Evalua&ng)Surface)Flux)Results)from)FLASHFlux)Version…€¦ ·...

1
Evalua&ng Surface Flux Results from FLASHFlux Version 3A Anne C. Wilber 1 , David P. Kratz 2 , Paul W. Stackhouse, Jr. 2 , Shashi K. Gupta 1 , and Parnchai K. Sawaengphokhai 1 1 Science Systems and Applications, Inc., Hampton, Virginia 2 NASA Langley Research Center, Hampton, Virginia Conclusions: Shortwave : : Replacing the WCP-55 aerosol properties in the SW algorithm with monthly climatological properties based on -year monthly averages of MATCH aerosol optical depths made considerable difference in the resulting fluxes. Though the comparison with the ground measurements shows little improvement, the use of the more up-to-date optical depths correspond to an improvement in the ground measurement/FLASHFlux difference histograms shown above. For further improvement in the SW model, it is planned to use near real time aerosols in place of the climatology. Also, work continues on the cloud transmission algorithm. Longwave: The use of the new GEOS 5.9.1 meteorology with change in the lower atmospheric temperature, humidity and skin temperature made the largest difference in the surface LW results. FLASHFlux LW fluxes overall showed a slightly larger bias but a slightly improved RMSE. The most improved surface types were the the Island and Desert sites. Continued assessment of the FLASHFlux data products is on-going. The TOA flux products are being successfully used to evaluate radiative flux variability for the annual “State of Climate” report published annually in BAMS (see poster 147). Year-to-year regional changes in the surface fluxes over oceans have also been used to assess changes in ocean energy fluxes for the same annual report. The data products are available through the “HDF” portion of the CERES ordering page or more directly through the FLASHFlux homepage: http://flashflux.larc.nasa.gov. Summary of Changes Between Version 2H and Version 3A Version 2H Version 3A Spectral Correc4on Coefficients CERES Ed2 CERES Ed3 Solar Constant 1365 W m 2 1361 W m 2 Aerosols WCP55 MATCH Climatology Rayleigh ScaEering Original LPSA New based on Bodhaine et al. (1999) Meteorology GEOS5.2.0 GEOS 5.9.1 (FPIT) Temperature Inversions No special treatment Improved Algorithm Cloud Transmission Coefficient 0.80 0.75 B J H H H B J -90 -60 -30 0 30 60 90 -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180 48.31N, 105.10W Fort Peck, MT 40.72N, 77.93W Penn State, PA 40.05N, 88.37W Bondville, IL 40.13N, 105.24W Boulder, CO 34.25N, 89.87W Goodwin Creek, MS 43.73N, 96.92W Sioux Falls, SD 36.60N, 97.48W SGPARM 45.03S, 169.7E New Zealand 44 N, 5.1E Carpentras, FR 48.71N 2.20W Palaiseau, FR 58.3N, 26.5E Toravere, Estonia 29.44S 53.82W São Martinho da Serra, Brazil 32.30N, 64.77W Bermuda 24.28N, 153.98E Minami-Torishima 2.06S, 147.42 E Manus 0.52S, 166.9 E, Nauru 12S 97E Cocos Isl 36.05N, 140.13E Tatano 36.9N, 75.71W Ches Light 51.97N, 4.9E Cabauw, Netherlands 12.43S, 130.8E Darwin, AU 33.58N, 130.37E Fukuoka, Japan 24.33N, 124.16E Ishigakijima,Japan 71.32N, 156.61W Barrow, AK 90.00S, 0.00 South Pole 69.00S, 39.58E Syowa 70.65S, 8.25W Georg von Neumayer 78.9N, 11.95E Ny Alesund 72.57N, 38.5W Greenland Summit B23.70S, 133.87E Alice Springs J 36.63N, 116.02W Desert Rock, NV H22.78N, 5.52E Algeria H30.9N , 34.8E Sede Boger, Israel H23.56S, 15.04N Gobabeb Namib Desert B12.0N, 23.0W PIRATA Buoy J0.0N, 23W PIRATA Buoy 19.0S, 34W PIRATA Buoy 15.0N, 90.0E RAMA Buoy 0.00 80.5E RAMA Buoy Locations of Ground Measurement Sites Sites Color-coded by Type Surface Measurements from http://www-cave.larc.nasa.gov/ Downward Shortwave Flux Downward Longwave Flux 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Version 2H Derived DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 1 2 - 5 6 - 20 21 - 40 