Equations - University of GalațiP10-078 Equations Thermodynamics - An Engineering Approach (5th Ed)...

8
P10-078 Equations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 598 Centrala cu cicluri combinate Se considera o centrala electrica cu ciclu combinat gaze-abur care are o putere neta de 450 MW. Raportul de comprimare al ciclului turbinei cu gaze este 14. Aerul intra ˆ ın compresor la 300 K si ˆ ın turbina la 1400 K. Gazele de ardere care ies din turbina cu gaze sunt folosite pentru a ˆ ıncalzi aburul la 8 MPa pˆ ana la 400 ıntr- un schimbator de caldura. Gazele de ardere ies din schimbatorul de caldura la 460 K. Un preˆ ıncalzitor de apa de alimentare prin amestec (deschis) ˆ ıncorporat ˆ ın ciclul cu abur functioneaza la o presiune de 0.6 MPa. Presiunea de condensare este de 20 kPa. Considerˆ and toate procesele de comprimare si destindere ca fiind izoentropice, sa se determine (a) raportul dintre debitele masice de aer si abur, (b) fluxul necesar de caldura introdusa ˆ ın camera de ardere, si (c) randamentul termic al ciclului combinat. Sa se studieze efectul raportului de comprimare al ciclului cu gaze daca acesta variaza de la 10 la 20 asupra raportului dintre debitele de gaze si abur si asupra randamentului termic al ciclului. Sa se reprezinte rezultatele ˆ ın functie de raportul de comprimare al ciclului cu gaze, si sa se discute rezultatele. $UnitSystem K kPa Marimi de intrare: T 8 = 300 [K] ; P 8 = 14.7 [kPa] ; Gaze (aer la intrarea in compresor) - Gas compressor inlet (1) 1

Transcript of Equations - University of GalațiP10-078 Equations Thermodynamics - An Engineering Approach (5th Ed)...

  • P10-078

    Equations

    Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 598

    Centrala cu cicluri combinate

    Se considera o centrala electrica cu ciclu combinat gaze-abur care are o putere neta de 450 MW. Raportul decomprimare al ciclului turbinei cu gaze este 14. Aerul intra ı̂n compresor la 300 K si ı̂n turbina la 1400 K.Gazele de ardere care ies din turbina cu gaze sunt folosite pentru a ı̂ncalzi aburul la 8 MPa pâna la 400 ◦C ı̂ntr-un schimbator de caldura. Gazele de ardere ies din schimbatorul de caldura la 460 K. Un preı̂ncalzitor de apa dealimentare prin amestec (deschis) ı̂ncorporat ı̂n ciclul cu abur functioneaza la o presiune de 0.6 MPa. Presiuneade condensare este de 20 kPa. Considerând toate procesele de comprimare si destindere ca fiind izoentropice,sa se determine(a) raportul dintre debitele masice de aer si abur,(b) fluxul necesar de caldura introdusa ı̂n camera de ardere, si(c) randamentul termic al ciclului combinat.

    Sa se studieze efectul raportului de comprimare al ciclului cu gaze daca acesta variaza de la 10 la 20 asupraraportului dintre debitele de gaze si abur si asupra randamentului termic al ciclului. Sa se reprezinte rezultateleı̂n functie de raportul de comprimare al ciclului cu gaze, si sa se discute rezultatele.

    $UnitSystem K kPa

    Marimi de intrare:T8 = 300 [K] ; P8 = 14.7 [kPa] ; Gaze (aer la intrarea in compresor) - Gas compressor inlet (1)

    1

  • $IfNot ParametricTable=’P_ratio_gas’

    Pratio,gas = 14; Raport comprimare compresor aer - Pressure ratio for gas compressor (2)

    $EndIf

    T10 = 1400 [K] ; Intrare turbina cu gaze - Gas turbine inlet (3)

    T12 = 460 [K] ; Gas exit temperature from Gas-to-steam heat exchanger (4)

    P12 = P8; Presiune iesire aer - Assumed air exit pressure (5)

    Ẇnet = 450 [MW] ·∣∣∣∣∣1000 kWMW

    ∣∣∣∣∣; (6)$IfNot ParametricTable=’eta’

    ηcomp = 1.0; Etagas,turb = 1.0; (7)

    ηpump = 1.0; Etasteam,turb = 1.0; (8)

    $EndIf

    P5 = 8000 [kPa] ; DELTAT 5,11 = 40 [K] Diferenta de temperatura la capatul cald al HEx (9)

    ; Abur la intrare in turbina - Steam turbine inlet (10)

    $IfNot ParametricTable=’P[6]’

    P6 = 600 [kPa] ; Extraction pressure for steam open feedwater heater (11)

    $EndIf

    P7 = 20 [kPa] ; Presiunea de condensare a aburului - Steam condenser pressure (12)

    Ciclul de forta cu gaze (aer) - GAS POWER CYCLE ANALYSIS

    Gas Compressor anaysis

    Starea [8]:

    h8 = h (Air, T = T8) ; s8 = s (Air, T = T8, P = P8) ; (13)

    Starea [9s]:

    ss,9 = s8; For the ideal case the entropies are constant across the compressor (14)

    P9 = Pratio,gas · P8; (15)

    Ts,9 = T (Air, s = ss,9, P = P9) ; Ts9 is the isentropic value of T[9] at compressor exit (16)

    2

  • ηcomp = wgas,comp,isen/wgas,comp compressor adiabatic efficiency, wcomp > wcomp,isen (17)

    h8+wgas,comp,isen = hs,9 SSSF conservation of energy for the isentropic compressor, assuming: adiabatic, ke=pe=0 per unit gas mass flow rate in kg/s(18)

    hs,9 = h (Air, T = Ts,9) ; (19)

    Starea [9]:

    h8+wgas,comp = h9; SSSF conservation of energy for the actual compressor, assuming: adiabatic, ke=pe=0(20)

    T9 = T (Air, h = h9) ; s9 = s (Air, T = T9, P = P9) ; (21)

    Gas Cycle External heat exchanger analysis

    Starea [10]:

    P10 = P9; Assume process 9-10 is SSSF constant pressure (22)

    h10 = h (Air, T = T10) ; s10 = s (Air, T = T10, P = P10) ; (23)

    h9+qin = h10; SSSF conservation of energy for the external heat exchanger, assuming W=0, ke=pe=0(24)

    Q̇in = ṁgas · qin; (25)

    Gas Turbine analysis

    Starea [11s]:

    P11 =P10

    Pratio,gas; ss,11 = s10; For the ideal case the entropies are constant across the turbine (26)

    hs,11 = h (Air, T = Ts,11) ; Ts,11 = T (Air, s = ss,11, P = P11) ; Ts11 is the isentropic value of T[11] at gas turbine exit(27)

    Starea [11]:

    h10 = wgas,turb,isen+hs,11; SSSF conservation of energy for the isentropic gas turbine, assuming: adiabatic, ke=pe=0(28)

    ηgas,turb = wgas,turb/wgas,turb,isen; gas turbine adiabatic efficiency, wgas,turb,isen > wgas,turb (29)

    h10 = wgas,turb+h11; SSSF conservation of energy for the actual gas turbine, assuming: adiabatic, ke=pe=0(30)

    T11 = T (Air, h = h11) ; s11 = s (Air, T = T11, P = P11) ; (31)

    Gas-to-Steam Heat Exchanger

    Starea [12]:

    h12 = h (Air, T = T12) ; s12 = s (Air, T = T12, P = P12) ; (32)

    3

  • SSSF conservation of energy for the gas-to-steam heat exchanger, assuming: adiabatic,W=0, ke=pe=0

    ṁgas · h11 + ṁsteam · h4 = ṁgas · h12 + ṁsteam · h5; ec 1/2 ec -> debitele (33)

    Ciclul de forta cu abur - STEAM CYCLE ANALYSIS

    Starea [1]:

    Steam Condenser exit pump or Pump 1 analysis

    P1 = P7; (34)

    h1 = h (STEAM, P = P1, x = 0) ; v1 = v (STEAM, P = P1, x = 0) ; (35)

    s1 = s (STEAM, P = P1, x = 0) ; T1 = T (STEAM, P = P1, x = 0) ; (36)

    Starea [2]:

    P2 = P6; (37)

    wpump1,s = v1 · (P2 − P1) ; SSSF isentropic pump work assuming constant specific volume (38)

    wpump1 = wpump1,s/ηpump; Definition of pump efficiency (39)

    h1 + wpump1 = h2; Steady-flow conservation of energy (40)

    s2 = s (STEAM, P = P2, h = h2) ; T2 = T (STEAM, P = P2, h = h2) ; (41)

    Starea [3]:

    P3 = P6; Condensate leaves heater as sat. liquid at P[3] (42)

    h3 = h (steam, P = P3, x = 0) ; T3 = T (steam, P = P3, x = 0) ; (43)

    s3 = s (STEAM, P = P3, x = 0) ; v3 = v (STEAM, P = P3, x = 0) ; (44)

    Boiler condensate pump or Pump 2 analysis

    P4 = P5; (45)

    wpump2,s = v3 · (P4 − P3) ; SSSF isentropic pump work assuming constant specific volume (46)

    wpump2 = wpump2,s/ηpump; Definition of pump efficiency (47)

    h3 + wpump2 = h4; Steady-flow conservation of energy (48)

    s4 = s (STEAM, P = P4, h = h4) ; T4 = T (STEAM, P = P4, h = h4) ; (49)

    4

  • Steam Turbine analysis

    T5 = T11 − ∆T 5,11; (50)h5 = h (steam, T = T5, P = P5) ; s5 = s (STEAM, P = P5, T = T5) ; (51)

