Eulerian Gaussian beam method in quantum mechanics · Schrödinger equation Gaussian beam method -...

32
Gaussian beam method Xu Yang Schrödinger equation Gaussian beam method - Lagrangian formulation Gaussian beam method - Eulerian formulation Numerical results Applications in quantum mechanics Eulerian Gaussian beam method in quantum mechanics Xu Yang Program in Applied and Computational Mathematics Princeton University, USA Collaboration with Prof. Shi Jin and Mr. Hao Wu March 5, 2009

Transcript of Eulerian Gaussian beam method in quantum mechanics · Schrödinger equation Gaussian beam method -...

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Eulerian Gaussian beam method inquantum mechanics

    Xu YangProgram in Applied and Computational Mathematics

    Princeton University, USA

    Collaboration with Prof. Shi Jin and Mr. Hao Wu

    March 5, 2009

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Outline

    1 Schrdinger equation and its semiclassical limit

    2 Gaussian beam method - Lagrangian formulation

    3 Gaussian beam method - Eulerian formulation

    4 Numerical results

    5 Applications in quantum mechanics

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Schrdinger equation

    The time-dependent one-body Schrdinger equation:

    i

    t+

    2

    2 V (x) = 0, x Rn ,

    (t , x) = A(t , x)eiS(t ,x)/

    It models: single electron in atoms, KS density functionaltheory, Molecule Orbital theory ...

    Numerical difficulties:(t , x) is oscillatory of wave length O().

    Methods Mesh size Time stepFinite difference 1 o() o()Time splitting spectral2 O() -indep.

    1Markowich, Pietra, Pohl and Stimming

    2Bao, Jin and Markowich

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Geometric optics - WKB analysis

    WKB ansatz (t , x) = A(t , x)eiS(t ,x)/,

    eikonal St +12|S|2 + V (x) = 0,

    transport t + (S) = 0, (t , x) = |A(t , x)|2 .

    Eikonal (Hamilton-Jacobi type) singularity (caustics)Figures from the review paper of Engquist and Runborg:

    Caustics NOT physical Semiclassical limit

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Semiclassical limit + phase correction

    Theorem 1. If V (x) is constant, by the stationary phasemethod we have, away from caustics,

    (x, t) K

    k=1

    A0(yk )1 + tD2S0(yk ) exp(

    i

    S(k , yk ) +i4

    k

    )

    where the phase

    S(, y) = x y (1/2) ||2 t + S0(y),

    has finitely many (K < ) stationary phases k and yk :

    k = S0(yk ), yk = x tS0(yk ) ,

    D2S0 is the Hessian matrix, and k = sgn(D2S(k , yk )) is theKeller-Maslov index of the k th branch.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Gaussian beam method - motivation

    Problems of the semiclassical limit: invalid at caustics

    1 the density (t , x) in the transport equation,2 1 + tD2S0(yk ) is singular in the stationary phase method.

    Computation around caustics is important in many applica-tions, for example:

    Seismic imaging Single-slit diffraction

    Gaussian beam method, developed by Popov, allowsaccurate computation around caustics.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Beam-shaped ansatz

    la(t , x , y0) = A(t , y)eiT (t ,x ,y)/,

    T (t , x , y) = S(t , y)+p(t , y)(xy)+12(xy)>M(t , y)(xy),

    beam center:dydt

    = p(t , y), y(0) = y0.

    Here S R, p Rn, A C, M Cnn. The imaginary part ofM will be chosen so that la has a Gaussian beam profile.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Lagrangian formulation

    Apply the beam-shaped ansatz to the Schrdinger equation:

    center:dydt

    = p,

    velocity:dpdt

    = yV ,

    Hessian:dMdt

    = M2 2yV ,

    phase:dSdt

    =12|p|2 V ,

    amplitude:dAdt

    = 12(Tr(M)

    )A.

