Ethanol Industrial Processing

26
Industrial Processing Integration of alcohol and sugar production, Cogeneration of electricity Brazil’s Ethanol Experience and its Transferability World Bank – April 25 2006 José Felix Silva Junior [email protected]

description

ethanol processing

Transcript of Ethanol Industrial Processing

Page 1: Ethanol Industrial Processing

Industrial Processing Integration of alcohol and sugar production,

Cogeneration of electricity

Brazil’s Ethanol Experience and its Transferability

World Bank – April 25 2006

José Felix Silva [email protected]

Page 2: Ethanol Industrial Processing

What it will be tried to show

1. Productions of sugarcane, sugar and ethanol

2. Operations flowsheet and productions alternatives

3. Fermentation and distillation – basic figures

4. Sugarcane quality – Calculated yields

5. Main characteristics of the integration process

6. Energy generated by sugar cane

7. Expansion of the sugar and ethanol industry

8. Scenario for ethanol demand

9. Improvements and innovation

Page 3: Ethanol Industrial Processing

Sugarcane – Source of Green Energy

JUICE

BAGASSE

LEAVES & TOPS

SUGAR

CO-GENERATIONOF ELECTRICITY

EthanolEthanol

Page 4: Ethanol Industrial Processing

Brazilian Production of Sugarcane, Sugar and Ethanol

Crop Season 05/06 partial results

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.00070

/71

72/7

3

74/7

5

76/7

7

78/7

9

80/8

1

82/8

3

84/8

5

86/8

7

88/8

9

90/9

1

92/9

3

94/9

5

96/9

7

98/9

9

00/0

1

02/0

3

04/0

5

Crop Season

0

5.000

10.000

15.000

20.000

25.000

30.000

Sugarcane Sugar Total Ethanol

Suga

r (10

00t )

and

Eth

anol

(100

0m3)

Suga

rcan

e (1

000t

)

Page 5: Ethanol Industrial Processing

Brazilian Production of Anhydrousand Hydrated Ethanol

0

2.000

4.000

6.000

8.000

10.000

12.00070

/71

72/7

3

74/7

5

76/7

7

78/7

9

80/8

1

82/8

3

84/8

5

86/8

7

88/8

9

90/9

1

92/9

3

94/9

5

96/9

7

98/9

9

00/0

1

02/0

3

04/0

5

Crop Season

Anhydrous Hydrated

Etha

nol (

1000

m3)

Crop Season 05/06 partial results

Page 6: Ethanol Industrial Processing
Page 7: Ethanol Industrial Processing

Flowsheet of Sugar and Ethanol ProductionJu

ice

Page 8: Ethanol Industrial Processing

Fermentation Process

Basic information– Final ethanol content: 9 %vol– Final yeast concentration:13% – Fermentation time: 6-11h– Average production rate : 450 m3/day– Total fermenter capacity: 3000 m3

– Yield (stoichiometric): up to 91%– Temperature: 34-36ºC

Page 9: Ethanol Industrial Processing

Evolution of Ethanol Yield %

82

83

84

85

86

87

88

89

90

91

92

1975 1980 1985 1990 1995 2000 2005

Year

(%)

Page 10: Ethanol Industrial Processing

Evolution of Fermentation Time (h)

6

7

8

9

10

11

12

13

14

15

16

1975 1980 1985 1990 1995 2000 2005

Year

(h)

Page 11: Ethanol Industrial Processing

Distillation Flow Diagram

Vinhaça

Saída

Setor de Destilação

Vapor de

escape

Água

Quente

Água

Quente

Água

Quente

A B CP

K

Água

Fria

Vinhaça

Entrada

Água

Quente

Água

FriaCondensado

Vapor de

escape

Água

Fria

CP

Água

Quente

Água

Quente

Água

Fria

Vapor de

escape

Álcool

Aparelho - 01 Aparelho - 02 Aparelho - 03

Aparelho - 04

Tanques medidores

Água

Quente

Água

Quente

A B CP

K

Água

Fria

Vinhaça

Entrada

Água

Quente

Água

FriaCondensado

Água

Fria

EEEH H H

HH

I1I

I

,Ciclohexano

Água

Quente

A B CP

K

Água

Fria

Vinhaça

Entrada

Água

Quente

Água

FriaCondensado

Água

Fria

EEEH H H

H1H

I1I

I

,Ciclohexano

EEEH H H

HH

I1I

I2

HH

I1I

I2

,Ciclohexano ,Ciclohexano

Vinhaça

Saída

Vinhaça

Saída

01 02

Armazenagem

de álcool

Page 12: Ethanol Industrial Processing

Distillation

– Steam consumption: 3-5 kg / L ethanol– Yield: > 99%– Residues:

