of In-Vehicle Safety Automation

Daniel  Quinn  Clemson  University  

Clemson,  South  Carolina  [email protected]  

Cazembe  Kennedy  Clemson  University  

Clemson,  South  Carolina  [email protected]  

Austin  Guy  Clemson  University  

Clemson,  South  Carolina  [email protected]  

Gary  Vestal  Clemson  University  

Clemson,  South  Carolina  [email protected]  

ABSTRACT Myriad   factors   increase  drivers’  workload  and  decrease  their  ability   to   identify   hazards.  Drivers’   hazard   perception   under  high  workload   conditions   can   benefit   from   the   assistance   of  automated  hazard  detection  systems.  However,  automation  is  inherently   imperfect   and   system   failures  biases   (false-­‐alarm-­‐prone  vs.  miss-­‐prone)  may  affect  the  performance  benefits  of  these  systems.  The  current  study  explored  how  systems  with  different   failure   biases   affect   drivers’   detection   and  recognition   of   on-­‐road   hazards.   We   hypothesized   that  automation   false   alarms   better   support   driver   hazard  recognition   than   automation   misses.   Our   results   found   no  significant   differences   in   detection   or   recognition   times  between   the   failure   bias   conditions.   Lessons   learned   and  directions  for  future  research  are  discussed.    

CCS CONCEPTS

ADDITIONAL KEYWORDS AND PHRASES Automation,  Hazard  Detection,  Eye  Tracking,  Visual  Attention,  Workload  

1 INTRODUCTION Recent   safety   recommendations   by   the   National   Highway  Safety   Administration   (NHTSA,   2016)   highlight   the  importance   of   visual   attention   on   avoiding   bicycle-­‐motorist  collisions.  For   example,   risk   of   collision   may   decrease   if  drivers   yield   to   and   pass   on-­‐road   bicycles   the   same   as   they  would  other  vehicles  (NHTSA,  2016).  Before  a  driver  can  react  to   the  presence  of  a  potential  on-­‐road  hazard  (e.g.,  bicyclist),  he  or  she  must  visually  detect  the  object,  then  recognize  it  as  a  hazard.  However,  myriad  distractions  can  occur  under  typical  driving   conditions   (i.e.,   navigation   system   use;   Peters   &  Peters,   2001)   that   increase   drivers’   cognitive   workload   and  inhibit   their   ability   to   recognize   visual   targets   (Recarte   &  Nunes,  2003).  

The  effect  of  workload  on  attention  allocation  is  evidenced  by   changes   in   a   variety   of   eye   behaviors.   For   example,   high  workload   may   result   in   increased   blink   frequency,   saccade  speeds   (Savage,   Potter,   &   Tatler,   2013),   and   pupil   diameter  (Tsai,   Viirre,   Strychacz,   Chase   &   Jung,   2007).    Importantly,  workload  increases  can  produce  visual  tunneling,  which  refers  to   a   reduction   of   the   overall   size   of   the   attentive   visual   field  (Rentanen  and  Goldberg,  1999;  Tsai,  Viirre,  Strychacz,  Chase  &  Jung,  2007).  Visual  tunneling  primarily  affects  the  vertical  axis  

of  the  visual   field,  with  additional  reduction  occurring  on  the  horizontal   axis   (Rentanen   and   Goldberg,   1999,   Tsai,   Viirre,  Strychacz,  Chase  &  Jung,  2007;  Savage,  Potter,  &  Tatler,  2013).  One   study   determined   that   workload   can   limit   the   overall  visual   field  by  as  much  as  14%,   thereby  potentially   reducing  drivers’   abilities   to   recognize   hazards   in   their   peripheral  vision   (Rentanen   and   Goldberg,   1999).   Gaze   fixation   is   also  related   to   successful   hazard   detection.  Fixations   on   visual  targets  tend  to  be  longer  for  those  that  are  task  relevant  (e.g.,  potential   hazards  while   driving;   Velichkovsky,   Rothert,   Kopf,  Dornhoefer,   &   Joos,   2002)   and   shorter   when   simultaneous  tasks   are   attended   (Tsai,   Viirre,   Strychacz,   Chase   &   Jung,  2007).  Therefore,  decreasing  the  harmful  impacts  of  cognitive  workload   by   removing   distractions   is   one   way   to   improve  drivers’   ability   to   detect   and   recognize   visual   targets.  However,  a  more  practical  solution  may  be  to  support  drivers’  hazard  detection  abilities   through   the  use  of   target  detection  automation.  