41 - 50 > 50 N = 6669 Bias = -1.2 W m-2 R.E. = 32.2 W m-2 N = 6669 Bias = -5.9 W m-2 R.E. = 33.2 W m-2 N = 6669 Bias = -4.7 W m-2 R.E. = 13.7 W m-2 Version 2H Version 3A 3A vs 2H Global 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Version 2H Derived DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 1 2 - 5 6 - 10 11 - 15 16 - 20 > 20 N = 829 Bias = 15.7 W m-2 R.E. = 32.6 W m-2 N = 829 Bias = 8.1 W m-2 R.E. = 34.4 W m-2 N = 829 Bias = -7.6 W m-2 R.E. = 4.8 W m-2 Version 2H Version 3A 3A vs 2H Island 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Version 2H Derived DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 1 2 - 10 11 - 15 16 - 20 21 - 25 > 25 N = 2402 Bias = -4.8 W m-2 R.E. = 24.7 W m-2 N = 2402 Bias = -8.4 W m-2 R.E. = 26.4 W m-2 N = 2402 Bias = -3.6 W m-2 R.E. = 6.8 W m-2 Version 2H Version 3A 3A vs 2H Continental 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Version 2H Derived DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 1 2 - 10 11 - 15 16 - 20 21 - 25 > 25 N = 1246 Bias = -5.9 W m-2 R.E. = 20.5 W m-2 N = 1246 Bias = 0.6 W m-2 R.E. = 19.3 W m-2 N = 1246 Bias = 5.2 W m-2 R.E. = 7.3 W m-2 Version 2H Version 3A 3A vs 2H Desert 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Version 2H Derived DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 1 2 - 5 6 - 10 11 - 15 16 - 20 > 20 N = 1564 Bias = 10.3 W m-2 R.E. = 24.2 W m-2 N = 1564 Bias = 0.3 W m-2 R.E. = 24.8 W m-2 N = 1564 Bias = -9.9 W m-2 R.E. = 7.8 W m-2 Version 2H Version 3A 3A vs 2H Coastal 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Version 2H Derived DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 1 2 - 5 6 - 10 11 - 15 16 - 20 > 20 N = 630 Bias = -28.9 W m-2 R.E. = 55.8 W m-2 N = 630 Bias = -40.8 W m-2 R.E. = 54.8 W m-2 N = 829 Bias = -11.9 W m-2 R.E. = 34.0 W m-2 Version 2H Version 3A 3A vs 2H High Latitude Introduction : The Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data product was developed to provide a rapid release version of the Clouds and Earth's Radiant Energy System (CERES) results, which could be made available to the research and applications communities within one week of the satellite observations by exchanging some accuracy for speed of processing. Unlike standard CERES products, FLASHFlux does not maintain a long-term consistent dataset. Therefore the latest changes in algorithms and input data can be incorporated into processing. FLASHFlux transitioned from Version 2H to Version 3A in January 2013 changing to the latest meteorological product from Global Modeling and Assimilation Office (GMAO), GEOS FP-IT (5.9.1), latest spectral response functions and gains for the CERES instruments, and aerosol climatology based on the latest MATCH data. Some algorithm changes were made in the cloud transmission coefficient and Rayleigh attenuation for the shortwave flux computation. Typically FLASHFlux does not reprocess when a new version is released. However, in order to investigate the effects of the changes in algorithms and input data, nine months (201207 – 201303) were processed with both Version2H and Version3A. The Time Interpolated Space Averaged (TISA) surface flux results from these overlap months have been compared to the ground-based measurements. The effects of the changes on the calculated surface fluxes were evaluated. 