    Starea [6s]:

    ss,6 = s5; (52)

    hs,6 = h (STEAM, s = ss,6, P = P6) ; Ts,6 = T (STEAM, s = ss,6, P = P6) ; (53)

    Starea [6]:

    h6 = h5 − ηsteam,turb · (h5 − hs,6) Definition of steam turbine efficiency (54)T6 = T (STEAM, P = P6, h = h6) ; s6 = s (STEAM, P = P6, h = h6) ; (55)

    y · h6 + (1 − y) · h2 = 1 · h3; Steady-flow conservation of energy (56)wsteam,pumps = (1 − y) · wpump1 + wpump2; Total steam pump work input/ mass steam (57)

    Starea [7s]:

    ss,7 = s5; (58)

    hs,7 = h (STEAM, s = ss,7, P = P7) ; Ts,7 = T (STEAM, s = ss,7, P = P7) ; (59)

    Starea [7]:

    h7 = h5 − ηsteam,turb · (h5 − hs,7) ; Randamentul turbinei - Definition of steam turbine efficiency (60)T7 = T (STEAM, P = P7, h = h7) ; s7 = s (STEAM, P = P7, h = h7) ; (61)

    SSSF conservation of energy for the steam turbine: adiabatic, neglect ke and pe

    h5 = wsteam,turb + y · h6 + (1 − y) · h7; (62)

    Steam Condenser analysis

    (1 − y) · h7 = qout + (1 − y) · h1; SSSF conservation of energy for the Condenser per unit mass (63)Q̇out = ṁsteam · qout; (64)

    Cycle Statistics

    MassRatiogastosteam = ṁgas/ṁsteam; (65)

    Ẇnet = ṁgas·(wgas,turb − wgas,comp)+ṁsteam·(wsteam,turb − wsteam,pumps) ; definitia puterii nete a ciclului - net cycle work(66)ηth = Ẇnet/Q̇in · 100 [%] ; Cycle thermal efficiency, in percent (67)

    Bwr =ṁgas · wgas,comp + ṁsteam · wsteam,pumpsṁgas · wgas,turb + ṁsteam · wsteam,turb

    ; Back work ratio (68)

    Ẇnet,steam = ṁsteam · (wsteam,turb − wsteam,pumps) ; (69)Ẇnet,gas = ṁgas · (wgas,turb − wgas,comp) ; (70)NetWorkRatiogastosteam = Ẇnet,gas/Ẇnet,steam; (71)

    Data$ = Date$; (72)

    5

  • Solution

    Bwr = 0.3825 Data$ = ‘2015-03-09’ ∆T5,11 = 40 [K]ηcomp = 1 ηgas,turb = 1 ηpump = 1

    ηsteam,turb = 1 ηth = 62.4 [%] MassRatiogastosteam = 9.069

    ṁgas = 822.3 [kggas/s] ṁsteam = 90.67 [kgsteam/s] NetWorkRatiogastosteam = 4.183

    Pratio,gas = 14 Q̇in = 721164 [kW] Q̇out = 138049 [kW]qin = 877 [kJ/kggas] qout = 1523 [kJ/kgsteam] v1 = 0.001017 [m

    3/kg]

    v3 = 0.001101 [m3/kg] Ẇnet = 450000 [kW] Ẇnet,gas = 363182 [kW]

    Ẇnet,steam = 86818 [kW] wgas,comp = 338.1 [kJ/kggas] wgas,comp,isen = 338.1 [kJ/kggas]wgas,turb = 779.8 [kJ/kggas] wgas,turb,isen = 779.8 [kJ/kggas] wpump1 = 0.5899 [kJ/kgsteam]wpump1,s = 0.5899 [kJ/kgsteam] wpump2 = 8.144 [kJ/kgsteam] wpump2,s = 8.144 [kJ/kgsteam]wsteam,pumps = 8.629 [kJ/kgsteam] wsteam,turb = 966.1 [kJ/kgsteam] y = 0.1784

    Arrays

    Row Pi Ts,i Ti hs,i hi ss,i si[kPa] [K] [K] [kJ/kg] [kJ/kg] [kJ/kg-K] [kJ/kg-K]

    1 20 333.2 251.3 0.83182 600 333.2 251.9 0.83183 600 432 670.6 1.9314 8000 432.9 678.8 1.9315 8000 680.6 3159 6.3946 600 432 432 2598 2598 6.394 6.3947 20 333.2 333.2 2105 2105 6.394 6.3948 14.7 300 300.4 6.2569 205.8 629.6 629.6 638.5 638.5 6.256 6.256

    10 205.8 1400 1516 7.15711 14.7 720.6 720.6 735.8 735.8 7.157 7.15712 14.7 460 462.3 6.688

    6

  • T-s Plot

    all(pratiogas)

    7

  • etath(P [6])

    etath vs eta

    8