2 BACKGROUND Automation   can   improve   users’   abilities   to   detect   visual  targets  under  conditions  of  high  workload  (e.g.,  Parasuraman  &   Riley,   1997).   Automation   used   in   vision   enhancement  systems   (VESs)   can  help  drivers   identify   hazards  during   low  speed  and  low  visibility  conditions  (Tsimhoni  &  Green,  2002).  One   type   of   VES   projects   infrared   or   thermal   imagery   of   the  roadway   to   a   secondary   display   (e.g.,   a   real-­‐time   infrared  video  image  of  the  roadway  projected  on  a  heads-­‐up  display).  However,   these   types  of  VESs   replicate   the   full   roadway  and  divide   drivers’   visual   attention   between   the   road   and   the  display.  Therefore,  they  are  unsafe  at  high  speed  and  increase  driver   workload   (Rumar,   2002).    Other   VES   displays   are  highly   specific   and   display   only   task-­‐relevant   information   in  the   visual   field.    For   example,   Caird,   Horrey,   and   Edwards  (2001)  determined  that  automation  which  detects  high-­‐value  targets  (e.g.,  bicyclists)  can  effectively  enhance  drivers’  target  recognition   and   response   timing.   However,   automation   is  inherently   imperfect,   and   it   is   important   to   consider   how  system  failures  affect  the  drivers’  perceptions  and  behaviors.            People   are   less   likely   to   trust   and   use   automation   that   is  unreliable  than  that  which  is  reliable  (Lee  &  See,  2004).  When  systems  are  unreliable,  two  types  of  automation  failures,  false  alarms   and   misses,   affect   how   drivers   rely   on   systems   and  comply  with   system   alarms   (Wickens  &  Dixon,   2007).   These  failures   result   from   system   sensitivity   to   signals   in   the  environment  (signal  detection  theory;  see  Nevin,  1969)  Highly  sensitive   systems   are  more   likely   to   alert   drivers   to   hazards  that   are   not   present   (e.g.   false-­‐alarm-­‐prone).   Minimally  

Page 2: Evaluating Hazard Detection Effects of In-Vehicle Safety ...andrewd.ces.clemson.edu/courses/cpsc412/fall17/teams/...successfully support hazard perception than missJprone systems.

 

sensitive  systems  are  more  likely  to  fail  to  detect  hazards  that  are   present   (e.g.,   miss-­‐prone).   Robust   literature   on   these  failure   types   have   demonstrated   that   false   alarms   tend   to  primarily   affect   compliance   and   misses   tend   to   primarily  affect   reliance   (Dixon,   Wickens,   McCarley,   2007).  However,  some  studies  have   found  the  contrary.  For  example,  Schwarz  and  Fastenmeier  (2017)   found   increased  compliance  rates   in  false-­‐alarm-­‐prone   automation.  Their   study   utilized   a  simulated  driving   task  wherein  participants  were  exposed   to  automation   hazard   detector   false   alarms.  The   authors  determined  that  driver  braking  times  improved  regardless  of  the  presence  of   the   false  alarms;   this   finding  did  not  support  their   hypotheses.    A   possible   explanation   of   their   findings   is  task   workload.  Users   are   more   likely   to   comply   with  automation   when   experiencing   high   workload   (McBride,  Rogers,  &  Fisk,  2011).  Thus,  high  workload  may  dampen   the  effects   of   false   alarms   on   compliance   in   hazard   detection  tasks.  Driver   workload  may   be   an   important   determinant   of  the   sensitivity   threshold   for   automated   hazard   detection  systems.                The   current   study   investigated   a   high-­‐workload   task   to  determine   whether   false-­‐alarm-­‐prone   systems   more  successfully   support   hazard   perception   than   miss-­‐prone  systems.   We   hypothesized   that   hazard   detection   and  recognition   is   better   supported   by   automation   false   alarms  than  misses.        

