Equations From Elasticity Theory

download Equations From Elasticity Theory

of 12

Transcript of Equations From Elasticity Theory

  • 7/31/2019 Equations From Elasticity Theory

    1/12

    Pusan National University Department of Naval

    Architecture and Ocean Engineering

    Assignment No 1Appendix C: Equations from Elasticity Theory

    Altan AK

    201183201

  • 7/31/2019 Equations From Elasticity Theory

    2/12

    C.1 Differential Equations of Equilibrium

    x; Normal stress y; Normal stress z; Normal stress

    xy; Plane shear stress xz; Plane shear stress yz; Plane shear stress (unit of force per unit area)

    Xb; Body force Yb; Body force Zb; Body force (unit of force per unit volume)

    Figure C-1 Plane differential element Figure C-2 Three dimensional stress element

    subjected to stresses

    Two dimensional

    Summing forces in the x direction is:

    Fx = 0 Fx = 0

    dxdyXdxdxdy

    ydydydx

    xbyx

    yx

    yxxx

    x

    0

    dxdydx

    ydxdxdyXdydxdy

    xdyF yx

    yx

    yxbx

    x

    xx

    Summing forces in the y direction is:

    Fy = 0 Fy = 0

    dxdyYdydydx

    xdxdxdy

    ybxy

    xy

    xyy

    y

    y

    0

    dydydx

    xdYdxdyYdxdxdy

    ydxF xy

    xy

    xYby

    y

    yy

    After cancelling terms and dividing all equations into dxdy it will be:

    dx

    xy

    xy

    dy

    dy

    yx

    yx

    yx

    x

    y

    dyy

    y

    y

    dxx

    y

    dxx

    xx

    xy

    Xb

    Yb

    CZb

    x

    Xb

    y

    Yb

    z

    xz

    yx

    yz

    xy

    zy

    zx

    z

    y

    x

    C

  • 7/31/2019 Equations From Elasticity Theory

    3/12

    0

    b

    yxxx X

    yxF

    and 0

    b

    xyy

    y Yxy

    F

    If we take moment from point of C

    Mz = 0 Mz = 02222

    dydxdy

    y

    dydx

    dxdydx

    x

    dxdy

    yx

    yxyx

    xy

    xyxy

    0222222

    dydydx

    y

    dydx

    dydx

    dxdxdy

    x

    dxdy

    dxdyM

    yx

    yxyx

    xy

    xyxyz

    After summing and dividing all equations into dxdy it will be:

    022

    dy

    ydx

    xM yxyx

    xyxyz

    if we neglect these two terms it will be

    yxxyyxxyzM 0

    Three dimensional

    Summing forces in the x direction is: Fx = 0

    dxdydzXdxdydxdydzz

    dxdzdxdzdyy

    dydzdydzdxx

    Fbzx

    zx

    zxyx

    yx

    yxx

    x

    xx

    dxdydzXdxdydzdxdyz

    dxdydxdzdydxdzy

    dxdzdydzdxdydzx

    dydzF bzxzx

    zxyx

    yx

    yxx

    x

    xx

    Summing forces in the y direction is: Fy = 0

    dxdydzYdxdydxdydzz

    dydzdydzdxx

    dxdzdxdzdyy

    F bzyzy

    zyxy

    xy

    xyy

    y

    yy

    dxdydzYdxdydzdxdy

    z

    dxdydydzdxdydz

    x

    dydzdxdzdydxdz

    y

    dxdzF bzyzy

    zyxy

    xy

    xyy

    y

    yy

    Summing forces in the y direction is: Fy = 0

    dxdydzZdxdzdxdzdyy

    dydzdydzdxx

    dxdydxdydzz

    F byzyz

    yzxzxz

    xzzz

    zy

    dxdydzZdxdzdydxdzy

    dxdzdydzdxdydzx

    dydzdxdydzdxdyz

    dxdyF byzyz

    yzxzxz

    xzzz

    zy

    After cancelling terms and dividing all equations into dxdydz it will be:

  • 7/31/2019 Equations From Elasticity Theory

    4/12

    0

    b

    zyyxx

    x Xzyx

    F

    , 0

    b

    zyxyy

    y Yzxy

    F

    , 0

    b

    yzxzzz Z

    yxzF

    If we take moment from point of C

    Mz = 0

    222222

    dxdydz

    dydxdzdy

    y

    dydxdz

    dydxdz

    dxdydzdx

    x

    dxdydzM xz

    yx

    yxyxyx

    xy

    xyxyz

    22222

    dzdxdydz

    z

    dzdxdy

    dzdxdydz

    z

    dzdxdy

    dxdydzdx

    x

    zy

    zyzyzx

    zxzxxz

    xz

    022

    dydxdzdy

    y

    dydxdz

    yz

    yzyz

    2222222

    dxdydz

    dydydxdz

    y

    dydxdz

    dydxdz

    dxdxdydz

    x

    dxdydz

    dxdydzM xz

    yx

    yxyx

    xy

    xyxyz

    2222222

    dzdxdy

    dzdxdy

    dzdzdxdy

    z

    dzdydz

    dzdydz

    dxdxdydz

    x

    dxdydz zyzy

    zxzxzx

    xzxz

    02222

    dydydxdz

    y

    dydxdz

    dydxdz

    dzdzdxdy

    z

    yz

    yzyz

    zy

    After summing dividing all equations into dxdydz it will be:

    0222222

    dy

    y

    dz

    z

    dz

    z

    dx

    x

    dy

    y

    dx

    xM

    yz

    yz

    zy

    zyzx

    zxxz

    xz

    yx

    yx

    xy

    xyz

    if we neglect these six terms it will be;

    0 yzzyzxxzyxxyzM

    If we think about two dimensional we can say yxxy , zxxz , yzzy

  • 7/31/2019 Equations From Elasticity Theory

    5/12

    C.2 Strain/Displacement and Compatibility Equations

    u; displacement (x) v; displacement (y) w; displacement (z direction)

    x; strain y; strain z; strain (Change in length difference/original length)

    xy; shear strain xz; shear strain yz; shear strain

    Figure C-3 Differential element before and

    after deformation (two dimensional) Figure C-4 Differential element before and after

    deformation (three dimensional)

    Two dimensional

    In the x direction line element AB

    AB

    ABBAx

    ``

    As we know AB = dx and A`B`; we can calculate A`B` from triangle (hipotenus)

    22

    A`B`= dxx

    vdx

    x

    udx 2

    2

    2

    2

    22`` dx

    x

    vdx

    x

    u

    x

    udxBA

    If we neglect the value of

    2

    x

    vdue to small strains A`B` is equal to dx

    x

    udxBA

    `

    AB

    ABBAx

    ``

    x

    u

    dx

    dxdxx

    udx

    xx

    In the y direction line element AD

    A`

    B

    D C

    A

    B`

    C`D`

    dx

    dy

    dxx

    udx

    d xx

    v

    dyu

    x,u

    y,v

    x,u

    y,v

    z,w

    A

    B

    E

    C

    D

    FG

    A`

    B`

    C`

    D`

    E`

    F`

    G`

    dx

    dy

    dz

    dyv

    dy

    H

    H`

    dyw

    dxx

    udx

    dxx

    v

    dyy

    vdy

    dyy

    u

    dzz

    v

    dxx

    w

    dzz

    wdz

    dzz

    u

  • 7/31/2019 Equations From Elasticity Theory

    6/12

    AD

    ADDAy

    ``

    As we know AD = dy and A`D`; we can calculate A`D` from triangle (hipotenus)

    22

    A`D`= dyy

    udy

    y

    ydy 2

    2

    2

    2

    22`` dy

    y

    udy

    y

    v

    y

    vdyDA

    If we neglect the value of

    2

    y

    udue to small strains A`D` is equal to dy

    y

    vdyDA

    `

    AD

    ADDAy

    ``

    y

    v

    dy

    dydyy

    vdy

    yy

    xy= yx is defined to be change in the angle between two lines, AB and AD.