• Vinasse (12-15 L/L): recycled as ferti-irrigation at the cane fields

– Water consumption:

• 100-120 L / L ethanol (hydrated 93% by weight )• 140-170 L / L (anhydrous 99.4% by weight)

• Dehydration: Azeotropic (cyclohexane)

Extractive (monoethyleneglycol)

Molecular sieves

Page 13: Ethanol Industrial Processing

Quality of Sugarcane – Pol%cane

Pol%cane - Average of 5 Crop Seasons

16,22

12,24

14,30

12,00

13,00

14,00

15,00

16,00

17,00

1º A

pri

l

2º A

pri

l

1º M

ay

2 M

ay

1º June

2º June

1º July

2º July

1º A

ug

2º A

ug

1º S

ept

2º S

ept

1º O

ct

2º O

ct

1º N

ov

2º N

ov.

Page 14: Ethanol Industrial Processing

Ethanol from Molasses and Juice

MASH

JUICE FOR SUGAR

FACTORY

SUGAR

ETHANOLFROM

SUGARS

SUGARCANE

MILLING

FERMENTATIONDISTILLATION

MOLASSES

JUICE FOR ETHANOL

ETHANOLFROM

MOLASSES

ETHANOL

DISTILLERY

Sugars = Suc + Glu + Fru

Page 15: Ethanol Industrial Processing

Production Alternatives for Sugar and Ethanol (Calculated for 1 t of cane)

Crop Pol%cane TRSSeason kg/tc

Start 12.24 122.87Peak 16.22 159.11End 14.3 141.24

Sugar Ethanolkg/tc L/tc

94.30 13.53133.30 10.90115.39 11.44

Sugar Ethanolkg/tc L/tc

47.15 41.6566.65 50.5257.69 45.74

EthanolL/tc

69.6990.1580.04

Sugar & Ethanol from Final Molasses

Sugar 50% sucrose

Ethanol 50% sucrose+ RS from cane + sugars from molasses

All Sugars to Ethanol

Loss of 9.5% of pol%pol in caneFermentation yield 88%Sugar Division - 50% for sugar and 50% for ethanolTRS - Total Recoverable SugarSugar - Polarization 99.7º ZEthanol Anhydrous - 99.3% by weight

Page 16: Ethanol Industrial Processing

Integration Production of Sugar and Ethanol

Main Characteristics Extended crop season – beginning and end with

ethanol production Cane of low content of sugar and purity goes to

ethanol production Use of juices from different steps of the

process – low purity juice from milling, etc. No hard work to recover sugar in final molasses No loss in final molasses

Page 17: Ethanol Industrial Processing

Milling Diagram

Usina Santo Antonio S. A. - Fluxograma de Processo - Setor de moendas

Água de embebição

Tanque Pulmão

PeneiraRotativa

Trocador de calorregenerativo

Tanque de Ácido

Fosfórico Caldo clarificado para destilaria

Bagacilho para lodo dos decantadores

Circuito açúcar

Circuito álcool

Eletro-Imã

Vinhaça

(Entrada)

Vinhaça

(Saída) Caldo clarificado do decantador de álcool

Caldo do circuito álcoolpara os trocadores de calor

LegendaCaldo de cana

Águas industriais

Bagaço

Produtos químicos

Bagaço para ascaldeiras

Caldo do circuito açúcarpara a sulfitação

Cana

Água de lavagem de cana

Picador 01

Picador 02

Esteira de cana picada

Mesa 18 ° - cana inteira

Bagaço da peneira

Desfribador

Rolo alimentador

Espalhador

Page 18: Ethanol Industrial Processing

Integration Production of sugar and Ethanol

Main Characteristics Sugar of better quality – no need to recycle

molasses of low purity Higher purity in the mash (treated juice +

molasses) for high fermentation yield Energetic optimization – bleeding of steam

for the distillery Variation on the ratio of sugar and ethanol

produced according to the market

Page 19: Ethanol Industrial Processing

Energy Generated by Sugarcane

1 t of Cane Stalks (Clean)