3 METHODOLOGY

3.1 Participants Twelve  undergraduate  students,  ages  18-­‐28  (M  =  23.24,  SD  =  2.8),   were   recruited   through   in-­‐class   announcements.  Participants  volunteered  their  efforts  for  this  study.  

3.2 Experimental Design This   study   used   a   2   (automation   type:   miss-­‐prone,   false-­‐alarm-­‐prone)  x  2  (automation  presence:  present,  not  present)  mixed-­‐factors   design.     Automation   type   was   the   between-­‐subjects   factor.    Therefore,   participants   were   exposed   to  automation   that   is   false-­‐alarm-­‐prone   or   miss-­‐prone,   but   not  both.            Participants   experienced   two   experimental   blocks  composed  of  30   target-­‐detection   trials   (60   total).    Each  block  contained   either   automation   or   no   automation.    A-­‐B  counterbalancing  ensured   that  order  presentation  of   the   two  blocks   did   not   confound   the   effects   of   automation   on   task  performance.  Participants   in   the   false-­‐alarm-­‐prone  automation   condition   only   experienced   false   alarm   failures  and  participants  in  the  miss-­‐prone  automation  condition  only  experienced  miss   failures.  Prior  research   identified   that  70%  automation  reliability   is   the  cutoff  point  at  which   individuals  perceive   automation   as   reliable   (Wickens   &   Dixon,   2007);  therefore,   this   study   used   automation   that  was   80%   reliable  (e.g.,  6  failures  during  30  trials)  so  that  participants  would  be  inclined   to  use   the   system.  To   increase  participant  workload  and   provide   a   mask   between   stimuli,   a   math   problem   was  displayed  at   the   center  of   a  blank   screen  between  each   two-­‐roadway   image.   An   experimenter   recorded   participants’  verbal  responses  to  the  questionnaires.          Performance  measures.  Target   detection   and   recognition  time  were  our  primary  variables  of  interest  for  this  study.  To  

measure   target   detection   time,   areas   of   interest   (AOI;   see  figure   1)   were   placed   around   each   bicyclist   in   the   roadway  images  and  an  eye  tracker  measured  the  average  time  to  first  gaze  fixation  on  each  AOI.  To  measure  target  recognition  time,  we   instructed  participants   to   left   click   the  mouse   only  when  they   were   confident   a   bicyclist   was   present   in   the   roadway  scenes.     The   average   time-­‐to-­‐click   when   bicyclists   were  actually  present  in  the  scene  was  then  used  to  measure  target  recognition  time.          Subjective   measures.   Subjective   trust   in   the   automation,  subjective  reliance  on  the  automation,  and  cognitive  workload  are   known   to   affect   human   use   of   automation.   Thus,   these  questions  were  measured  after  each  block  using  a  1-­‐7  Likert  scale   (1   =   not   at   all,   7   =   extremely).   To   measure   trust   and  reliance,  we  used   a   questionnaire   adapted   from  Lee   and   See  (2004),   and   to   measure   workload,   we   used   the   NASA   TLX  (Hart  &  Staveland,  1988).  

 

 Figure   1.     An   example   AOI   positioned   over   bicyclists   in   a  roadway  scene.    

3.3 Materials Researchers   captured   60   screenshots   from   footage   recorded  by  a  high  definition  (1920  x  1080)  video  recorder.  30  of  these  images   included   bicyclists   and   30   did   not.   An   automated  hazard   warning   light   was   simulated   by   presenting   a   red  starburst   in   the   bottom   of   each   screenshot.   Thus,   when   the  simulated   automation   detected   a   bicyclist   in   the   scene,   the  warning   light   was   shown.   Example   stimuli   are   shown   in  figures  2  and  3.  

Figure  2.    An  example  false  alarm  (automation  detects  a    bicyclist  that  is  not  present)

Page 3: Evaluating Hazard Detection Effects of In-Vehicle Safety ...andrewd.ces.clemson.edu/courses/cpsc412/fall17/teams/...successfully support hazard perception than missJprone systems.

3    

Figure  3.    An  example  miss  (automation  fails  to  detect  a  bicyclist  that  is  present)  

is present)

3.4 Apparatus This  experiment  used  a  Gazepoint  GP3  eye  tracker  to  measure  eye   gaze.   This   system   processed   pupil/corneal   reflection  (PCR)   with   a   sampling   rate   of   60   Hertz,   an   accuracy   of   1-­‐degree   visual   angle,   and   a   Savitzky-­‐Golay   filter.   Participants  sat   at   a   viewing   distance   25.59   inches   in   front   of   a   22-­‐inch,  1680  x  1050  resolution  Dell  LED  backlit  LCD  display.  

3.5 Procedure First,  researchers  directed  participants  to  their  seat  in  front  of  a   computer   and   eye   tracker   (see   figure   4).   Participants  provided   their   informed   consent   and   demographic  information   (e.g.,   age   and   gender).     We   calibrated   the   eye  tracker   to   the   participants’   eye   gaze   and   then   provided   the  task  instructions.  We  informed  participants  that  the  tasks  may  be  difficult  and  that  they  should  complete  each  task  to  the  best  of   their   ability.  When   participants   were   given   the   aid   of  automation,   they   received   instructions   that   the   system   is  highly  reliable  but  imperfect.  They  then  saw  an  example  of  the  automation   performing   correctly   and   failing   so   that   they  would   better   be   able   to   recognize   errors   during   the   task.  Participants   only   witness   automation   failures   for   the  condition  to  which  they  were  assigned.            Participants   completed   several   simple   tasks   during   the  experiment   to   increase   their   workload.   Participants   first  memorized  a  string  of   five   letters  presented  at   the  beginning  of   each   block.   Next,   participants   verbally   answered   simple  arithmetic   problems   (e.g.   5   +   3,   8   -­‐   2)   presented   for   a   short  time   on   screen   before   each   roadway   image   is   shown.    In  addition  to  increasing  workload,  this  task  also  served  to  mask  consecutive   roadway   images.   Next,   participants   identified  bicyclists   from  roadway   images.  Participants  were   instructed  to   click   the   left   mouse   button   when   they   were   completely  confident  that  they  saw  a  bicyclist.  The  roadway  images  were  each  shown  for  five  seconds.    After  going  through  both  blocks  of  trials  and  questionnaires,  the  participants  were  thanked  for  their  time  and  dismissed.    

 Figure  4.    Participant  receiving  instructions  prior  to  beginning  task.  

4 RESULTS A   2   (automation   type:   miss-­‐prone,   false-­‐alarm-­‐prone)   x   2  (automation   presence:   present,   not   present)   repeated  measures   analysis   of   variance   (ANOVA)   was   conducted   for  bicyclist   detection   time   (see   Figure   5)   and   recognition   time  (see   Figure   6).   Results   revealed   no   significant  main   effect   of  automation   presence,   F(1,10)   =   1.22,   p   >   .05,   and   no  significant   interaction   of   automation   presence   and   failure  bias,   F(1,10)   =   3.04,   p   >   .05.   These   findings   suggest   that  detection  and  recognition  time  were  not   influenced  by  either  the  presence  of  automation  or  failure  bias.

Figure   5.     Mean   bicyclist   detection   times   (in   seconds)   for  automation   false   alarm   and   miss   conditions,   clustered   by  automation  presence.  