152 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DLF (W m -2 ) Ground Measured DLF (W m-2) 1 2 - 10 11 - 50 51 - 100 101 - 200 > 200 N = 8423 Bias = -1.4 W m-2 R.E. = 17.0 W m-2 Version 2H 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DLF (W m -2 ) Ground Measured DLF (W m-2) Version 3A N = 8423 Bias = -2.5 W m-2 R.E. = 16.8 W m-2 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DLF (W m -2 ) Version 2H Derived DLF (W m-2) N = 8423 Bias = -1.2 W m-2 R.E. = 6.1 W m-2 3A vs 2H Global 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DLF (W m -2 ) Ground Measured DLF (W m-2) 1 2 - 5 6 - 20 21 - 40 41 - 50 > 50 N = 2776 Bias = -6.6 W m-2 R.E. = 18.1 W m-2 Version 2H 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DLF (W m -2 ) Ground Measured DLF (W m-2) Version 3A N = 2776 Bias = -8.2 W m-2 R.E. = 17.0 W m-2 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DLF (W m -2 ) Version 2H Derived DLF (W m-2) N = 2776 Bias = -1.6 W m-2 R.E. = 6.2 W m-2 3A vs 2H Continental 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DLF (W m -2 ) Ground Measured DLF (W m-2) 1 2 - 10 11 - 20 21 - 40 41 - 60 > 60 N = 1546 Bias = 1.1 W m-2 R.E. = 11.8 W m-2 Version 2H 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DLF (W m -2 ) Ground Measured DLF (W m-2) Version 3A N = 1546 Bias = -1.4 W m-2 R.E. = 11.6 W m-2 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DLF (W m -2 ) Version 2H Derived DLF (W m-2) N = 1546 Bias = -2.5 W m-2 R.E. = 5.0 W m-2 3A vs 2H Coastal 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Version 2H Derived DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 1 2 - 5 6 - 10 11 - 15 16 - 20 > 20 N = 829 Bias = 15.7 W m-2 R.E. = 32.6 W m-2 N = 829 Bias = 8.1 W m-2 R.E. = 34.4 W m-2 N = 829 Bias = -7.6 W m-2 R.E. = 4.8 W m-2 Version 2H Version 3A 3A vs 2H Island 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DSF (W m -2 ) Version 2H Derived DSF (W m-2) 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DSF (W m -2 ) Ground Measured DSF (W m-2) 1 2 - 10 11 - 15 16 - 20 21 - 25 > 25 N = 1246 Bias = -5.9 W m-2 R.E. = 20.5 W m-2 N = 1246 Bias = 0.6 W m-2 R.E. = 19.3 W m-2 N = 1246 Bias = 5.2 W m-2 R.E. = 7.3 W m-2 Version 2H Version 3A 3A vs 2H Desert 0 100 200 300 400 500 0 100 200 300 400 500 Version 2H Derived DLF (W m -2 ) Ground Measured DLF (W m-2) 1 2 - 10 11 - 15 16 - 20 21 - 25 > 25 N = 1179 Bias = 7.3 W m-2 R.E. = 18.2 W m-2 Version 2H 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DLF (W m -2 ) Ground Measured DLF (W m-2) Version 3A N = 1179 Bias = 7.8 W m-2 R.E. = 17.7 W m-2 0 100 200 300 400 500 0 100 200 300 400 500 Version 3A Derived DLF (W m -2 ) Version 2H Derived DLF (W m-2) N = 1179 Bias = 0.5 W m-2 R.E. = 4.4 W m-2 3A vs 2H High Latitude <-300 [-280,-260) [-240,-220) [-200,-180) [-160,-140) [-120,-100) [-80,-60) [-40,-20) [0,20) [40,60) [80,100) [120,140) [160,180) [200,220) [240,260) [280,300) 0 500 1000 1500 2000 2500 3000 Frequency DSF FLASHFlux Version 2H - Ground Measured <-300 [-280,-260) [-240,-220) [-200,-180) [-160,-140) [-120,-100) [-80,-60) [-40,-20) [0,20) [40,60) [80,100) [120,140) [160,180) [200,220) [240,260) [280,300) 0 500 1000 1500 2000 2500 Frequency DSF FLASHFlux Version 3A - Ground Measured Downward Shortwave FLASHFlux- Ground Measured Version 2H Version 3A <-300 [-280,-260) [-240,-220) [-200,-180) [-160,-140) [-120,-100) [-80,-60) [-40,-20) [0,20) [40,60) [80,100) [120,140) [160,180) [200,220) [240,260) [280,300) 0 500 1000 1500 2000 2500 3000 3500 4000 Frequency DLF FLASHFlux Version 2H - Ground Measured <-300 [-280,-260) [-240,-220) [-200,-180) [-160,-140) [-120,-100) [-80,-60) [-40,-20) [0,20) [40,60) [80,100) [120,140) [160,180) [200,220) [240,260) [280,300) 0 500 1000 1500 2000 2500 3000 3500 Frequency DLF FLASHFlux Version 3A - Ground Measured Downward Longwave FLASHFlux- Ground Measured Version M2H Version 3A Acknowledgements: The CERES FLASHFlux data products are part of the CERES production system and we acknowledge the CERES working groups at LaRC for their role in providing algorithms and the Atmospheric Science Data Center (ASDC) for their role in providing mechanisms to archive and distribute the data products. Comparison to Ground Measurements Comparison to Ground Measurements

