Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos...

33
Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Transcript of Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos...

Page 1: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Epidemiologisten tartuntatautimallien perusteita

Kari AuranenRokoteosastoKansanterveyslaitos

Matematiikan ja tilastotieteen laitosHelsingin yliopisto

Page 2: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Outline (1)

• A simple epidemic model to exemplify – dynamics of transmission of infectious disease– epidemic threshold– herd immunity threshold

– basic reproduction number R0

– the effect of vaccination on epidemic cycles – mass action principle

Page 3: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Outline (2)

• The Susceptible - Infected - Removed (SIR) model– endemic equilibrium– force of infection– estimation of the basic reproduction number R– effect of vaccination

• The SIS epidemic model– R and the choice of the model type– age-specific proportions of susceptibles/infectives

00

00

Page 4: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

A simple epidemic model (Hamer, 1906)

• Consider an infection that– involves three states/compartments of infection:

– proceeds in discrete generations (of infection)– is transmitted in a homogeneously mixing population of

size N

SSusceptibleusceptible CCasease ImmuneImmune

Page 5: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Model equations

• Dependence of generation t+1 on generation t:

C = R x C x S / N

S = S - C + B

t + 1t + 1 00 tt tt

t+1t+1 tt t+1t+1 tt

SS = number of susceptibles at time t = number of susceptibles at time tCC = number of cases (infectious individuals) at time t = number of cases (infectious individuals) at time tBB = number of new susceptibles (by birth) = number of new susceptibles (by birth)

tt

tt

tt

Page 6: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Dynamics of transmission

Dynamics (Ro = 10; N = 10,000; B = 300)

0

200

400

600

800

1000

1200

1400

time period

nu

mb

ers

of

ind

ivid

ual

s

susceptibles

cases

epidemicthreshold

Epidemic threshold : S /N = 1/REpidemic threshold : S /N = 1/R00ee

Page 7: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Epidemic threshold S

S - S = - C + B

• the number of susceptibles increases when C < B

decreases when C > B

• the number of susceptibles cycles around the epidemic threshold S = N / R

• this pattern is sustained as long as transmission is possible

ee

t+1t+1 tt t+1t+1 tt

t+1t+1

t+1t+1

tt

tt

ee 00

Page 8: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Epidemic threshold

C / C = R x S / N = S / S

• the number of cases increases when St > S

decreases when St < S

• the number of cases cycles around B (influx of new susceptibles)

t+1t+1 tt 00 tt tt ee

ee

ee

tt

Page 9: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Herd immunity threshold

• incidence of infection decreases as long as the proportion of immunes exceeds the herd immunity threshold

H = 1- Se / N

• a complementary concept to the epidemic threshold

• implies a critical vaccination coverage: what proportion of the population needs to be effectively vaccinated to eliminate infection

ee

Page 10: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Basic reproduction number (R )

• the average number of secondary cases that an infected individual produces in a totally susceptible population during his/her infectious period

• in the Hamer model : R = R x 1 x N / N = R

• herd immunity threshold H = 1 - 1 / R

• in the endemic equilibrium: S = N / R , i.e.,

00

0000

00

00ee

ee 00

00

R x S / N = 1R x S / N = 100 ee

Page 11: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Basic reproduction number (2)

R = 3R = 300

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

Page 12: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Basic reproduction number (3)

R = 3 R = 3 CC

endemic equilibriumendemic equilibrium00

R x S / N = 1R x S / N = 100 ee

CC

CCCC

Page 13: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Herd immunity threshold and R

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

herd immunity

threshold H

0 1 2 3 4 5

Ro

= 1-1/RHH 00

00

(Assumes homogeneous mixing)(Assumes homogeneous mixing)

Page 14: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Effect of vaccination

Ro = 10; N = 10,000; B = 300

0

500

1000

1500

2000

time period

nu

mb

ers

of

ind

ivid

ual

s

susc.

cases

epidemicthreshold

Hamer model under vaccinationHamer model under vaccination

S = S - C + B (1- VCxVE)S = S - C + B (1- VCxVE)

Vaccine efficacy (VE) Vaccine efficacy (VE) xxVaccine coverage (VC) = 80%Vaccine coverage (VC) = 80%

t+1t+1 tt t+1t+1

Epidemic threshold sustained: S = N / R Epidemic threshold sustained: S = N / R ee 00

Page 15: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Mass action principle

• all epidemic/transmission models are variations of the use of the mass action principle which– captures the effect of contacts between individuals– uses the analogy to modelling the rate of chemical reactions – is responsible for indirect effects of vaccination– assumes homogenous mixing

• in the whole population or• in appropriate subpopulations/strata

Page 16: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

The SIR epidemic model

• a continuous time model: overlapping generations• permanent immunity after infection• the system desrcibes the flow of individuals between

three epidemiological “compartments” • formally defined through a set of differential equations

SusceptipleSusceptiple RemovedRemovedInfectiousInfectious

Page 17: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

The SIR model equations

dtdI )()( tS

NtI )(tI )(tI

dtdS N )()( tS

NtI )(tS

dtdR )(tI )(tR

)()()( tRtItSN

= birth rate= birth rate

= rate of clearing infection= rate of clearing infection

= rate of infectious contacts= rate of infectious contacts

by one individual by one individual

= force of infection= force of infection

λλ(t)(t)

{{

Page 18: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Endemic equilibrium (SIR)

0

200

400

600

800

1000

1200

1400

03.

07,

0012

,00

19,0

028

,00 46

time

nu

mb

ers

of

ind

ivid

ual

s

susceptibles

infectives

epidemicthreshold

N = 10,000N = 10,000

= 300/10000 = 300/10000 (per time unit)(per time unit)

= 10 = 10 (per time unit)(per time unit)

= 1 = 1 (per time unit)(per time unit)

0R

Page 19: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

The basic reproduction number (SIR)

• Under the SIR model, Ro given by the ratio of two rates:

R = = rate of infectious contacts x

“mean duration” of infection

• R (usually) not directly observable• need to derive relations to observable quantities

00

00

)

Page 20: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Force of infection (SIR)

• the number of infectious contacts in the population per susceptible per time unit:

λ(t) = x I(t) / N

• incidence rate of infection: (t) x S(t)

• endemic force of infection (SIR): = x (R - 1)00

Page 21: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Estimation of R (SIR)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

average age at infection A

bas

ic r

epro

du

ctio

n n

um

ber

Relation between the average age at infection and R (SIR model)Relation between the average age at infection and R (SIR model)

= 1/75 = 1/75 (per year)(per year)

)10 R

ALR /10

10

/ R /1

0R

00

00

75/1 L

Page 22: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

A simple alternative formula

• assume everyone is infected at age A everyone dies at age L (rectangular age distribution)

ImmunesImmunes

AA LL

Age (years)Age (years)

SusceptiblesSusceptibles100 %100 %

Stationary proportion of susceptibles:Stationary proportion of susceptibles: S / N = A / LS / N = A / L

=> R=> R00 = 1/(S = 1/(See/N) = L / A/N) = L / A

ee

ProportionProportion

Page 23: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Estimation of and R0 from seroprevalence data

0

10

20

30

40

5060

70

80

90

100

1 5 10 15 20 25 30

age a (years)

proportion with rubella antibodies

observed [8]

model prediction

1) Assume equilibrium 1) Assume equilibrium

2) Parameterise force of infection 2) Parameterise force of infection

3) Estimate3) Estimate

4) Calculate R4) Calculate R00

Ex. constant Ex. constant Proportion not yet infected: Proportion not yet infected: 1 - exp(- a) ,1 - exp(- a) , estimate = 0.1 per year gives estimate = 0.1 per year gives reasonable fit to the datareasonable fit to the data

Page 24: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Estimates of R

Infection Location R0

Measles England and Wales (1950-68) 16-18

Rubella England and Wales (1960-70) 6-7

Poliomyelitis USA (1955) 5-6Hib Finland, 70’s and 80’s 1.05

Anderson and May: Infectious Diseases of Humans, 1991*

*

*

**

00

Page 25: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Indirect effects of vaccination (SIR)

• vaccinate proportion p of newborns, assume complete protection against infection

• a new reproduction number R = (1-p) x R0

• if p > H = 1-1/R0 , the infection cannot persist

• if p < H = 1-1/R0 , in the new endemic equilibrium:

S = N/R0 , = (R -1)

» proportion of susceptibles remains untouched(!)» force of infection decreases

vaccvacc

vaccvacc

vaccvacc

Page 26: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Effect of vaccination on average age A’ at infection (SIR)

• life length L; proportion p vaccinated at birth, complete protection • every susceptible infected at age A

SusceptiblesSusceptibles

AA LL

pp

AgeAge

11

S / N = (1-p) A’/L S / N = (1-p) A’/L

S / N = A/ LS / N = A/ L

=> A’ = A/(1-p) => A’ = A/(1-p)

i.e., increase in thei.e., increase in the average age of average age of infectioninfection

ProportionProportion

’’

ee

ee

ImmunesImmunes

with vaccination:with vaccination:

without vaccination:without vaccination:

Page 27: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Vaccination at age V > 0 (SIR)

• assume proportion p vaccinated at age V (instead of at birth)• every susceptible infected at age A• what proportion p should be vaccinated to obtain herd immunity threshold H?

Age Age

ProportionProportion

11

pp

VV LL

H = 1 - 1/RH = 1 - 1/R00 = 1 - A/L = 1 - A/L

proportion immunised proportion immunised by vaccination p (L-V)/L by vaccination p (L-V)/L

=> p = (L-A)/(L-V) => p = (L-A)/(L-V)

i.e., p bigger than when i.e., p bigger than when vaccination at birth vaccination at birth

ImmunesImmunes

SusceptiblesSusceptibles

AA

Page 28: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

The SIS epidemic model

• herd immunity threshold still the same: H0 = 1 - 1/R0

• endemic force of infection: • the proportions of susceptibles and immunes different

from the SIR model

SusceptibleSusceptible ImmuneImmune

)10 R

Page 29: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

R and the force of infection

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1.0

force of infection (per year)

Ro

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

force of infection (per year)

Ro

birth rate = 1/75 (per year)rate of clearing infection = 2.0 (per year)

birth rate = 1/75(per year)

no immunity to infection (SIS) lifelong immunity to infection (SIR)

00

SIS and SIRSIS and SIR

Page 30: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Extensions of simple models (1)

• so far all models assumed– homogeneous mixing– constant force of infection across age (classes)

• more realistic models incorporate– heterogeneous mixing

• age-dependent contact/transmission rates• social structures: families, day care groups, schools,

neighbourhoods etc.

Page 31: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Extensions of simple models (2)

– seasonal patterns in risks of infection– latency, maternal immunity etc.– different vaccination strategies– different models for the vaccine effect

• stochastic models to– model chance phenomena– time to eradication– apply statistical techniques/inference

Page 32: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

Contact structures (WAIFW)

• structure of the Who Acquires Infection From Whom matrix for varicella , five age groups (e.g. 0-4, 5-9, 10-14, 15-19, 20-75 years)

a a c d ea b c d ec c c d ed d d d ee e e e e

table entry = rate of transmission between an infective and a susceptible of respective age groups

e.g., force of infection in age group 0-4: a*I1 + a*I2 + c*I3 + d*I4 + e*I5

I1 = equilibrium number of infectives in age group 0-4, etc.

• WAIFW matrix non-identifiable from age-specific incidence !

Example: structured modelsExample: structured models

Page 33: Epidemiologisten tartuntatautimallien perusteita Kari Auranen Rokoteosasto Kansanterveyslaitos Matematiikan ja tilastotieteen laitos Helsingin yliopisto.

References

1 Fine P.E.M, "Herd immunity: History, Theory, Practice", Epidemiologic Reviews, 15, 265-302,1993

2 Fine P.E.M., "The contribution of modelling to vaccination policy, Vaccination and World Health, Eds. F.T. Cutts and P.G. Smith, Wiley and Sons, 1994.

3 Haber M., "Estimation of the direct and indirect effects of vaccination", Statistics in Medicine, 18, 2101-2109, 1999

4 Halloran M.E., Cochi S., Lieu T.A., Wharton M., Fehrs L., "Theoretical epidemologic and mordibity effects of routine varicella immunization of preschool children in the U.S.", AJE, 140, 81-104, 1994

5 Levy-Bruhl D., lecture notes in the EPIET course, Helsinki, 1998.

6 Nokes D.J., Anderson R.M., "The use of mathematical models in the epidemiological study of infectious diseases and in the desing of mass immunization programmes", Epidemiology and Infection, 101, 1-20, 1988

7 Lipsitch M., "Vaccination against colonizing bacteria with multiple serotypes", Population Biology, 94, 6571-6576, 1997

8 Anderson R.M. and May R.M., ”Infectious Diseases of Humans”; Oxford University Press, 1992.