Page 4: Evaluating Hazard Detection Effects of In-Vehicle Safety ...andrewd.ces.clemson.edu/courses/cpsc412/fall17/teams/...successfully support hazard perception than missJprone systems.

 

Figure   6.     Mean   bicyclist   recognition   times   (in   seconds)   for  automation   false   alarm   and   miss   conditions,   clustered   by  automation  presence.              Subjective   Measures.   A   separate   2   (automation   type:  miss-­‐prone,   false-­‐alarm-­‐prone)   x   2   (automation   presence:  present,   not   present)   repeated   measures   ANOVA   was  conducted   for   workload.   Consistent   with   prior   literature,  mean   workload   was   lower   in   the   automation   present  condition   (M   =   16.67,   SD   =   5.24)   than   in   the   no   automation  condition    (M  =  21.33,  SD  =  5.16),  F(1,10)  =  8.95,  p  <   .05.    No  significant  interaction  of  automation  presence  and  failure  bias  was   detected   for  workload,  F(1,10)   =   .129,  p  >.05.     One-­‐way  ANOVAs   revealed   no   significant   differences   between   the  automation  conditions  for  either  trust,  F(1,11)  =  .940,  p  >  05,  or  reliance,  F(1,11)  =  .094,  p  >  .05.  

5 DISCUSSION We  hypothesized   that   participants  would   have   faster   hazard  detection  and  recognition   times  within   the   false-­‐alarm  prone  condition  compared   to   the  miss  prone  condition.  The   results  of   our   data   did   not   show   significant   differences   in  performance   between   the   automation   conditions.   While   the  data   did   not   support   the   hypothesis,   we   see   various   factors  that   could   explain   this   finding.   One   possible   explanation   is  that   the  automation  was  not  salient  enough  to  effectively  aid  hazard   detection   and   recognition.   Future   iterations   of   this  research  should  maximize  automation  salience.  It  also  may  be  possible   that  participants  were   inadequately   trained  prior   to  beginning   the   task   (e.g.,   were   confused   about   what   the  automation   looked   like).   Our   workload   measures   indicated  relatively   low   scale   scores,   suggesting   that   the   task   did   not  contain  enough  workload   to   consider   the  experimental   tasks  high  workload.    Most  participants  had  no  difficulty  answering  the   math   problems   while   performing   the   search   task,   and  even  did  well  with  remembering  the  string.  This  is  counter  to  the  secondary   task  performance  we  might  expect  under  high  workload  conditions.    Future  studies  should  consider  using  a  longer   string   (7   characters   instead   of   5)   and   consider   either  using   more   complex   math   problems   or   simultaneously  displaying   the   math   problems   during   the   visual   search   task  (e.g.,   by   using   the   auditory   modality).     This   would   require  

them   to   switch   between   two   simultaneously   occurring   tasks  instead  of  switching  between  consecutive  tasks.

6 LIMITATIONS This  experiment  has  a  few  limitations  that  would  be  remedied  if   the   work   were   replicated.   One   particularly   notable  limitation   is   the   small   sample   size.   Our   sample   size   resulted  low   power   in   our   statistical   analyses,   thereby   impairing   our  ability   to   detect   mean   differences.   Another   limitation  encountered   was   controlling   the   environment   of   the  experiment.  This  being  a  project  for  class,  researchers  had  to  sometimes  run  the  study  with  participants  while  other  people  were   in   the   room   running   studies   of   their   own.   This   extra  distraction  may   have   added   statistical   noise   and   could   have  the  potential   to  have  affected  participants’  ability  to   focus  on  the   experimental   tasks.   Future   studies   should   attempt   to  isolate   the   participants   by   accessing   the   experimental   room  when   there  was   no   one   occupying   it   or   otherwise   reserving  the   space.   Another   possible   confound   is   participant  understanding   of   the   stimuli.   Researchers   found   when  analyzing   the   data   that   participants   seemed   to   not   always  agree   on   what   a   “bicyclist”   was   considered.   Some   of   the  stimuli  showed  people  walking  with  bicycles  but  not  actually  riding  on   the  bicycles.  For   these   trials,   some  participants  did  not   identify   them   as   “bicyclists”   whereas   others   did.   To  remedy  this,  the  researchers  in  the  future  would  make  clear  in  the   instructions   what   constituted   a   target,   or   use   less  ambiguous  stimuli  so  that  the  distinction  would  not  have  to  be  made.  A   final   limitation   to   consider   is   that  participants  were  told   that   their   task   was   to   detect   hazards   on   the   road.   This  does   not   place   participants   in   a   natural   environment   of  driving,   where   hazards   can   appear   at   any   second.   The  knowledge  that  their  primary  task  was  hazard  detection  might  have  led  participants  to  default  to  searching  for  bicyclists,  and  minimally  use  or  ignore  altogether  the  automated  aid  that  was  provided.    

7 CONCLUSIONS This   experiment   set   out   to   examine   different   failure   biases  within  an  automated  hazard  identification  system  to  see  how  they   might   affect   performance.   Although   the   experiment  conducted   was   not   able   to   find   significant   results,   the  underlying  work  lays  down  a  foundation  to  for  a  future  study  to  be  designed   that  could  yield  significant  and  useful   results.    Using   an   eye-­‐tracking   device   and   software,   the   researchers  were  able  to  observe  participants  performing  a  search  task  for  hazards   on   a   simulated   road.   The   design   decision   of   having  high   cognitive   workload   to   simulate   the   different   activities  occurring  while  driving  was  found  to  not  be  effective  enough  to  give  significant  data,  but  still  has  a  basis   in  research   to  be  useful   with   a   tweaked   experimental   design.   Future   work  would  include  running  the  experiment  again  at  a  larger  scale,  improving  the  quality  and  clarity  of  the  stimuli,  increasing  the  cognitive   workload,   working   in   a   more   controlled  environment,   and   increasing   the   saliency   of   the   automation  provided.  

Page 5: Evaluating Hazard Detection Effects of In-Vehicle Safety ...andrewd.ces.clemson.edu/courses/cpsc412/fall17/teams/...successfully support hazard perception than missJprone systems.

5    

REFERENCES [1]   Caird,   J.,   Horrey,   W.,   &   Edwards,   C.   (2001).   Effects   of   conformal   and  

nonconformal   vision   enhancement   systems  on   older-­‐driver   performance.  Transportation   Research   Record:   Journal   of   the   Transportation   Research  Board,  (1759),  38-­‐45.    

[2]   Dixon,  S.  R.,  Wickens,  C.  D.,  &  McCarley,  J.  S.  (2007).  On  the  independence  of    compliance  and  reliance:  Are  automation  false  alarms  worse  than  misses?.  Human  factors,  49(4),  564-­‐572.  

[3]   Kane,   M.   J.,   Bleckley,   M.   K.,   Conway,   A.   R.,   &   Engle,   R.   W.   (2001).   A  controlled-­‐attention   view   of   working-­‐memory   capacity.   Journal   of  Experimental  Psychology:  General,  130(2),  169.    

[4]   Tsai,   Y.   F.,   Viirre,   E.,   Strychacz,   C.,   Chase,   B.,   &   Jung,   T.   P.   (2007).   Task  performance   and   eye   activity:   predicting   behavior   relating   to   cognitive  workload.  Aviation,  Space,  and  Environmental  Medicine,  78(5),  B176-­‐B185.    

[5]   Lee,   J.   D.,   &   See,   K.   A.   (2004).   Trust   in   automation:   Designing   for  appropriate  reliance.  Human  Factors,  46(1),  50-­‐80.    

[6]   McBride,  S.  E.,  Rogers,  W.  A.,  &  Fisk,  A.  D.  (2011).  Understanding  the  effect  of   workload   on   automation   use   for   younger   and   older   adults.   Human  factors,  53(6),  672-­‐686.    