Energy

(MJ)

145 kg of sugars 2 300

140 kg of stalk fiber (bagasse, dry basis) 2

600

140 kg of leaves fiber (trash, dry basis) 2

600

Total 7 500(0.17

toe)

1 ha 82 t cana 600 GJ (13 toe)300 million tons of cane 50 million

toe/year

Note: Primary energy consumption in Brazil is 235 million toe/year.

Page 20: Ethanol Industrial Processing

Electric Power Generation Potential

• Sugar mill is self sufficient in energy, using bagasse as fuel during the crop season

• Some mills produce surplus energy to sell: Installed capacity: 2,800 MW (100 %) Self-consumption: 2,200 MW (78 %) Contracted: 600 MW (22 %) (Sao Paulo

500 MW > 46 plants)• Short-term potential – today technology – 6,000

to 8,000 MW• Long-term potential – new technologies and

increase in sugarcane – 15,000 to 22,000 MWSource – ANEEL (National Electric Power Agency / UNICA

Page 21: Ethanol Industrial Processing

Expansion of the Sugar and Ethanol Industry

New projects

Page 22: Ethanol Industrial Processing

Copersucar’s Scenario for Ethanol Demand

13,8

0,82,2

14,8

0,92,9

16,2

0,93,5

17,7

0,9

4,0

19,3

0,9

4,6

21,1

1,0

5,2

0,0

5,0

10,0

15,0

20,0

25,0

30,0

2005/06 2006/07 2007/08 2008/09

2009/10 2010/11

Fuel Industrial Exports

16,8

27,324,8

22,6

20,618,6

mil

lio

ns

of

m3

Page 23: Ethanol Industrial Processing

Improvement and Innovation (R&D)

Work has to be done to:

• Automatic process control

• Treatment of the mash

• High ethanol yeast• Immobilized yeast / Flocculant yeast• Reducing of the vinasse produced • Specific Membranes for dehydration• Vacuum distillation

Page 24: Ethanol Industrial Processing

Improvement and Innovation (R&D)

Energy

• Reduction of steam consumption 500 – 350 – 280 kg/tc (needs investment)

• Use of trash (leaves and tops) as fuel• High pressure and more efficient boilers and

turbine generators• Gasification of bagasse

Page 25: Ethanol Industrial Processing

Thank you

José Felix Silva Junior

[email protected]

Page 26: Ethanol Industrial Processing

Sugar and Ethanol Calculated

ENTRADA DE DADOS VALORES CALCULADOSPol % cana 16,2200 % Açúc. redutores % cana 0,5100 %Pureza do caldo 88,39 % Sacarose para açúcar (PCTS) 0,0%Fibra % cana 12,46 % ATR 159,13 kg/t canaRend. obtido açúcar kg/t cana ART % cana 175,84 kg/t canaRend. obtido álcool L/t cana ATR Produtos

10*POL= 162,20 10*AR= 5,100 CONSIDERANDO-SE:Perdas fase comum 9,50%

Perdas de açúcares 9,5% Perdas 9,5% Eficiência global dest. 0,5665146,79 15,41 4,62

Parcela da sacarose Eficiência destilariapara fabric. açúcar 0,00 Sacarose Fermentação 88,0

desviada Destilação 99,00,00 146,79 Global 87,1

1- SJM0,00 154,52 4,62 Relação com PCTS

SJM= 90,54%Total 159,13 kg de ART no melaçoEficiência destilaria = 0,5665 litros/kg ART

RS= 0,00 kg/t cana RE= 90,15 L/t canaDif prod. 0,00 90,15ATR Prod. 0,00 159,13 ATR Prod. Total 159,13

Rend. em açúcar: Rend. em álcool anidro: