Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science,...

73
Department of Experimental Medicine Università della“Magna Græcia” di Catanzaro, Italy BIONEM Laboratory http:\\bionem.unicz.it & Nanobioscience lab at IIT (Italian Institute of Technology) http:\\www.iit.it Contact: [email protected] L’ impatto della Tecnologia: Il Nanaofuturo Enzo Di Fabrizio

Transcript of Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science,...

Page 1: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Department of Experimental Medicine

Università della“Magna Græcia” di Catanzaro, Italy

BIONEM Laboratory http:\\bionem.unicz.it&

Nanobioscience lab at IIT (Italian Institute of Technology)http:\\www.iit.it

Contact: [email protected]

L’ impatto della Tecnologia: Il Nanaofuturo

Enzo Di Fabrizio

Page 2: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Master in communication SISSA 26-01-07

Outline

• Introduzione alle nanotecnologie

• la miniaturizzazione

• l’ Interdisciplinarità

• l’ organizzazione dei gruppi di ricerca

• L’ impatto delle nanotecnologie

• la comunicazione delle ricerche e dei risultati

Page 3: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Master in communication SISSA 26-01-07

Science, Technology & Industry

•1780s – 1840s: Industrial Revolution in 18th century

England (cotton spinning, iron making, steam power)

•1850s – 1900s: 2nd wave (steel making, railways)

•1900s – 1950s: 3rd wave (electricity, internal combustion

engine)

•1950s – 1980s: 4th wave (petrochemicals, electronics,

computing, aerospace)

•1989 – 2010/2015: 5th wave (networking)

•2010/2015: Next technology wave (Nanotechnology?)

The Economist, Sep. 22, 2001, ‘Technology Quarterly, p.3’

Page 4: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Master in communication SISSA 26-01-07

http://nano.gov

Page 5: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Master in communication SISSA 26-01-07

Page 6: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Master in communication SISSA 26-01-07

Page 7: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 8: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Brief History

1959 Feynman’s talk

1974 N. Taniguchi coined term “nanotechnology”

1981 Scanning Tunneling Microscope (STM) invented

1985 Fullerene (C60) discovered

1986 Atomic Force Microscope (AFM) invented

1989 IBM logo is written with 35 Xe atoms

1991 Carbon nanotube discovered

……

2000 NNI announcement (significance?)

2015 Physical limits of silicon technology

Nanoscience

Page 9: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 10: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Nanofabrication

Nanofabrication can generally be divided into two categories based on the approach:

“Top-Down”: Fabrication of device structures via monolithic processing on the nanoscale.

“Bottom-Up”: Fabrication of device structures via systematic assembly of

atoms, molecules or other basic units of matter.

Page 11: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Nanotech and Microfabrication• Microfabrication is a top-down technique utilizing the

following processes in sequential fashion:

– Film Deposition

• CVD, PVD

– Photolithography

• Optical exposure, PR

– Etching

• Aqueous, plasma

Many of these techniques are useful, directly or indirectly in nanofabrication

Page 12: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 13: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 14: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

L 'autoassemblaggio si verifica spontaneamente

quando molecole dotate di un apposito «gruppo

terminale»

(in giollo} si ancorano alIa superficie di un

substrato

Dip-pen litho: top down-bottom up Hybrid technique

Page 15: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Miniaturization: Surface vs. Volume

Si has a diamond structure with a = 5.43 ÅA Si nanocube 10 nm on a side is composed of: ~6250 unit cells ~50,000 atoms

Each nanocube face is composed of:~340 unit cells per face ~680 surface atoms per faceTotal surface area is: ~4080 atoms (~10% surface atoms)

A bulk Si film 1 µm thick on a 10 cm square:~6.3 X 1019 unit cells

~5 X 1020 atoms ~1.4 X 1017 surface atoms (~0.03% surface atoms)

a

Diamond unit cell

Si nanocube

Bulk Si film

In a nanoscale material, the surface/boundary/interface plays an important role!

