Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

58
Eric Beaulieu Thursday April 10 th , 2008 Asymmetric Fluorination

Transcript of Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

Page 1: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

Eric BeaulieuThursday April 10th, 2008

Asymmetric Fluorination

Page 2: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

2

Outline

•Introduction: -Fluorine facts -Why incorporate fluorine in organic molecules -Examples of fluorinated molecules

•Methods of Accessing Fluorine Bearing Chiral Centers : -Enzymatic kinetic resolution -Fluorinated enolates -Nucleophilic fluorination -Electrophilic fluorination: -Substrate-controlled (chiral auxiliaries) -Agent-Controlled

•Conclusion / Acknowledgements

Page 3: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

3

Fluorine Facts

19FAtomic Number : 9

Relative Atomic Mass: 18.998Group # 17 (halogens)

Quantum # I = ½ (like 1H), abundance ≈ 100%

Element Van der Waals radii (Å)

Electronegativity (Pauling)

F 1.47 3.98

O 1.52 3.44

N 1.55 3.04

C 1.70 2.55

H 1.20 2.2

Bond Average

Bond Strength (KJ/Mol)

Average Bond Length

(Å)

C-F 485 1.39

C-C 356 1.53

C-O 336 1.43

C-H 416 1.09

Page 4: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

4

Why Incorporate Fluorine Into Organic Molecules ?

•Biologically active/useful compounds-electronegativity of fluorine influences the effect of neighbouring functionalities-C-F bond strength renders it resistant to metabolic processes-incorporation of fluorine usually increases lipid solubility (bioavailability ) -synthesis of isosteric analogues of drugs-useful for studying biochemical processes

Filler, R., Kobayashi, Y. in Biomedical Aspects of Fluorine Chemistry, Eds. Kodansha/Elsevier Biomedical Press, 1982

F

F

F

F

F

F n

•Organofluorine materials -fluoroplastics: ie Teflon (PTFE)

-fluoroelastomers (gaskets, hoses, wiring insulation…) -liquid crystals

•Synthetic building blocks-where fluorine serves as a leaving group-to construct complex fluorine containing molecules

Page 5: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

5

Why Incorporate Fluorine Into Organic Molecules ?

Isostere of O vs H

Element Van der Waals radii (Å)

Electronegativity (Pauling)

F 1.47 3.98

O 1.52 3.44

N 1.55 3.04

C 1.70 2.55

H 1.20 2.2

Bond Average

Bond Strength (KJ/Mol)

Average Bond Length

(Å)

C-F 485 1.39

C-C 356 1.53

C-O 336 1.43

C-H 416 1.09

Smart, B. E. in Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E., Smart, B. E., Tatlow, J. C., Eds.; Plenum Press: New York, 1994; Chapter 3, pp 57-88.

Page 6: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

6

Vinyl Fluorides as Peptide (Amide) Bond Isosteres

H2N

R1

O

HN

R2

O

OH H2N

R1

F R2

O

OH

dipeptide dipeptide isostere

•Non-hydrolyzable bond

•No rotational freedom

Taguchi, T. et al. J. Fluorine Chem. 2006, 127, 627.

Page 7: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

7

Fluorinated Activity-based Fluorescent Protease Probe

Yao, S. Q. et al. Chem. Commun. 2004, 1512

HN

F

HN

O

OO

NH

O

N

NO

AA-NH

OI

NH

FNH

O

R

O

HN-AA

O B

NH

FNH

O

R

HN-AA

O B O

hydrolysis

proteasepocket

active site

Nu

Nu

AA NH

NH

O

R

B

Nu

+

F

NH2

NH

O

R

B

Nu

covalent bond between enzyme and remainin molecule

R

quinolimine methideintermediate

Page 8: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

8

Example of a Fluorinated Drug: Advair Diskus®

Me

F

F

O

Me

HOMe

H

OH

O SF

Advair Diskus®(fluticasone propionate)

GlaxoSmithKlineAsthma Medication

Page 9: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

9

Metabolic Oxidation Inhibition by Fluorine

OHMe

O

OH

H

O

Me

HO

H

H

cortisol

OHMe

O

OH

H

O

Me

O

H

H

OHMe

O

OH

H

O

Me

HO

F

H

9-fluorocortisol

OHMe

O

OH

H

O

Me

O

F

H

11-hydroxysteroid dehydrogenase

NADP+ NADPH

11-hydroxysteroid dehydrogenase

NADP+ NADPH

cortisone

X

metabolicoxidation

Back, D. J. et al. J. Steroid Biochem. Mol. Biol. 1993, 46, 833.

Page 10: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

10

Accessing Fluorine Bearing Chiral Centers

R R'

R''FR

F

OEt

O

Enzymatic kinetic resolution

RF

OTMS

R'

+ R'' + Cat*

FluorinatedEnolates

NucleophilicFluorination

R R'

LGR''+ " F "

ElectrophilicFluorination

RR''

OM

R'

+ " F "

Page 11: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

11

Enzymatic Kinetic Resolution

EtO2C CO2Et

Me FTriacylglycerol Lipase(Candida cylindracea)

pH 7.3 Buffer solution HO2C CO2Et

Me F

EtO2C CO2Et

Me FCelulase

(Trichoderma viride)

pH 7.3 Buffer solution HO2C CO2Et

Me F

87% yield91% ee

70% yield56% ee

F

CO2EtLipase

(Pseudomonas)

pH 7.0 Buffer solution60 % conversion

F

CO2Et

F

CO2H+

> 99% ee > 69% ee

F

CO2EtLipase

(Pseudomonas)

pH 7.0 Buffer solution40 % conversion

F

CO2Et

F

CO2H+

90% ee

Kitazume, T. et al. J. Org. Chem. 1986, 51, 1003.

Kalaritis, P. et al. J. Org. Chem. 1990, 55, 812.Kalaritis, P., Regenye, R. W. Org. Synth. 1990, 69, 10.

Page 12: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

12

Enzymatic Kinetic Resolution

EtO2C CO2Et

Me FTriacylglycerol Lipase(Candida cylindracea)

pH 7.3 Buffer solution HO2C CO2Et

Me F

EtO2C CO2Et

Me FCelulase

(Trichoderma viride)

pH 7.3 Buffer solution HO2C CO2Et

Me F

87% yield91% ee

70% yield56% ee

Kitazume, T. et al. J. Org. Chem. 1986, 51, 1003.

Kalaritis, P. et al. J. Org. Chem. 1990, 55, 812.Kalaritis, P., Regenye, R. W. Org. Synth. 1990, 69, 10.

F

CO2EtLipase

(Pseudomonas)

pH 7.0 Buffer solution60 % conversion

F

CO2Et

F

CO2H+

> 99% ee > 69% ee

F

CO2EtLipase

(Pseudomonas)

pH 7.0 Buffer solution40 % conversion

F

CO2Et

F

CO2H+

90% ee

Page 13: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

13

Allylation of Fluorinated Silyl Enol Ethers

Paquin, J-F. et al. J. Am. Chem. Soc. 2007, 129, 1034.

OTMS

F

+ OCO2Et

[Pd(C3H5)Cl]2 (1.25 mol%)1 (3.1 mol%)

TBAT (35 mol%)toluene, 40oC

OF

85% yield92% ee

PPh2

O

N

1

TBAT = Ph3SiF2.NBu4

Page 14: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

14

Nucleophilic Fluorination

Hara, S. et al. Tetrahedron 1999, 55, 4947.

Hex OHO

(i-PrO)2TiF2, Et4NF-4HF

95 % ee

Hex OH 73% yield95% ee

OH

F

Wakselman, C. et al. J. Org. Chem. 1979, 44, 3406.

n-C6H13

OH

n-C6H13

FDAST 48% yield

98% ee

NSF

F

FDAST

Page 15: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

15

Attempt at Kinetic Resolution in Nucleophilic Fluorination

OTMS

O

EtO

N

OMe

SF30.5 equiv. OTMS

O

EtO

F

O

EtO+

50 % ee 16 % ee

R

OR

R'NSF

F

F

R

OR

R'

SF

FN

F

+R

F

R'

Sampson, P., Hann, G. L. J. Chem. Soc. Chem. Commun. 1989, 1650.

Yields and stereochemistry of products not reported!