Transcript of Evalua&ng)Surface)Flux)Results)from)FLASHFlux)Version…€¦ ·...

Page 1: Evalua&ng)Surface)Flux)Results)from)FLASHFlux)Version…€¦ · Evalua&ng)Surface)Flux)Results)from)FLASHFlux) ... m-2) Version 2H Derived DSF (W m-2 ) 0 100 200 400 ... (W m-2)

Evalua&ng  Surface  Flux  Results  from  FLASHFlux  Version  3A   Anne C. Wilber1, David P. Kratz2, Paul W. Stackhouse, Jr.2, Shashi K. Gupta1,

and Parnchai K. Sawaengphokhai1 1Science Systems and Applications, Inc., Hampton, Virginia

2NASA Langley Research Center, Hampton, Virginia "

Conclusions: !Shortwave : : Replacing the WCP-55 aerosol properties in the SW algorithm with monthly climatological properties based on -year monthly averages of MATCH aerosol optical depths made considerable difference in the resulting fluxes. Though the comparison with the ground measurements shows little improvement, the use of the more up-to-date optical depths correspond to an improvement in the ground measurement/FLASHFlux difference histograms shown above. For further improvement in the SW model, it is planned to use near real time aerosols in place of the climatology. Also, work continues on the cloud transmission algorithm. "

Longwave: The use of the new GEOS 5.9.1 meteorology with change in the lower atmospheric temperature, humidity and skin temperature made the largest difference in the surface LW results. FLASHFlux LW fluxes overall showed a slightly larger bias but a slightly improved RMSE. The most improved surface types were the the Island and Desert sites."

Continued assessment of the FLASHFlux data products is on-going. The TOA flux products are being successfully used to evaluate radiative flux variability for the annual “State of Climate” report published annually in BAMS (see poster 147). Year-to-year regional changes in the surface fluxes over oceans have also been used to assess changes in ocean energy fluxes for the same annual report. The data products are available through the “HDF” portion of the CERES ordering page or more directly through the FLASHFlux homepage: http://flashflux.larc.nasa.gov."

Summary  of  Changes  Between  Version  2H  and  Version  3A  

Version  2H     Version  3A    

Spectral  Correc4on  Coefficients  

CERES  Ed2   CERES  Ed3  

Solar  Constant   1365  W  m-­‐2   1361  W  m-­‐2  

Aerosols   WCP-­‐55   MATCH  Climatology  

Rayleigh  ScaEering   Original  LPSA    New  based  on  Bodhaine  et  

al.  (1999)  

Meteorology   GEOS-­‐5.2.0   GEOS  5.9.1  (FP-­‐IT)  

Temperature  Inversions   No  special  treatment   Improved  Algorithm    

Cloud  Transmission  Coefficient  

0.80   0.75  

B

J

HH

H

B

J

-90

-60

-30

0

30

60

90

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 18048.31N, 105.10W Fort Peck, MT