Page 16: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

More than just size…

Chemical – take advantage of large surface to volume ratio, interfacial and surface chemistry important, systems too small for statistical analysis

Electronic – quantum confinement, bandgap engineering, change in density of states, electron tunneling

Magnetic – giant magnetoresistance by nanoscale multilayers, change in magnetic susceptibility

Interesting phenomena:

STM of dangling bonds on a Si:H surface

http://pubweb.acns.nwu.edu/~mhe663/ Electron tunneling

b

Page 17: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

More than just size …

Interesting phenomena:

Fluorescence of quantum dots of various sizes

Phonon tunneling

Mechanical – improved strength hardness in light-weight nanocomposites and nanomaterials, altered bending, compression properties, nanomechanics of molecular structuresOptical – absorption and fluorescence of nanocrystals, single photon phenomena, photonic bandgap engineeringFluidic – enhanced flow properties with nanoparticles, nanoscale adsorbed films importantThermal – increased thermoelectric performance of nanoscale materials, interfacial thermal resistance important.

Page 18: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Example:Electrons to “write” small

Page 19: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

The “miniaturized” Bible

Overall view of the sampleDetailed view. One line has 100nm

One of the typical defects encountered

Courtesy by R. Malureanu

Page 20: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Gas Injection System

5 reservoirs for up to 5 different gases

5 separate injection lines (one per gas)

All reservoirs and injection lines can be heated separately

Fully software controlled

Pneumatic actuators

Crossbeam chamber flange3 axis micropositioner

Injection lines

NozzlesVacuum jar withprecursor capsules inside

Page 21: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

1. Adsorption of the gas molecules on to the substrate surface

2. Activation of an chemical reaction of the gas molecules with the substrate by the Ion- / E-beam

3. Generation of volatile reaction-products :

GaCl3 SiCl4 SiF4

4. Evaporation of volatile species and sputtering of non volatile species

Focused Ion Beam milling and gas assisted etch

Gas assisted etch

Available on LEO CrossBeas:

XeF2,

Page 22: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

1. Adsorption of the precursor molecules on the substrate

2. Ion beam / e-beam induced dissociation of the gas molecules

3. Deposition of the material atoms and removal of the organic ligands

Beam induced deposition

Available on LEO CrossBeams:

Metals: W, PtInsulator: SiO2

Tungsten wall

Tungsten deposition

Page 23: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

How to make things small

Page 24: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Ions to sculpture

Page 25: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Focused Ion Beam - Applications

Diamond particle on

sapphire stalk

Page 26: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Focused Ion Beam - Applications

Microsculpture by FIB

Page 27: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Catanzaro 31-05-07

a-Si 2D Photonic Crys.

Coll. F. Pirri group

3D PH. Crys. By X-ray litho 2D Bragg reflector Si/SiO2 Coll. F. Priolo

2D-3D structures

INFM network LIF@TASC

Topographic lenses

Page 28: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Gerd BinnigHeinrich Rohrer

“Per il progetto STM* unimmo alcune esperienze in spettroscopia Tunnel e superconduttività, ma nulla nel campo della miscroscopia e della fisica delle superfici.Questo ci diede il coraggio e la leggerezza per cominciare qualcosa che in principio non avrebbe mai potuto funzionare, come ci venne spesso ripetuto” H. Rohrer

1978 G. Binnig viene assunto all IBM di Zurigo nel gruppo di Rohrer1978 G.B. e H. R. nel tentativo di studiare le proprietà di superconduttori tramite spettroscopia tunnel

localmente, si accorgono che uno strumento opportuno non esiste.1978In un paio di settimane capiscono che il loro progetto potrebbe essere un nuovo rivoluzionario

microscopio.1979 Viene formulata la prima richiesta di brevetto. Eric Courtens Physic manager at IBM, prevede

“migliaia di futuri STM”1980 prime immagini topografiche1981 16 marzo, evidenza del decadimento esponenziale della corrente – data ufficiale di nascita dell’STM

1986 Nobel per la fisica

*STM = Scanning Tunneling Microscope

Marco Lazzarino – TASC-INFM Trieste – Corso di Nanotecnologie - il primo SPM: il microscopio a scansione tunnel

Page 29: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Ricostruzione 7x7

Si (111)

Nella primavera del 1982 B. e R. studiarono la superficie 110 dell’oro, osservandone la ricostruzione in linee alternate e ottenendo risoluzione atomica perpendicolarmente alle linee,ma senza osservare atomi distinti.Nell’autunno 1982 dedicarono le loro attenzioni alla superficie 111 del silicio che mostrava una misteriosa ricostruzione 7x7….

…non potevo smettere di guardare le immagini. Stavo entrando in un nuovo mondo.Stavo realizzando che mi trovavo ad un vertice insuperabile delle mia carriera e, in un certo senso, alla sua

fine (G.Binnig)

…Sembrava esistesse un conflitto irriducibile tra l’affascinante idea di poter vedere direttamente gli atomi in una rappresentazione tridimensionale registrando semplicemente le tracce (di un oscilloscopio) e la riserva innata, che, dopotutto, non poteva essere così semplice. (G. Binnig)

Marco Lazzarino – TASC-INFM Trieste – Corso di Nanotecnologie - il primo SPM: il microscopio a scansione tunnel

Page 30: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

• Corrente di tunneling esponenziale attraverso il vuoto• Punta metallica raggio di 10nm ma solo pochi atomi contribuiscono al tunneling• Campione conduttivo• Ultra alto vuoto (UHT) per risoluzione atomica

• Correnti di tunneling 1nA• Distanza punta campione 0.5nm

Marco Lazzarino – TASC-INFM Trieste – Corso di Nanotecnologie - il primo SPM: il microscopio a scansione tunnel

0

0)(zz

T eIzI

Come funziona un STM

Page 31: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Muovere gli atomi1. Una superficie viene preparata in

modo da essere atomicamente piatta

2. Verifica STM3. Atomi o molecole di specie

differente vengono evaporate sulla superficie

4. Immagine STM5. La punta STM viene avvicinata

all’atomo e molecola prescelta monitorando la corrente di tunneling.

6. La punta viene spostata nella posizione di arrivo, trascinandosi l’atomo o la molecola

7. La punta viene allontanata e l’atomo o molecola restano in posto

E così via

RequisitiUltra alto vuotoBassa temperatura (4K)Basso drift termico

In figura atomi di ferro su Cu (111)

Don Eigler, Nature 344 524 (1990)IBM san Josè CA

Marco Lazzarino – TASC-INFM Trieste – Corso di Nanotecnologie - il primo SPM: il microscopio a scansione tunnel

Page 32: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

http://www.almaden.ibm.com/vis/stm/gallery.html

Xe on Ni(110)

Ultimate Nano manipulation

Page 33: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

AFM

Alberto Mazza Giuseppe Palmieri

Basandosi sulleinterazioni di Van derWaals, che nascono alivello interatomico fra lapunta e la superficiecampione e le altreinterazioni prima citate,si ottiene una flessionedel cantilever che, inaccordo con la legge diHook, una volta calcolataci permette di ricostruiretopograficamente lasuperficie in esame.

Il microscopio a forza atomica

Page 34: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Chemical identification of individual surface atoms by atomic force microscopyYoshiaki Sugimoto, Pablo Pou, Masayuki Abe, Pavel Jelinek, Rubén Pérez, Seizo Morita, Oscar Custance

Nature 446, 64 - 67 (01 Mar 2007) Letters to Editor

Chemical identification of single atoms (silicon, lead and tin) by detecting the short range forces associated with the onset of the chemical bond between the outermost atom of the tip apex and the surface atoms being imaged.

Page 35: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

combination of AFM-Raman spectroscopy

Main advantages of Raman1. “Water-transparent”2. Low damaging3. Analysis vs temperature4. Small samples (da 5 a 30 μl)5. Fast measurements

Medical&biological applications1. Molecular structure2. Secondary structure observation3. Amino-acidic composition 4. Protein-Protein interactions

Main disadvantage:Low scattering cross-section

Structured surface

Page 36: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Adiabatic cone device on cantilever

Page 37: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Raman measurements with AFM: setup (Collaboration: M. Lazzarino, Alpan Bek, TASC-CBM Trieste)

Page 38: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

AFM topography

Raman & AFM: chemical sensisng, fine scan

Fine scan along the “wall”. Scan step 7 nm

110 nm

Sensing and topography resolution 5-10 nmFrom Raman detailed line shape analysis we found nano crystal size 5-7 nm

Topography Raman intensityat 520 cm-1

Accepted for publication:Nature Nanotechnology

Page 39: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

NanoManufacturing and Instrumentation

• The invention of new instrumentation has a crucial role for the fast nanotechnology growth

• The instrumentation changes the knowledge from qualitative to quantitative

– Limiting this observation to scanning probes we can see and measure quantitatively nano-objects we fabricate and manipulate.

– Metrological measurement of size, energy bond, angle on molecule anchoring, chemistry, through spectroscopy etc.