Page 16: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

16

Enantioselective Electrophilic Fluorination: Two Strategies

Substrate-Controlled Agent-Controlled

RR''

OM

*

R'

"F "+ RR''

O

*R' F

RR''

OM*

R'

"F "+ RR''

O

R' F

Enantioselectivity induced by the stereochemistry of the substrate

Enantioselectivity induced by the stereochemistry of the fluorinating agent

Page 17: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

17

Substrate-Controlled Stereoselective Electrophilic Fluorination

NO

R1 R2

O O

R3 NO

R1 R2

OLi

O

R3Cl+

Stereoselectivity induced by the Evans oxazolidinone

RR''

OM

*

R'

"F "+ RR''

O

*R' F

NO

R1 R2

O

R''

OM

R'

"F "+ R''

O

R' FNO

R1 R2

O

Page 18: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

18

Substrate-Controlled Stereoselective Electrophilic Fluorination

Entry R1 R2

1 Absolute stereochemistry not determined

R3 Yield (%)

1

2

3

4

Ph Me 97 88

H

Ph

H

i-Pr

Me

i-Pr

n-C4H9

n-C4H9

t-Bu

t-Bu

de (%)

96 85

96 86

97 80

6 Ph Me Ph 86 86

5 Ph Me Bn 89 84

Davis, F. A., Han, W. Tetrahedron Lett. 1992, 33, 1153.

NO

R1 R2

O O

R3

NO

R1 R2

O O

R3

F

SO2

N

O2S

F

1)LDA, THF

2)

Page 19: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

19

NO

Ph Me

O O

F

NO

Ph Me

O O

Ph

F

97 % de

94 % de

hydrolysis

hydrolysis

O

F

HO

O

Ph

F

HO

LiOH LiOOH

87 % ee89 % Yield

90 % ee86 % Yield

69 % ee82 % Yield

78 % ee80 % Yield

NO

Ph Me

O O

R3

F

HOPh

F

No RacemizationLiBH4

Substrate-Controlled Stereoselective Electrophilic Fluorination: Removal of the Chiral

Auxiliary

Davis, F. A., Han, W. Tetrahedron Lett. 1992, 33, 1153.

Page 20: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

20

Derivatization to Chiral -Fluoro Carbonyl Compounds

NO

Ph Me

O O

R

F

R'

O

R

FMeN

O

R

F

MeONHMe.HClAlMe3

MeOR'MgBr

1 32

Entry R Yield (%) ee (%)

1

2

3

4

Ph 77 77 >97

Me

CH2=CH-

80

95

>97

>97

>97

Yield (%)

85 96

76 >97

80 >97

5 Complexe mixture

1 2 3

de (%)

>97

>97

>97

ee (%)

Me

R`

Ph

CH2=CH-

Ph

Ph

Davis, F. A., Kasu, P. V. N. Tetrahedron Lett. 1998, 39, 6135.

Ph 77 >97>97

Ph 77 >97>97

Page 21: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

21

Application of the Substrate-Controlled Asymmetric Fluorination for the Synthesis of a Fluoro-sugar

Davis, F. A. et al. J. Org. Chem. 1997, 62, 7546.

BnO OH BnO Cl

O1. Jones [O] 92%

2. SOCl21 2

HN O

Me Ph

O

BnO N

O

O

Me Ph

O

3

1. NaHMDS2. NFSI (inverse addition)

PhO2SN

PhO2SF = NFSI

BnO N

O

O

Me Ph

O

4 (97:3 dr)

F

LiBH4BnO OH

5 (>97% ee)

F

n-BuLi

74%

78% 93%

Page 22: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

22

Application of the Substrate-Controlled Asymmetric Fluorination for the Synthesis of a Fluoro-sugar

Davis, F. A. et al. J. Org. Chem. 1997, 62, 7546.

BnO O

6

F

Dess-Martin 95%

H

(EtO)2P CH2CO2Et

O

71%

BnO

F

CO2EtBnO OH

5 (>97% ee)

F

7

BnO

F

CO2Et

8

AD-mix-

85%

DMP, cat. PTSA

OH

OH

BnO

F

9

CO2Et

OO

HO

F

10

CO2Et

OO

H2/Pd/C

97%

1. DIBAL-H2. H3O+

3. Ac2O, Py 79% 3 steps

O OAc

OAc

OAc

F

11(1:1 mixture of anomers)

NaH

87%

Page 23: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

23

Substrate-Controlled Asymmetric Fluorination

•Reliable method with de’s up to 97%

•Two extra steps are necessary (installation and removal of the auxiliary)

•Ideally, the chiral carbon-fluorine bond would be formed enantioselectively in one step

Page 24: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

24

Agent-Controlled Enantioselective Electrophilic Fluorination

SO O

N FRR''

OM

R'

+ RR''

O

R' FR

R''

OM

*

R'

"F "+ RR''

O

R' F

Lang, R. W., Differding, E. Tetrahedron Lett. 1988, 29, 6087.

Page 25: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

25

Synthesis of the First Enantioselective Electrophilic Fluorination Reagent

Oppolzer, W. et al. Tetrahedron 1986, 42, 4035.Lang, R. W., Differding, E. Tetrahedron Lett. 1988, 29, 6087.

SOO

O OHS

OOO Cl

PCl5

SOO

O NH2

NH3

S NOO

NaOMe(cat.)

SO O

LiAlH4NH

10 % F2 in N2 NaF

SO O

NF76 % 75 %

94 % 74 % 99 %

Page 26: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

26

The First Enantioselective Electrophilic Fluorination

Lang, R. W., Differding, E. Tetrahedron Lett. 1988, 29, 6087.

Entry Substrate Product1

1 Absolute stereochemistry not determined

OFCO2Et

O

CO2Et

O

CO2Et

O

CO2EtF

FCO2Et

CO2Et

O O

F

Base Solvent Temp. (oC) Yield (%)

1

2

3

4

NaH Et2O 0 – r.t. 70 63

LiH

LDA

LDA

Et2O

THF

THF

0 – r.t.

r.t.

-78 – r.t.

-78 – r.t.

ee (%)

<10 31

35 27

35 <5

RR''

O

R'

+ R

O

SOO

N

1.0 equiv. 1.2 to 1.5 equiv.

Base, Solvent , Temp.

R'R''F

F

Page 27: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

27

Problematic Secondary Reaction

RR''

O

R'

+ R

O

S OO

NR'

F

H

M

R''+

SO O

N

+ MF

S OO

N

F

Me

Low yields (< 34 %)Low ee (< 10 %)

Lang, R. W., Differding, E. Tetrahedron Lett. 1988, 29, 6087.

Page 28: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

28

N-Fluoro-Camphorsultams

O

Me

O

MeF

S OO

NF

Cl

Cl

1. NaHMDS, -78oC, THF

2.

76% ee, 53% yield

•Further investigations by Davis and co-workers did not lead to significant advances with these sultams.

•Best Result:

•Poor yields and poor to mediocre selectivity

•Derivatization of the fluorinating reagent to increase selectivity is limited

•Synthesis of the fluorinating reagent is not practical and potentially dangerous (F2 gas)

Davis, F. A. et al. J. Org. Chem. 1998, 63, 2273

Page 29: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

29

Towards the Discovery of New Enantioselective Electrophilic Fluorination Reagents

Requirements:

•Abundant source of chirality

•Possess a site where an electrophilic fluorine can be appended such as nitrogen…

Amino Acid derivatives

Page 30: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

30

Amino Acid Inspired Electrophilic Fluorination Agents

Me

Ph

NHR

4 R = Ts5 R = Ms

NaH, FClO3Me

Ph

NR

6 R = Ts (52%)7 R = Ms (13%)

F

Takeuchi, Y. et al. Chem. Pharm Bull. 1997, 45, 1085.

CO2Et

Ph

NHNaH, FClO3 or F2/H2, KF

XCO2Et

Ph

NF

TsTs

1

1) LiAlH42)Ac2O, Py

Ph

NHOAc NaH, FClO3

Ts

Ph

NOAc

Ts

F

27%

2 3

Page 31: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

31

Amino Acid Inspired Electrophilic Fluorination Agents

Takeuchi, Y. et al. Chem. Pharm Bull. 1997, 45, 1085.

Entry Substrate Fluorinating agent Product1 Yield (%)

2

5

7

10

ee (%)

1

3

4

6

9

8

R1

O

R3

R2

H

1. Base, THF, -40 to 0oC, 30 min.

2. Fluorinating agent, -40 to 0oC, 3hR1

O

R3

R2

F*

O

Bn

O

CO2Et

Ph

O

Me

CO2Et

O

BnF

O

CO2EtF

Ph

O

Me

CO2EtF

Base

6

3

7

7

3

6

7

6

6

3

LDA

NaH

NaH

NaH

LDA

KHMDS

LDA

NaH

NaH

NaH

54

6

30

9

48

6

14

18

8

26

23

6

6

53

8

20

21

4

6 21

1 Absolute stereochemistry not determined

Page 32: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

32

Amino Acid Inspired Electrophilic Fluorination Agents

Me

Ph

NTs

F

O

Bn

O

BnFBase

54% ee, 26% yield (LDA)48% ee, 53% yield (KHMDS)

Takeuchi, Y. et al. Chem. Pharm Bull. 1997, 45, 1085.