40.72N, 77.93W Penn State, PA

40.05N, 88.37W Bondville, IL

40.13N, 105.24W Boulder, CO

34.25N, 89.87W Goodwin Creek, MS

43.73N, 96.92W Sioux Falls, SD

36.60N, 97.48W SGP ARM

45.03S, 169.7E New Zealand

44 N, 5.1E Carpentras, FR

48.71N 2.20W Palaiseau, FR

58.3N, 26.5E Toravere, Estonia

29.44S 53.82W São Martinho da Serra, Brazil

32.30N, 64.77W Bermuda

24.28N, 153.98E Minami-Torishima

2.06S, 147.42 E Manus

0.52S, 166.9 E, Nauru

12S 97E Cocos Isl

36.05N, 140.13E Tatano

36.9N, 75.71W Ches Light

51.97N, 4.9E Cabauw, Netherlands

12.43S, 130.8E Darwin, AU

33.58N, 130.37E Fukuoka, Japan

24.33N, 124.16E Ishigakijima,Japan

71.32N, 156.61W Barrow, AK

90.00S, 0.00 South Pole

69.00S, 39.58E Syowa

70.65S, 8.25W Georg von Neumayer

78.9N, 11.95E Ny Alesund

72.57N, !38.5W Greenland Summit

B 23.70S, 133.87E Alice Springs

J 36.63N, 116.02W Desert Rock, NV

H 22.78N, 5.52E Algeria

H 30.9N , 34.8E Sede Boger, Israel

H 23.56S, 15.04N Gobabeb Namib Desert

B 12.0N, 23.0W PIRATA Buoy

J 0.0N, 23W PIRATA Buoy

19.0S, 34W PIRATA Buoy

15.0N, 90.0E RAMA Buoy

0.00 80.5E RAMA Buoy

Locations of Ground Measurement Sites "

Sites Color-coded by Type"Surface Measurements from http://www-cave.larc.nasa.gov/"

Downward Shortwave Flux" Downward Longwave Flux"

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

SF

(W m

-2)

Ground Measured DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

SF

(W m

-2)

Version 2H Derived DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

2H D

eriv

ed D

SF

(W m

-2)

Ground Measured DSF (W m-2)

1 2 - 5 6 - 20 21 - 40 41 - 50 > 50

N = 6669Bias = -1.2 W m-2

R.E. = 32.2 W m-2

N = 6669Bias = -5.9 W m-2

R.E. = 33.2 W m-2

N = 6669Bias = -4.7 W m-2

R.E. = 13.7 W m-2

Version 2H Version 3A 3A vs 2HGlobal

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

3A

Der

ived

DS

F (

W m

-2)

Ground Measured DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

3A

Der

ived

DS

F (

W m

-2)

Version 2H Derived DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

2H

Der

ived

DS

F (

W m

-2)

Ground Measured DSF (W m-2)

1 2 - 5 6 - 10 11 - 15 16 - 20 > 20

N = 829Bias = 15.7 W m-2

R.E. = 32.6 W m-2

N = 829Bias = 8.1 W m-2

R.E. = 34.4 W m-2

N = 829Bias = -7.6 W m-2

R.E. = 4.8 W m-2

Version 2H Version 3A 3A vs 2HIsland

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

3A

Der

ived

DS

F (

W m

-2)

Ground Measured DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

3A

Der

ived

DS

F (

W m

-2)

Version 2H Derived DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

2H

Der

ived

DS

F (

W m

-2)

Ground Measured DSF (W m-2)

1 2 - 10 11 - 15 16 - 20 21 - 25 > 25

N = 2402Bias = -4.8 W m-2

R.E. = 24.7 W m-2

N = 2402Bias = -8.4 W m-2

R.E. = 26.4 W m-2

N = 2402Bias = -3.6 W m-2

R.E. = 6.8 W m-2

Version 2H Version 3A 3A vs 2HContinental

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

3A

Der

ived

DS

F (

W m

-2)

Ground Measured DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

3A

Der

ived

DS

F (

W m

-2)

Version 2H Derived DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

2H

Der

ived

DS

F (

W m

-2)

Ground Measured DSF (W m-2)

1 2 - 10 11 - 15 16 - 20 21 - 25 > 25

N = 1246Bias = -5.9 W m-2

R.E. = 20.5 W m-2

N = 1246Bias = 0.6 W m-2

R.E. = 19.3 W m-2

N = 1246Bias = 5.2 W m-2

R.E. = 7.3 W m-2

Version 2H Version 3A 3A vs 2HDesert

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

3A

Der

ived

DS

F (

W m

-2)

Ground Measured DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

3A

Der

ived

DS

F (

W m

-2)

Version 2H Derived DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Ver

sion

2H

Der

ived

DS

F (

W m

-2)

Ground Measured DSF (W m-2)