    The first two ODEs are called ray tracing equations, and theHessian M satisfies the Riccati equation.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Validity at caustics and beam summation

    M, A could be solved via the dynamic ray tracing equations:

    dPdt

    = R,dRdt

    = (2yV )P,

    M = RP1, A =((det P)1A20

    )1/2,

    R(0) = M(0) = 2yS0(y) + iI, P(0) = I.

    Ralston (82, wave-type eqn), Hagedorn (80, Schrdinger)proved the validity of the Gaussian beam solution at caustics:P complexified = P never singular = A always finite.

    The Gaussian beam summation solution (Hill, Tanushev):

    la(t , x) =

    Rn

    (1

    2

    ) n2

    r(x y(t , y0))la(t , x , y0)dy0.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Level set method

    The level set method has been developed to compute thesemiclassical limit of the Schrdinger equation. (Jin-Liu-Osher-Tsai)

    The idea is to build the velocity u = yS into the intersectionof zero level sets of phase-space functions j(t , y , ), i.e.

    j(t , y , ) = 0, at = u(t , y), j = 1, , n.

    = (1, , n) satisfies the Liouville equation:

    t + yyV = 0.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Eulerian formulation I - semiclassical limit

    Lagragian formulation = Eulerian formulation

    ODEs = PDEs ddt

    = L = t + y yV

    As shown by Jin, Liu, Osher and Tsai,

    velocity: L = 0,

    phase: LS = 12||2 V ,

    amplitude: LA = 12

    Tr(()1y

    )A.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Eulerian formulation II - semiclassical limit

    If one introduces the new quantity

    f (t , y , ) = A2(t , y , )det(),

    then f (t , y , ) satisfies the Liouville equation

    Lf = 0.

    The level set method for the semiclassical limit still sufferscaustics where det() = 0.

    Motivated by the Gaussian beam method, we need tocomplexify the Liouville equation for .

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Construct the Hessian function

    y(t , y , u(t , y)) = 0 2yS = yu = y()1

    Recall the Lagrangian formulation: M = R P1

    Conjecture: R = y, P = .

    Complex R and P = complex

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Conjecture verification

    The first two lines are equivalent to each other once theyhave the same initial conditions:

    0(y , ) = iy + ( yS0)

    R(0) = 2yS0(y) + iI, P(0) = I.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Eulerian formulation - Gaussian beam

    Step 1: L = 0, 0(y , ) = iy + ( yS0).

    Step 2: compute y and M = y()1.

    Step 3: solve S either by LS = 12||2 V or

    path integral S(t , x) = x

    au(t , s)ds + Constant.

    Step 4: Lf = 0, f0(t , y , ) = A0(y)2,

    Step 5: A = (det()1f )1/2.

    Parallel to Ralstons proofs, complexified non-degenerate A never blows up

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Eulerian Gaussian beam summation

    Define

    eu(t , x , y , ) = A(t , y , )eiT (t ,x ,y ,)/,

    where

    T = S + (x y) + 12(x y)>M(x y),

    Eulerian Gaussian beam summation formula:

    eu(t , x) =

    Rn

    Rn

    (1

    2

    ) n2

    r(x y)eunj=1(Re[j ])ddy ,

    r is a truncation function with r 1 in a ball of radius > 0about the origin.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Computing the summation integral

    Method 1: Discretized delta function integral (Wen, in 1D).

    Method 2: Integrate out first:

    eu(t , x) =

    Rn

    (1

    2

    ) n2

    r(x y)

    k

    eu(t , x , y , uk )|det(Re[]=uk )|

    dy ,

    where uk , k = 1, , K are the velocity branches.Problem: det

    (Re[]

    )= 0 at caustics.

    Solution: Split the integral into two parts:

    L1 ={

    y det(Re[p](t , y , pj)) }

    L2 ={

    y det(Re[p](t , y , pj)) < }

    The integration on L1 is regular; the integration on L2 couldbe solved by the semi-Lagrangian method (Leung-Qian-Osher).