•Low yields are probably due to the low reactivity of the fluorinating reagent or its instability to the reaction conditions.

•Low ee values indicate the asymmetric environment surrounding the fluorine atom is inadequate, cyclic N-fluoro-sulfonamides (sultams) would be more rigid and possibly better at inducing enantioselectivity.

•Best results:

SN

Me

OO

F

(R)-4

Page 33: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

33

Synthesis of a Chiral N-Fluoro-Sultam Fluorinating Reagent

SNH

O

OO

Saccharine

MeLiS

N

Me

OO MgBrS

NH

Me

OO

OCl

OS

N

Me

OOO O

Resolution (73% combined)

+

73% 70%

SN

Me

OOO O

SN

Me

OO

FS

N

Me

OO

F

1. LiOH/H2O2. 15% F2/He, KF

1. LiOH/H2O2. 15% F2/He, KF

(R)-4

1 2

(3R)-3 (3S)-3

(S)-4

47% 2 steps 62% 2 steps

Takeuchi, Y. et al. J. Org. Chem. 1999, 64, 5708.

Page 34: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

34

Cyclic N-Fluoro-Sulfonamide Fluorinating Reagent: Results

Entry Substrate Fluorinating agent

Product IsolatedYield (%)

21

5

7

10

ee (%)

1

3

4

6

9

8

(R)-4

(R)-4

(R)-4

(R)-4

(R)-4

(R)-4

(R)-4

(S)-4

(R)-4

(R)-4

14

54

20

74

72

88

48

43

54

65

54

73

67

70

79

62

48

63

18 39

Takeuchi, Y. et al. J. Org. Chem. 1999, 64, 5708.

O

R

R

O

OR

O

R

R

O

OR

F

F

F

R

Me

Me

Et

Bn

Me

Et

Bn

Me

Et

Bn

Configuration

S

S

S

ND

S

S

S

R

ND

S

1 Reaction carried out in presence of HMPA

O

R

( )n

1. LDA, THF, -78 to 0oC, 1h

2. (R or S)-4, -40oC overnight

O

R

( )n

F

Page 35: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

35

Proposed Transition State

NS

F

O

MeMe

O

O

Li

O

Me 1. LDA

2. (R)-4

OMe

F

Takeuchi, Y. et al. J. Org. Chem. 1999, 64, 5708.

Page 36: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

36

Chiral N-Fluoro-Sultam Fluorinating Reagents

O

Bn

O

Bn

F

SN

Me

OO

F

(R)-4

2.

1. LDA, THF, -78oC then -40oC

88% ee, 79% yield

•Best result:

•Yields and selectivity are better but there is still room for improvement.

•Possibility of generating both enantiomers of the N-Fluoro-Sultam which lead to different enantiomers of the product.

•N-Fluoro-Sultam is not commercially available and must be prepared using F2 gas which is not ideal.

Takeuchi, Y. et al. J. Org. Chem. 1999, 64, 5708.

Page 37: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

37

Using Transfer Fluorination to Obtain Asymmetric Electrophilic Fluorine Sources

NN

F

Cl

2BF4N + N

N Cl

BF4N +

quinuclidine SelectfluorTM

MeCN, r.t., 10 min, quant.

FBF4

Transfer Fluorination:

1. Banks, R. E. et al. J. Fluorine chem. 1995, 73, 255.2. a) Shibata, N. et al. J. Am. Chem. Soc. 2000, 122, 10728, b) Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

N

N

OMe

OHH

NN

F

Cl

2BF4

SelectfluorTM

+ NN Cl

BF4+

N

N

OMe

OHH

F

BF4

quinine (Q) NF-Q.BF4

Page 38: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

38

19F NMR of Transfer Fluorination

Selectfluor

Selectfluor/DHQB (1:0.5)

Selectfluor/DHQB (1:1)

Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

Page 39: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

39

X-Ray Crystallographic Structure of NF-Q.BF4

N

H

H

HOH

N

MeO

F

BF4

Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

Page 40: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

40

First Hit Using Transfer Fluorination to Fluorinate a Cyclic Silyl Enol Ether

QuinineSelectfluor

MeCN, 3Å M.S. r.t. 1h

Quinine /SelectfluorCombination

OSiMe3

Bn

MeCN, r.t. 2h

O

Bn

F

(R)-40% ee, 80% yield

Entry Solvent Yield (%)

1

2

4

6

MeCN 40 80

MeCN/THF (1:1)

MeCN/H2O (4:1)

DMF/THF (1:1)

ee (%)

35 76

29 49

32 61

5 DMF 30 53

3 MeCN/toluene (1:1) 37 65

Solvent scan:

Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

Page 41: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

41

Cinchona Alkaloid Optimization

Alkaloid/Selectfluor Combination

MeCN, 0oC, 3Å M.S., 3 - 6h

OSiMe3

Bn

O

Bn

F*

Entry Alkaloid Yield (%)

2

4

6

9

35 84

ee (%)

81 83

70 100

82 100

S

Configuration

R

R

R

1 44 63R

3 54 67R

5 72 61R

7 23 94S

8 42 88R

10 70 100R

11 70 98R

quinidine

DHQB

DHQ-4-methyl-2-quinolyl ether

(DHQ)2PHAL

quinine

DHQ

DHQ-9-phenantryl ether

cinchonine

cinchonidine

(DHQ)2PYR

(DHQ)2AQN

Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

94.22 $ / mmol (Aldrich)

32.70 $ / mmol (Aldrich)

Page 42: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

42

Modification of the Cinchona Alkaloid Hydroxyl Substituent

Entry Alkaloid -R Yield (%)

2

4

6

91 61

ee (%)

86 67

86 100

1 90 82

3 87 80

5 87 61

DHQ-4-nitrobenzoate

DHQ-acetate

DHQ-anthraquinone-2-carboxylate

DHQ-benzoate

DHQ-4-methoxybenzoate

DHQ-1-naphthalenecarboxylate

7 31 43DHQ-trifluoroacetate

Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

N

NEt

OMe

ORH

OSiMe3

Bn

O

Bn

FAlkaloid/Selectfluor Combination

MeCN, -20oC, 3Å M.S., 18h

DHQ-R

1a (R)-2a

Page 43: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

43

Substrates : Indanones and Tetralones

DHQB/Selectfluor Combination

MeCN, -20oC, 3Å M.S., 18h

OSiMe3

R

O

R

F

( )n

N

NEt

OMe

OH

DHQB

O

Cl

( )n

1 2

Entry 1 Yield (%)

2

41

6

53 93

ee (%)

91 86

67 71

R

Configuration

R

R

1 89 99R

3 73 100R

5 40 94R

1b

1a

1e

1a

1c

1d

7 71 95S1f

n

1

1

2

1

1

2

2

R

Me

Bn

Et

Bn

Et

Me

Bn

2

2b

2a

2e

2a

2c

2d

2f

Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

1 Reaction was carried out at -40oC for 2 days

Page 44: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

44

Application of Transfer Fluorination to the Fluorination of Esters and -Keto Esters

O

O

CO2Et *

DHQDA/Selectfluor Combination (2.0 :1.5)

MeCN/CH2Cl2 (3:4) -80oC, 3Å M.S., 6h

80% ee, 92% yield

O

O

CO2EtF

TolCO2Et

CNPh

CO2Et

CNF

87% ee, 80% yield

DHQDA/Selectfluor Combination (2.0 :1.5)

MeCN/CH2Cl2 (3:4) -80oC, 3Å M.S., 6h

N

MeO

N

HHAcO

Et

DHQDA

Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

Page 45: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

45

NH

O

(DHQ)2PYR/Selectfluor Combination (1.5 : 1.5)

MeCN, 0oC, 3Å M.S. 2 days

82% ee, 79% yield

MeO

NH

O

MeO

F*

N N

Ph

Ph

OO

NN

MeO OMe

N

H

N

H

Et Et

HH

(DHQ)2PYR

Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001.

Application of Transfer Fluorination to the Fluorination of Oxindoles

Page 46: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

46

Application of Cinchona Alkaloid N-Fluoroammonium Salts Towards the Synthesis

of MaxiPost

OO

OO

N N

MeO OMe

N

H

N

H

Et

NHF3C

O

Cl

MeO

NHF3C

O

Cl

MeO

(DHQ)2AQN/Selectfluor (1.2 : 1)MeCN/CH2Cl2 (3:4), -80oC, 18h

NN

F

Cl

2BF4

(DHQ)2AQN

SelectfluorTM

F

BMS-204352(MaxiPost)

94% yield, 84% ee

Et

MaxiPost is a maxi-K channel opener in phase III clinical trials for the treatment of acute ischemic stroke

Hewawasam, P. et al. Bioorg. Med. Chem. Lett. 2002, 12, 1023.Shibata, N. et al. J. Org. Chem. 2003, 68, 2494.

Page 47: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

47

Cinchona Alkaloid Directed Electrophilic Fluorination

•Best Result:

DHQB/Selectfluor Combination

MeCN, -20oC, 3Å MS, 18h

OSiMe3

Bn

O

R

F

N

NEt

OMe

OH

DHQB

O

Cl

1a 2a

91% ee, 86% yield

•Good yields and enantioselectivities with a broader substrate scope.

•Chiral fluorinating reagent easily prepared in situ.

•Different substrate types require different alkaloids

•Stoichiometric amount of chiral fluorinating reagent necessary. A catalytic amount would be ideal…

Page 48: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

48

The First Catalytic Enantioselective Electrophilic Fluorination

NN

F

Cl

2BF4+

SelectfluorTM

TiCl4 (5 mol %) MeCN, r.t., 1h, quant.

Ph O

O O

Et

Me

Ph O

O O

Et

Me F

NN

F

Cl

2BF4+

SelectfluorTM

(1.2 equiv.)

cat. (5 mol %) MeCN, r.t., 15 min.

Ph O

O O

Me

Cl

Ti

ClMeCN NCMe

O O

OO

R

R

R

R

R = 1-Naphthyl

cat =

Ph O

O O

Me F*

90% ee, 80%-95% yield

Togni, A., Hintermann, L. Angew. Chem. Int. Ed. 2000, 39, 4359.

Page 49: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

49

Lewis Acid Catalyzed Enantioselective Electrophilic Fluorination of -Keto Esters

Entry Substrate n Product Yield (%)

2

5

ee (%)

1

3

4

6

7

1

1

1

1

2

2

99

93

99

99

95

99

83

71

84

76

66

88

86

75

R

Ad

t-Bu

t-Bu

L-Men

Ad

t-Bu

t (h)

2

2

3

2

3

2

18

Shibata, N., Toru, T. et al. Angew. Chem. Int. Ed. 2005, 44, 4204.

O

CO2R( )n

O

( )n

CO2R

Et

O

Me

CO2CHPh2

O

OR

O

OO

N NO

PhPh

dbfox-Ph

PhO2SN

F

SO2Ph

NFSI

NFSI (1.2 equiv.), dbfox-Ph (0.11 equiv.)Ni(ClO4)2.6H2O (0.1 equiv.), 4 Å M.S, CH2Cl2, R.T.

O

OR

O

F*

O

CO2R( )n

F

O

( )n

CO2RF

Et

O

Me

CO2CHPh2

F

Page 50: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

50

Lewis Acid Catalyzed Enantioselective Electrophilic Fluorination of Oxindoles

Entry Substrate Product Yield (%)

2

ee (%)

1

3

96

93

83

72

73

75

R

Ph

Me

t (h)

5

35

18

Shibata, N., Toru, T. et al. Angew. Chem. Int. Ed. 2005, 44, 4204.

NO

Boc

R

NO

Boc

RF

F3C NO

Cl

MeO

BocF3C N

O

Cl

MeO

F

Boc

OO

N NO

PhPh

dbfox-Ph

PhO2SN

F

SO2Ph

NFSI

NFSI (1.2 equiv.), dbfox-Ph (0.11 equiv.)Ni(ClO4)2.6H2O (0.1 equiv.), 4 Å M.S, CH2Cl2, R.T.

NO

R'

R

NO

R'

R

Boc Boc

F*

Page 51: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

51

Optimized Subtrate-Catalyst Complex

O

O

N

N

O

Ni

O

O

O

HO H

Shibata, N., Toru, T. et al. Angew. Chem. Int. Ed. 2005, 44, 4204.

Page 52: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

52

Positive Nonlinear Effect

OO

Ot-Bu

OO

Ot-Bu

XNFSI (1.2 equiv.) or CF3SO2Cl (1.2 equiv.)

dbfox-Ph (0.11 equiv.) Ni(ClO4)2.6H2O

4Å M.S., CH2Cl2

X = F or Cl

Shibata, N., Toru, T. et al. Angew. Chem. Int. Ed. 2005, 44, 4204.

Product ee %

Page 53: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

53

Enantioselective Fluorination of Malonates

Entry Lewis acid Yield (%)ee (%)t (h)

1 89 9748

2 7 6248

Ni(ClO4)2.6H2O

Mg(ClO)2

3 98 9015Zn(OAc)2

Solvent

CH2Cl2

CH2Cl2

CH2Cl2

4 96 7124Zn(OAc)2 toluene

5 68 5262Zn(OAc)2 Et2O

6 86 4962Zn(OAc)2 EtOH

Shibata, N., Toru, T. Angew. Chem. Int. Ed. 2008, 47, 164.

NFSI (1.2 equiv.), dbfox-Ph (0.11 equiv.)Lewis acid (0.1 equiv.), 4 Å M.S, solvent, reflux

MeO2C CO2t-Bu

H CH2Ph

MeO2C CO2t-Bu

F CH2Ph

racemic

OO

N NO

PhPh

dbfox-Ph

PhO2SN

F

SO2Ph

NFSI

Page 54: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

54

Substrate Scope and Functional Group Compatibility

Entry 1 Yield (%)

2

4

6

96 94

ee (%)

99 93

98 85

24

t (h)

36

15

1 98 9015

3 99 9024

5 99 9524

1b

1d

1f

1a

1c

1e

7 90 81241g

R

Et

Bu

OPh

CH2Ph

Me

Ph

SPh

8 93 91181h NPht

9 97 93241i NPht(4-Br)

Shibata, N., Toru, T. Angew. Chem. Int. Ed. 2008, 47, 164.

NFSI (1.2 equiv.), dbfox-Ph (0.11 equiv.)Zn(OAc)2 (0.1 equiv.), 4 Å M.S, CH2Cl2, reflux

MeO2C CO2t-Bu

H R

MeO2C CO2t-Bu

F R

1a-iracemic

2a-i

Page 55: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

55

Synthesis of Fluoro-Alacepril

Shibata, N., Toru, T. Angew. Chem. Int. Ed. 2008, 47, 164.

MeO2C CO2t-Bu

MeFLiAl(Ot-Bu)3H (5.0 equiv.)

THF, -78oC to R.T.

85%CO2t-Bu

MeFHO

1. TsCl (1.2 equiv.), pyridine CHCl3, 0oC to R.T.2. TFA(5.0 equiv.), CH2Cl2 0oC to R.T.

73% (2 steps)

CO2H

MeFTsO

EDCl (1.2 equiv.), HOBt (1.2 equiv.)DIPEA (2.0 equiv.), CH2Cl2, 0oC to R.T.

67%

HN

t-BuO2C

(1.05 equiv.)

MeFTsO

O

N

t-BuO2C

2c 3

4 5

MeFAcS

O

N

O NH

HO2C

Me

AcS

O

N

O NH

HO2C

Alacepril Fluoro-Alacepril

Angiotensin-converting enzyme (ACE) inhibitor

used as an antihypertensivedrug

Page 56: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

56

Synthesis of Fluoro-Alacepril

MeFTsO

O

N

t-BuO2C

1. NaH (3.0 equiv.) CH3COSH (3.0 equiv.) DMF, 0oC to 80oC2. TFA (5.0 equiv.), CH2Cl2 0oC to R.T.

73% (2 steps)

MeFAcS

O

N

CO2H

EDCl (1.3 equiv.), HOBt (1.3 equiv.) Et3N (2.5 equiv.), CH2Cl2, 0oC to R.T.2. TFA (5.0 equiv.), CH2Cl2, R.T.

60% (2 steps)

(1.0 equiv.)t-BuO2C

NH2

1.

MeFAcS

O

N

O NH

HO2C

5 6

Fluoro-Alacepril

Shibata, N., Toru, T. Angew. Chem. Int. Ed. 2008, 47, 164.

Page 57: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

57

Conclusion

•Organofluorine compounds are important for a variety of reasons

•Fluorine bearing chiral centers are accessible using four different methods

•The substrate-controlled electrophilic fluorination method is reliable however it requires additional steps

•The agent-controlled electrophilic fluorination method allows us to install the fluorine atom and the chirality in one step

•Excellent enantiomeric excesses and high yields can be obtained with -keto esters and malonates using a catalytic amount of an asymmetric catalyst

Page 58: Eric Beaulieu Thursday April 10 th, 2008 Asymmetric Fluorination.

58

Acknowledgements

• Professor Louis Barriault• Current Research Group:

• Patrick Ang• Steve Arns• Francis Barabé• Geneviève Bétournay• Marie-Christine Brochu• Anik Chartrand• Anna Chkrebtii• Christiane Grisé• Patrick Lévesque• Daniel Newbury• Jason Poulin• Maxime Riou• Catherine Séguin

• Past Group Members

ONTARIO GRADUATE SCHOLARSHIP PROGRAM (OGS)