1 2 - 5 6 - 10 11 - 15 16 - 20 > 20

N = 1564Bias = 10.3 W m-2

R.E. = 24.2 W m-2

N = 1564Bias = 0.3 W m-2

R.E. = 24.8 W m-2

N = 1564Bias = -9.9 W m-2

R.E. = 7.8 W m-2

Version 2H Version 3A 3A vs 2HCoastal

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

SF

(W m

-2)

Ground Measured DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

SF

(W m

-2)

Version 2H Derived DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

2H D

eriv

ed D

SF

(W m

-2)

Ground Measured DSF (W m-2)

1 2 - 5 6 - 10 11 - 15 16 - 20 > 20

N = 630Bias = -28.9 W m-2

R.E. = 55.8 W m-2

N = 630Bias = -40.8 W m-2

R.E. = 54.8 W m-2

N = 829Bias = -11.9 W m-2

R.E. = 34.0 W m-2

Version 2H Version 3A 3A vs 2HHigh Latitude

Introduction :! The Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data product was developed to provide a rapid release version of the Clouds and Earth's Radiant Energy System (CERES) results, which could be made available to the research and applications communities within one week of the satellite observations by exchanging some accuracy for speed of processing. Unlike standard CERES products, FLASHFlux does not maintain a long-term consistent dataset. Therefore the latest changes in algorithms and input data can be incorporated into processing. FLASHFlux transitioned from Version 2H to Version 3A in January 2013 changing to the latest meteorological product from Global Modeling and Assimilation Office (GMAO), GEOS FP-IT (5.9.1), latest spectral response functions and gains for the CERES instruments, and aerosol climatology based on the latest MATCH data. Some algorithm changes were made in the cloud transmission coefficient and Rayleigh attenuation for the shortwave flux computation. Typically FLASHFlux does not reprocess when a new version is released. However, in order to investigate the effects of the changes in algorithms and input data, nine months (201207 – 201303) were processed with both Version2H and Version3A. The Time Interpolated Space Averaged (TISA) surface flux results from these overlap months have been compared to the ground-based measurements. The effects of the changes on the calculated surface fluxes were evaluated. "

152

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

2H D

eriv

ed D

LF (

W m

-2)

Ground Measured DLF (W m-2)

1 2 - 10 11 - 50 51 - 100 101 - 200 > 200

N = 8423Bias = -1.4 W m-2

R.E. = 17.0 W m-2

Version 2H

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

LF (

W m

-2)

Ground Measured DLF (W m-2)

Version 3A

N = 8423Bias = -2.5 W m-2

R.E. = 16.8 W m-20

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

LF (

W m

-2)

Version 2H Derived DLF (W m-2)

N = 8423Bias = -1.2 W m-2

R.E. = 6.1 W m-2

3A vs 2HGlobal

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

2H D

eriv

ed D

LF (

W m

-2)

Ground Measured DLF (W m-2)

1 2 - 5 6 - 20 21 - 40 41 - 50 > 50

N = 2776Bias = -6.6 W m-2

R.E. = 18.1 W m-2

Version 2H

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

LF (

W m

-2)

Ground Measured DLF (W m-2)

Version 3A

N = 2776Bias = -8.2 W m-2

R.E. = 17.0 W m-20

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

LF (

W m

-2)

Version 2H Derived DLF (W m-2)

N = 2776Bias = -1.6 W m-2

R.E. = 6.2 W m-2

3A vs 2H

Continental

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

2H D

eriv

ed D

LF (

W m

-2)

Ground Measured DLF (W m-2)

1 2 - 10 11 - 20 21 - 40 41 - 60 > 60

N = 1546Bias = 1.1 W m-2

R.E. = 11.8 W m-2

Version 2H

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

LF (

W m

-2)

Ground Measured DLF (W m-2)

Version 3A

N = 1546Bias = -1.4 W m-2

R.E. = 11.6 W m-20

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

LF (

W m

-2)

Version 2H Derived DLF (W m-2)

N = 1546Bias = -2.5 W m-2

R.E. = 5.0 W m-2

3A vs 2H

Coastal

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

SF

(W m

-2)

Ground Measured DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

SF

(W m

-2)

Version 2H Derived DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

2H D

eriv

ed D

SF

(W m

-2)

