Erik offerman

28
Ontwikkeling van slimme materialen voor de offshore industrie S. Erik Offerman S. Erik Offerman Vermelding onderdeel organisatie 19 September 2013 Department of Materials Science and Engineering Materials 2013

description

Ontwikkeling van slimme materialen voor de offshore industrie

Transcript of Erik offerman

Page 1: Erik offerman

Ontwikkeling van slimme materialen voor de offshore industrie

S. Erik OffermanS. Erik Offerman

Vermelding onderdeel organisatie

19 September 2013

Department of Materials Science and Engineering

Materials 2013

Page 2: Erik offerman

3 billion more middle-class consumers in next 20 years

Energy

Materials

Food

19 September 2013 2

Driving up demand for a range of different resources Source: McKinsey report – Resource revolution (November 2011)

Food

Water

Page 3: Erik offerman

Challenge: linkages

Solving one problem enhances the other problemDo it smart => Offshore?

19 September 2013 3

Source: Ester van der Voet et al. (2010), Leiden University

Do it smart => Offshore?

Page 4: Erik offerman

Offshore resources of interest

• Oil & gas

• Wind

• Minerals• Minerals(mining)

Bron: Shell

Page 5: Erik offerman

Trends offshore industry

• Further away

• Deeper

• Higher pressure• Higher pressure

• Hotter gasses/oil

• Harsher environments: Colder/Arctic environment

Page 6: Erik offerman

Trends offshore industry (cont.)

• Safer

Page 7: Erik offerman

Activities offshore industry

• Lifting

• Drilling

• Pipe laying• Pipe laying

• Construction

• Dredging

All Sea’s Pieter Schelte

Page 8: Erik offerman

Material requirements

• Strong

• Ductile

• Though

• Affordable

• Available

• Weldable/joinable

Page 9: Erik offerman

Material requirements continued

Resistance to:

• Corrosion

• Fatigue

• Wear• Wear

• Low temperature

• High Pressure

Page 10: Erik offerman

Material requirements continued

Design criterion

Steel strong enough

Steel too weak

Resistance to: High temperature

Steel too weak

Critical temperature

Page 11: Erik offerman

Microstructure <-> Mechanical Prop.

19 September 2013 11

M. Militzer, Science 298 (2002) 975.

50 µm

Page 12: Erik offerman

Microstructure

• Chemical elements

• Phases

• Precipitates

19 September 2013 12

• Grain size

• Solid solution

• Dislocation networksS.E. Offerman, 305 Science (2004) 190.

Page 13: Erik offerman

Microstructure Engineering

Design and production of microstuctures via

thermodynamic and kinetic simulations and

experimental validation

19 September 2013 13

experimental validation

Page 14: Erik offerman

Austenite/ferrite transformation steel

M. Militzer et al., Acta Materialia 54 3961 (2006)

19 September 2013 14

3D phase field simulation

M. Militzer et al., Acta Materialia 54 3961 (2006)

Page 15: Erik offerman

Ferrite growth

19 September 2013 15

Hendrik Strandlund, KTH, Sweden

Page 16: Erik offerman

Carbon concentration

19 September 2013 16

Hendrik Strandlund, KTH, Sweden

Page 17: Erik offerman

Steel –GDP per capita vs consumption per capitaSteel –GDP per capita vs consumption per capitaImproving fire-resistance steel

Gözde Dere et al.Scripta materialia (2013) 651.

Page 18: Erik offerman

Steel –GDP per capita vs consumption per capitaSteel –GDP per capita vs consumption per capitaMicrostructure 4 steel specimens

Without NbFast cooling

With NbSlow cooling

With NbIntermediateCooling rate

With NbFast cooling

Page 19: Erik offerman

Steel –GDP per capita vs consumption per capitaSteel –GDP per capita vs consumption per capitaMany low-angle grain boundaries for Nb & fast cooling

Page 20: Erik offerman

Steel –GDP per capita vs consumption per capitaSteel –GDP per capita vs consumption per capitaCompression test during heating

Strain

Strain

Temperature (°C)

Page 21: Erik offerman

Steel –GDP per capita vs consumption per capitaSteel –GDP per capita vs consumption per capitaNb: +90°C & GB: +45°C

Page 22: Erik offerman

• Exact specimen temperature measurement

by welding a thermocouple to the specimen.

• Low interaction with X-rays.

In-situ characterization of microstructures in steel

Hemant Sharma et al.Acta Mater. (2012)

Vermelding onderdeel organisatie

22

Page 23: Erik offerman

3D X-Ray Diffraction Microscope

Vermelding onderdeel organisatie

Beam line ID11 @ European Synchrotron Radiation Facility

Developed by DTU & ESRF

Page 24: Erik offerman

Intensity →Volume

3DXRD

Vermelding onderdeel organisatie

, ,spots grain grain grain

Position Orientation position strain→

Intensity

spots→Volume

grains

24

Page 25: Erik offerman

φ

φ

Φ1

2

y

Non-destructive characterization of 2281 grains

Vermelding onderdeel organisatie

25

(a) (b)

x

y

Page 26: Erik offerman

Modes of grain growth during fire

Mode No. Volume Rotation Mosaicity

I + + +

II + = +

III - + -

Vermelding onderdeel organisatie

26

IV - = -

V = + +

VI = + =

VII = = =

Page 27: Erik offerman

• Offshore industry is breaking fresh ground

• Novel materials are needed to enable innovation in the offshore industry

• Fundamental materials research opens the path to

Conclusions

19 September 2013 27

27

• Fundamental materials research opens the path to material innovation

Page 28: Erik offerman

TUD:Gozde Dere, Hemant Sharma, Richard Huizenga, Roumen Petrov, Jilt Sietsma, Pina Mecozzi,

European Synchrotron Radiation Facility: Jon Wright, Alexei Bytchkov

Acknowledgement

19 September 2013 28

28

Funding: STW

Support: Tata Steel, Ovako Wire B.V., and SKF