Nanometer accuracy in production and manipulation has a strong influence on STANDARD definition and quality control (95% in product reliability)

e.g. nanometer accuracy allowed the giant magnetoresistance layers to be manufactured

Page 40: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

3D manipulation of cells:Optical Tweezers,

Page 41: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Multibead optical cell trapping

Page 42: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

LATSIS 2007Losanne, 25-28 june07

42/31

Applications: manipulation of cells

HeLa cells indirectly manipulated by trapped beads(in-vitro mechanical environment control)

V. Emiliani et al

Page 43: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

43/31

Measurement of the force exerted by neurites(collab V. Torre, D. Cojoc, E. Ferrari)

Neurons obtained from dorsal root ganglia

(DRG), isolated from P0-12 rats and plated

on poly-L-lysine-coated glass dishes. 48

hours after incubation in 50 ng/ml of nerve

growth factor (NGF).

Goal:

measure the force exerted by

lamellipodia and filopodia

Page 44: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Measurement of the force exerted by neurites

-Calibrate the trap by

measuring the fluctuations

of the bead in trap

-Micro beads trapped by IR

laser and positioned in front

of lamellipodia and/or

filopodia

-Measure the fluctuations of

the bead in the trap,

due to its interaction with

the neurite, and convert

them into forces.

Page 45: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

LATSIS 2007Losanne, 25-28 june07

Measurement of the force exerted by neurites

Page 46: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Measurement of the force exerted by neurites

Filopodia 2 minutes

event, Fmax= 2pN

Lamellipodia 2 minutes event, F>

20pN

Page 47: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Analysis of Force exerted by lamellipodia

Page 48: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

SuperHydrophobic Surfaces towards Biomedical Applications

Page 49: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Diffusion limits

1 fM analyte concentration

Page 50: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

can we avoid the diffiusion limit? SuperHydrophobicity for analyte Concentration

Evaporation concentration and localization

Page 51: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

a b

h

2

2

a

a b

2

2

4ah a br

a b

Total pillar surfacearea to total projectetsurface area

Total surface area tototal projectet surfacearea

The lotus effect

Natural systems

Artificial systems

Page 52: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

• Full controllable size

• High aspect ratio (up to 20 or more)

• Both rigid and flexible substrates

Artificial lotus effect: micropatterned surface

Photolithography combined with Deep RIE

10 m

Page 53: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Artificial lotus effect: micropatterned surface

Evaporation of 10 l of water in few minutes

Contact angle about 160°

Page 54: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Fluorescence of Rhodamine on pillars

10 l - 10-15 mol/l

30 m

Evaporation and concentration

about 6000 molecules easily detected!

Page 55: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Evaporation and concentration (10 Attomolar) Rhodamine

Page 56: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

1050 1250 1450 1650 1850

Inte

ns

ity

(a

rb.

un

its

)

Raman shift (cm-1)

Rhodamine 6G

Raman detection of Rhodamine on pillars

10 l - 10-17 mol/l

Combination of Plasmonics and superhydrophobic surfaces

Page 57: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Single DNA molecule

Starting concentration: 10-17 M

Combination of Plasmonics and hydrophobic surfaces

Fluorescence of single DNA moleculei

Page 58: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 59: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 60: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 61: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 62: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 63: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 64: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 65: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Nanomaterial for industry

• More than 300 nano products are mature for Industrial production:

Page 66: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 67: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 68: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 69: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

1

2

3

5 challenges to address nanotechnology risk

4

5

Page 70: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Nanoscienze & Società

Pietro Greco

• “Tuttavia malgrado il (legittimo) interesse, questo interrogarsi e questo riconoscere in anticipo l’importanza prioritaria della domanda sulle conseguenze sociali di una (promessa) rivoluzione tecnoscientifica ha tratti di marcata originalità. Nessuna comunità scientifica, nessun ambito disciplinare aveva mai fatto tanto. Ponendosi in maniera preventiva e organica il problema degli effetti sociali della propria attività e della loro gestione. E inaugurando, probabilmente, una nuova stagione nei complessi rapporti tra scienza e società.”

Page 71: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton
Page 72: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

Lezione 0 biofotonica Pavia 5-03-07

Page 73: Enzo Di Fabrizio - unicz.it · PDF fileMaster in communication SISSA 26-01-07 Science, Technology & Industry •1780s –1840s: Industrial Revolution in 18th century England (cotton

• I colleghi e collaboratori di UMG

• In particolare

• Francesco De Angelis, Patrizio Candeloro, Carlo Liberale, Gianni Cuda, Ennio Carbone, Marco Gaspari

• Gli studenti di dottorato

Acknowledgements