Ground Measured DSF (W m-2)

1 2 - 5 6 - 10 11 - 15 16 - 20 > 20

N = 829Bias = 15.7 W m-2

R.E. = 32.6 W m-2

N = 829Bias = 8.1 W m-2

R.E. = 34.4 W m-2

N = 829Bias = -7.6 W m-2

R.E. = 4.8 W m-2

Version 2H Version 3A 3A vs 2HIsland

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

SF

(W m

-2)

Ground Measured DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

SF

(W m

-2)

Version 2H Derived DSF (W m-2)

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

2H D

eriv

ed D

SF

(W m

-2)

Ground Measured DSF (W m-2)

1 2 - 10 11 - 15 16 - 20 21 - 25 > 25

N = 1246Bias = -5.9 W m-2

R.E. = 20.5 W m-2

N = 1246Bias = 0.6 W m-2

R.E. = 19.3 W m-2

N = 1246Bias = 5.2 W m-2

R.E. = 7.3 W m-2

Version 2H Version 3A 3A vs 2HDesert

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

2H D

eriv

ed D

LF (

W m

-2)

Ground Measured DLF (W m-2)

1 2 - 10 11 - 15 16 - 20 21 - 25 > 25

N = 1179Bias = 7.3 W m-2

R.E. = 18.2 W m-2

Version 2H

0

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

LF (

W m

-2)

Ground Measured DLF (W m-2)

Version 3A

N = 1179Bias = 7.8 W m-2

R.E. = 17.7 W m-20

100

200

300

400

500

0 100 200 300 400 500

Vers

ion

3A D

eriv

ed D

LF (

W m

-2)

Version 2H Derived DLF (W m-2)

N = 1179Bias = 0.5 W m-2

R.E. = 4.4 W m-2

3A vs 2HHigh Latitude

<-30

0

[-280

,-260

)

[-240

,-220

)

[-200

,-180

)

[-160

,-140

)

[-120

,-100

)

[-80,

-60)

[-40,

-20)

[0,2

0)

[40,

60)

[80,

100)

[120

,140

)

[160

,180

)

[200

,220

)

[240

,260

)

[280

,300

)

0

500

1000

1500

2000

2500

3000

Freq

uenc

y

DSF FLASHFlux Version 2H - Ground Measured

<-30

0

[-280

,-260

)

[-240

,-220

)

[-200

,-180

)

[-160

,-140

)

[-120

,-100

)

[-80,

-60)

[-40,

-20)

[0,2

0)

[40,

60)

[80,

100)

[120

,140

)

[160

,180

)

[200

,220

)

[240

,260

)

[280

,300

)

0

500

1000

1500

2000

2500

3000

Freq

uenc

y

DSF FLASHFlux Version 3A - Ground Measured

Downward Shortwave"FLASHFlux- Ground Measured "

Version 2H Version 3A"

<-30

0

[-280

,-260

)

[-240

,-220

)

[-200

,-180

)

[-160

,-140

)

[-120

,-100

)

[-80,

-60)

[-40,

-20)

[0,2

0)

[40,

60)

[80,

100)

[120

,140

)

[160

,180

)

[200

,220

)

[240

,260

)

[280

,300

)

0

500

1000

1500

2000

2500

3000

3500

4000

Freq

uenc

y

DLF FLASHFlux Version 2H - Ground Measured

<-30

0

[-280

,-260

)

[-240

,-220

)

[-200

,-180

)

[-160

,-140

)

[-120

,-100

)

[-80,

-60)

[-40,

-20)

[0,2

0)

[40,

60)

[80,

100)

[120

,140

)

[160

,180

)

[200

,220

)

[240

,260

)

[280

,300

)

0

500

1000

1500

2000

2500

3000

3500

4000

Freq

uenc

y

DLF FLASHFlux Version 3A - Ground Measured

Downward Longwave"FLASHFlux- Ground Measured "

Version M2H Version 3A"

Acknowledgements: !

The CERES FLASHFlux data products are part of the CERES production system and we acknowledge the CERES working groups at LaRC for their role in providing algorithms and the Atmospheric Science Data Center (ASDC) for their role in providing mechanisms to archive and distribute the data products."

Comparison to Ground Measurements Comparison to Ground Measurements"