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Efficiency and accuracy

    Efficiency:

    Methods Mesh size Time stepFinite difference o() o()Time splitting spectral O() -indep.

    Gaussian beam O(

    ) O(2p )

    p: numerical orders of accuracy in time.

    Accuracy: O(

    ) in caustic case, O() in no caustic case.

    It could be easily generalized to higher order Gaussian beammethods by including more terms in the asymptotic ansatz.Tanushev-Runborg-Motamed

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    1D example

    Free motion particles with zero potential V (x) = 0. The initialconditions for the Schrdinger equation are given by

    A0(x) = e25x2, S0(x) =

    15

    log(2 cosh(5x)).

    which implies that the initial density and velocity are

    0(x) = |A0(x)|2 = exp(50x2),

    u0(x) = xS0(x) = tanh(5x).

    This allows for the appearance of cusp caustics.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Velocity contour

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    circle: Schrdinger square: Geometric optics cross: Phase correction star: Gaussian beam

    GBmovie.mpegMedia File (video/mpeg)

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Convergence rate and mesh size

    Convergence orders: 0.9082 in `1 norm, 0.8799 in `2 norm and0.7654 in ` norm.

    Mesh size: y O(

    )

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    2D example

    Take the potential V (x1, x2) = 10 and the initial conditions ofthe Schrdinger equation as

    A0(x1, x2) = e25(x21 +x

    22 ),

    S0(x1, x2) = 15(log(2 cosh(5x1)) + log(2 cosh(5x2))).

    then the initial density and two components of the velocity are

    0(x1, x2) = exp(50(x21 + x22 )),

    u0(x1, x2) = tanh (5x1)

    v0(x1, x2) = tanh (5x2).

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Amplitude at = 0.001 and Tfinal = 0.5

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Schrdinger equation with periodic structure

    i

    t=

    2

    22

    x2 + V(

    x) + U(x), x R ,

    It models: electrons in the perfect crystalsBloch band decomposition:

    H(k , z) :=12(iz + k)2 + V(z), z =

    x

    H(k , z)m(k , z) = Em(k)m(k , z),

    m(k , z + 2) = m(k , z), z R, k (1/2, 1/2).

    Modified WKB ansatz:

    (t , x) =

    m=1

    am(t , x)m(xSm,x)eiSm(t ,x)/.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Equations in the m-th band

    Eikonal-transport equations:

    tSm + Em(xSm) + U(x) = 0 ,

    tam + E m(xSm)xam +12

    amx(E m(xSm)

    )+ mam = 0.

    Liouville-type equations:

    Lm = t + E m() y U (y),Lmm = 0,LmSm = E m() Em() U(y),

    Lmam =12

    ymm

    am mam.

    m, m are constants related to m.

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Band structure for V(z) = cos(z)

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Numerical simulation for = 1/512

    Initial conditions:

    A0(x , z) = e50(x+0.5)2

    cos z, S0(x) = 0.3x + 0.1 sin x .

    External potential: U(x) = 0

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Schrdinger-Poisson equations

    it =

    2

    2xx + V

    (x),

    xxV = K(

    210 |

    (x , t)|2)

    , E =V

    x.

    A simple model of the radiation-matter interaction system, forexample, in nano-optics, mean field theory...

    K = +1 Focusing potentialK = 1 Defocusing potential

    Initialization:

    A0(x) = e25x2, S0(x) =

    1

    cos(x).

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Convergence results

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Numerical simulation = 1/4096

  • Gaussianbeam

    method

    Xu Yang

    Schrdingerequation

    Gaussianbeammethod -Lagrangianformulation

    Gaussianbeammethod -Eulerianformulation

    Numericalresults

    Applicationsin quantummechanics

    Thank You!

    Questions?

    Schrdinger equation and its semiclassical limitGaussian beam method - Lagrangian formulationGaussian beam method - Eulerian formulationNumerical resultsApplications in quantum mechanics