    x

    v

    y

    uyxxy

    Condition of compatibility

    x

    v

    yxy

    u

    yxyx

    xy

    222,

    y

    v

    x

    uyx

    , yx

    xy

    xyyx

    2

    2

    2

    22

    x

    v

    yyy

    u

    xyxy

    yx

    222,

    y

    v

    x

    uyx

    , yx

    yx

    xyxy

    2

    2

    2

    22

    yxxy

    Three dimensional

    In the x direction line element AB

    AB

    ABBAx

    ``

    As we know AB = dx and A`B`; we can calculate A`B` from hipotenus

    222

    A`B`= dxx

    wdx

    x

    vdx

    x

    udx

    22

    2

    2

    2

    2

    22`` dx

    x

    wdx

    x

    vdx

    x

    u

    x

    udxBA

  • 7/31/2019 Equations From Elasticity Theory

    7/12

    If we neglect the values of

    2

    x

    vand

    2

    x

    wdue to small strains A`B` is equal to dx

    x

    udxBA

    `

    AB

    ABBAx

    ``

    x

    u

    dx

    dxdxx

    u

    dxxx

    In the y direction line element AD

    AD

    ADDAy

    ``

    As we know AD = dy and A`D`; we can calculate A`D` from triangle hipotenus

    222

    A`D`= dyy

    wdyy

    udyy

    ydy

    22

    2

    2

    2

    2

    22`` dy

    y

    wdy

    y

    udy

    y

    v

    y

    vdyDA

    If we neglect the value of

    2

    y

    uand

    2

    y

    wdue to small strains A`D` is equal to dy

    y

    vdyDA

    `

    AD

    ADDAy

    ``yv

    dy

    dydyy

    vdy

    yy

    In the z direction line element AH

    AH

    AHHAz

    ``

    As we know AH = dz and A`H`; we can calculate A`H` from hipotenus

    222

    A`H`= dzz

    udzz

    vdzz

    wdz

    22

    2

    2

    2

    2

    22`` dz

    z

    udz

    z

    vdz

    z

    v

    z

    wdzHA

    If we neglect the value of

    2

    z

    vand

    2

    z

    udue to small strains A`H` is equal to dz

    z

    wdzHA

    `

  • 7/31/2019 Equations From Elasticity Theory

    8/12

    AH

    AHHAz

    ``

    z

    w

    dz

    dzdzz

    wdz

    zz

    xy= yx is defined to be change in the angle between two lines, AB and AD.

    xz= zx is defined to be change in the angle between two lines, AB and AH.

    yz= zy is defined to be change in the angle between two lines, AD and AH.

    x

    v

    y

    uyxxy

    ,

    x

    w

    z

    uzxxz

    ,

    y

    w

    z

    vzyyz

    Condition of compatibility

    xv

    yxyu

    yxyx

    xy

    222

    ,yv

    xu

    yx

    , yx

    xy

    xyyx

    2

    2

    2

    22

    x

    v

    xyy

    u

    xyxy

    yx

    222,

    y

    v

    x

    uyx

    , yx

    yx

    xyxy

    2

    2

    2

    22

    yxxy

    x

    w

    zxz

    u

    zxzx

    xz

    222,

    z

    w

    x

    uzx

    , zx

    xz

    xzzx

    2

    2

    2

    22

    x

    w

    xzz

    u

    xzxz

    zx

    222,

    z

    w

    x

    u

    zx

    ,

    zx

    zx

    xzxz

    2

    2

    2

    22

    zxxz

    y

    w

    zyz

    v

    zyzy

    yz

    222,

    z

    w

    y

    vzy

    , zy

    yz

    yzzy

    2

    2

    2

    22

    y

    w

    yzz

    v

    yzyz

    zy

    222,

    z

    w

    y

    vzy

    , zy

    zy

    yzyz

    2

    2

    2

    22

    zyyz

  • 7/31/2019 Equations From Elasticity Theory

    9/12

    C.3 Stress/Strain Relationship

    LengthOriginal

    LengthinChange=Strain

    If we think about x, y and x

    total volume is V0=xyz

    Final volume is

    V= x (1+ x) y (1+ y) z (1+ z)

    V=xyz (1+ x+ y+ z+ x y+ y z+ x z+ x y z)

    2

    therefore we can neglect sum of x y+ y z+ x z+ x y z values. Finally,

    V=V0 (1+ x+ y+ z)

    0

    0

    VolumeOriginal

    VolumeinChangestrainVolumetric=e

    V

    VV zyxe

    Strain

    Stress(constant)elasticityofmodulus=E

    StressShear

    StressShearPlane

    (constant)shearofmodulus=G

    When a material is compressed in one direction, it usually tends to expand in the other two directions

    perpendicular to the direction of compression. This phenomenon is called the Poisson effect ( )

    x

    z

    x

    y

    axial

    trans

    d

    d

    d

    d

    d

    d

    Two dimensional

    yxx

    yxx

    EEE

    1 , xyyx

    y

    yEEE

    1

    y

    x

    =

    EE

    EE1

    1

    y

    x

    y

    x

    y

    x

    EE

    EE

    1

    1

    1

    y

    x

    z

    y (1+ y)

    x (1+ x)

    z (1+ z)

  • 7/31/2019 Equations From Elasticity Theory

    10/12

    1

    1

    1

    10

    01

    10

    01

    1

    1

    EE

    EE

    EE

    EE

    EE

    E

    E

    E

    0

    10

    1

    0

    0

    1

    12

    22

    22

    22

    11

    1110

    01

    11

    0

    10

    1

    EE

    EE

    EEE

    y

    x

    z

    y

    x

    y

    x

    y

    x

    EE

    EE

    EE

    EE

    22

    22

    1

    11

    111

    1

    For normal stress

    yxx

    E

    11

    yxy

    E

    11

    For plane shear stress G

    GG

    xyxy

    xy

    xy

    The relation between modulus of elasticity and shear modulus is

    12

    EG so, if want to write all

    stresses in matrix form x, y, xy

    xy

    y

    x

    xy

    y

    xE

    2

    100

    01

    01

    11

    2

    100

    01

    01

    11

    ED

    [D]; stress/strain or

    constitutive matrix

    Three dimensional

    zyxx

    zyxx

    EEEE

    1,

    EEE

    zxy

    y

    ,

    EEE

    zxzz

  • 7/31/2019 Equations From Elasticity Theory

    11/12

    z

    y

    x

    =

    EEE

    EEE

    EEE

    1

    1

    1

    z

    y

    x

    z

    y

    x

    z

    y

    x

    EEE

    EEE

    EEE

    1

    1

    1

    1

    1

    1

    1

    1

    100

    010

    001

    100

    010

    001

    1

    1

    1

    EEE

    EEE

    EEE

    EEE

    EEE

    EEE

    EE

    EE

    E

    E

    E

    E

    0

    0

    00

    10

    10

    1

    00

    00

    00

    1

    1

    1

    22

    22

    EEE

    EE

    EE

    EE

    EEE

    2

    2

    2

    22

    22

    2

    22

    22

    1

    )(

    1

    )1(

    011

    011

    1

    2100

    110

    101

    0

    011

    00

    101

    10

    1

    222

    222

    222

    222

    22

    22

    21

    1

    2121

    2121

    )1(

    21

    212121

    )1(

    100

    010

    001

    21

    1

    2121

    011

    011

    1001

    10

    101

    EEE

    EEE

    EEE

    EEE

    EE

    EE

    z

    y

    x

    z

    y

    x

    z

    y

    x

    z

    y

    x

    EEE

    EEE

    EEE

    EEE

    EEE

    EEE

    )21)(1(

    1

    )21)(1()21)(1(

    21)21)(1(

    )1(

    )21)(1(

    )21)(1()21)(1()21)(1(

    )1(

    1

    1

    1

    2

    1

    For normal stress

    zyxx

    E

    1

    211

  • 7/31/2019 Equations From Elasticity Theory

    12/12

    zyxy

    E

    1

    211

    zyxzE

    1211

    For plane shear stress G

    GG

    xyxy

    xy

    xy

    GG

    yzyz

    yz

    yz

    GG

    zxzxzx

    zx

    The relation between modulus of elasticity and shear modulus is

    12

    EG so, if want to write all

    stresses in matrix form x, y, z, xy, yz, zx,

    zx

    yz

    xy

    z

    y

    x

    zx

    yz

    xy

    z

    y

    x

    E

    2

    210

    0

    02

    210

    0

    02

    21

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    1

    1

    1

    211

    [D]; stress/strain or constitutive matrix

    2

    210

    0

    02

    210

    0

    02

    21

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    1

    1

    1

    211

    ED