[7]   Meyer,   J.,   Wiczorek,   R.,   &   Günzler,   T.   (2014).   Measures   of   reliance   and  compliance  in  aided  visual  scanning.  Human  factors,  56(5),  840-­‐849.    

[8]   National   Center   for   Statistics   and   Analysis.   (2016,   May).   Bicyclists   and  other   cyclists:   2014   data.   (Traffic   Safety   Facts.   Report   No.   DOT   HS   812  282).  Washington,  DC:  National  Highway  Traffic  Safety  Administration.    

[9]   Nevin,   J.   A.   (1969).   Signal   Detection   Theory   and   Operant   Behavior:   A  Review  of  David  M.  Green  and  John  A.  Swets'  Signal  Detection  Theory  and  Psychophysics.  Journal  of  the  Experimental  Analysis  of  Behavior,  12(3),  475-­‐480.    

[10]   Parasuraman,  R.,  &  Riley,  V.  (1997).  Humans  and  automation:  Use,  misuse,  disuse,  abuse.  Human  factors,  39(2),  230-­‐253.    

[11]   Peters,  G.  A.,  &  Peters,  B.  J.  (2001).  The  distracted  driver.  The  Journal  of  the  Royal  Society  for  the  Promotion  of  Health,  121(1),  23-­‐28.    

[12]   Rantanen,  E.  M.,  &  Goldberg,  J.  H.  (1999).  The  effect  of  mental  workload  on  the  visual  field  size  and  shape.  Ergonomics,  42(6),  816-­‐834.    

[13]   Rumar,  K.  (2002).  Night  vision  enhancement  systems:  What  should  they  do  and   what   more   do   we   need   to   know?   The   University   of   Michigan.  Transportation  Research  Institute.  UMTRI-­‐2002-­‐12.    

[14]   Rusch,  M.   L.,   Schall,  M.   C.,   Gavin,   P.,   Lee,   J.   D.,  Dawson,   J.  D.,   Vecera,   S.,  &  Rizzo,  M.   (2013).  Directing  driver   attention  with   augmented   reality   cues.  Transportation  Research  Part  F:  Traffic  Psychology  and  Behaviour,  16,  127-­‐137.    

[15]   Savage,   S.   W.,   Potter,   D.   D.,   &   Tatler,   B.   W.   (2013).   Does   preoccupation  impair   hazard   perception?   A   simultaneous   EEG   and   eye   tracking   study.  Transportation  Research  Part  F:  Traffic  Psychology  and  Behaviour,  17,   52-­‐62.    

[16]   Schwarz,   F.,   &   Fastenmeier,   W.   (2017).   Augmented   reality   warnings   in  vehicles:   Effects   of   modality   and   specificity   on   effectiveness.   Accident  Analysis  &  Prevention,  101,  55-­‐66.    

[17]   Velichkovsky,   B.   M.,   Rothert,   A.,   Kopf,   M.,   Dornhöfer,   S.   M.,   &   Joos,   M.  (2002).  Towards  an  express-­‐diagnostics  for  level  of  processing  and  hazard  perception.   Transportation   Research   Part   F:   Traffic   Psychology   and  Behaviour,  5(2),  145-­‐156.    

[18]   Yamada,   K.,   &   Kuchar,   J.   K.   (2006).   Preliminary   study   of   behavioral   and  safety   effects   of   driver   dependence   on   a   warning   system   in   a   driving  simulator.  IEEE  Transactions  on  Systems,  Man,  and    Cybernetics  -­  Part  A:  Systems  and  Humans,  36(3),  602-­‐610.  

[19]   Hart,  S.  G.,  &  Staveland,  L.  E.  (1988).  Development  of  NASA-­‐TLX  (Task  Load  Index):   Results   of   empirical   and   theoretical   research.   Advances   in  psychology,  52,  139-­‐183.