Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005...

16
Environmental impact assessment of man-made cellulose fibres and recycled polyester fibre Dr. Li Shen ([email protected] ) LEI, Wageningen University and Research Centre (Formally Department of Science, Technology and Society (STS), Copernicus Institute, Utrecht University) [avniR] LCA in business Conference 2011 3-4 November 2011 Lille, France Copernicus Institute Research Institute for Sustainable Development and Innovation

Transcript of Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005...

Page 1: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Environmental impact assessment of man-made cellulose fibres and

recycled polyester fibre

Dr. Li Shen ([email protected]) LEI, Wageningen University and Research Centre

(Formally Department of Science, Technology and Society (STS), Copernicus Institute, Utrecht University)

[avniR] LCA in business Conference 2011

3-4 November 2011 Lille, France

Copernicus Institute Research Institute for Sustainable Development and Innovation

Page 2: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Part I Comparative LCA of man-made

cellulose fibres Published in Resources, Conservation and

Recycling (2010) 55:34-52.

2

Page 3: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

World fibre production 1920-2005 (kton)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1915 1925 1935 1945 1955 1965 1975 1985 1995 2005

Cotton

Synthetic (petro-based)

Man-made cellulosic

Why man-made cellulose fibres are interesting?

So

urc

es: U

SD

A (

20

06

), J

CF

A (

20

06

), U

llma

nn

(1

99

7),

Te

xtile

on

line

lib

rary

(2

00

6)

3

Page 4: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

LCA of man-made cellulose fibres

• Goal:

1) assess the impacts of man-made cellulose fibres;

2) compare with cotton, PET and PP.

• Functional unit:

– 1 metric tonne of staple fibre

• System boundary:

– cradle-to-factory gate

– cradle-to-factory gate plus post-consumer waste incineration with energy recovery

4

Page 5: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Man-made cellulose fibres - Viscose Asia - Viscose Austria - Modal - Tencel - Tencel 2012 Cotton (US and China) PET and PP fibres (Western Europe) (PLA)

Lenzing data

Literature data

Types of fibre and data sources

5

Page 6: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Viscose, Modal and Tencel

Fibre name Pulp source Process Process energy

Viscose Asia Market Pulp

Separate

production

Local electricity, coal, gas,

oil

Viscose Austria Lenzing Pulp

Integrated

production - Biomass

- Energy from MSWI

- Fossil fuels Modal

Lenzing Pulp Integrated

production

Tencel

Mixed

Market pulp &

Lenzing pulp

Separate

production

- Biomass (30%)

- Natural gas (70%)

Tencel, 2012 - Energy from MSWI

(100%)

6

Page 7: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Net NREU (GJ/t fibre), Cradle-to-factory gate plus post-consumer waste incineration with energy recovery

(recovery rate = 60%primary energy)

Cotton (U

S&CN)

PET (W.Europe)

PP (W.Europe)

PLA fibre, w

ithout w

ind

PLA fibre, w

ith w

ind

Lenzing Viscose Asia

Tencel, Austria

Lenzing Modal

Tencel, Austria

, 2012

Lenzing Viscose Austria-40

-20

0

20

40

60

80

100

Net NREU

Net NREU, lower range

Net NREU, higher range93

85

62

43

2536 22 19

-10 -14

-29

-9 -9 -9 -9 -9

Cradle-to-factory gate

Recovered energy from

waste incineration

(energy recovery rate 60%)

Cotton: 26

-11 -11

66

39

7

Page 8: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Environmental impact categories (CML) Cradle-to-factory gate, 1 tonne fibre (cotton = 100)

abiotic depletio

n

ozone layer d

epletion

human toxicity

fresh w

ater aquatic

ecotox.

terrestria

l ecotoxicity

photochemical oxidant fo

rmatio

n

acidificatio

n

eutrophicatio

n0%

50%

100%

150%

200%

250%

300%

Cotton

PET

PP

Lenzing Viscose Asia

Lenzing Viscose Austria

Lenzing Modal

Tencel Austria

Tencel Austria 2012

8

Page 9: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Cotton (U

S&CN)

Lenzing V

iscose A

sia

PET fibre

(W.E

U)

PP fibre

(W.E

U)

Tencel, Austri

a

Lenzing M

odal

Lenzing V

iscose A

ustria

Tencel, Austri

a 2012

NO

GE

PA

Sin

gle

-sc

ore

po

ints

(Fir

st

no

rma

lise

d t

o W

orl

d 1

995

)

0

1050

60

70

80

90

100

Global warming

Abiotic depletion

Ozone layer depletion

Human toxicity

Fresh water ecotoxicity

Terrestrial ecotoxicity

Photochemical oxidation

Acidification

Eutrophication

Single-score result (III) NOGEPA weighting factors (normalised to world) 1 tonne fibre, cradle-to-factory gate, cotton =100

Weighting factors (NOGEPA)

Climate Change 32

Abiotic depletion* 8

Ozone layer depletion 5

Human toxicity 16

Fresh water ecotoxicity 6

Terrestrial ecotoxicity 5

Photochemical oxidation 8

Acidification 6

Eutrophication 13

Total 99

Source: Huppes et al (2003), except for abiotic depletion (marked with *), which is not excluded by Huppes et al. and is determined based on own estimation.

9

Page 10: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Part II LCA of bottle-to-fibre (B2F) recycling

Published in Resources, Conservation and Recycling (2010) 55:34-52.

Page 11: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Product systems (FU = 1 metric tonne of fibre)

Product systems Type of fibre Location Data sources

1.Mechanical

recycling Staple W. Europe Company data

2. Semi-mechanical

recycling Filament (POY) E. Asia Company data

3. Back-to-oligomer

(BHET) recycling Filament (POY) E. Asia Company data

4. Back-to-monomer

(DMT) recycling Filament (POY) W.Europe Literature data

Ref. Virgin PET fibre Staple/Filament W.Europe Literature data

11

Page 12: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Allocation: open-loop recycling

• Cut-off approach: – The first life (bottle) does not have influence on the

second life (fibre)

• Waste valuation approach: – Bottle waste contains part of the burden from first life

(economic allocation)

• System expansion approach: – Do not distinguish first and second life, but do assume

products from 1st and 2nd life are functional equivalent

– Do take into account the “grave” stage

12

Page 13: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Cradle-to-factory gate NREU & GWP100a based on the “cut-off” method

Mech. recyc

ling (s

taple)

Semi-mech. re

cyclin

g (POY)

Chem. recyc

ling (B

HET route, P

OY)

Chem. recyc

ling (D

MT route,POY)

V-PET (W

.EU, staple/POY)

GJ/t

0

20

40

60

80

100

13

23

39

51

95

Mech. recyc

ling (s

taple)

Semi-mech. re

cyclin

g (POY)

Chem. recyc

ling (B

HET route, P

OY)

Chem. recyc

ling (D

MT route,POY)

V-PET (W

.EU, staple/POY)

kg

CO

2 e

q./

t0

1000

2000

3000

4000

5000

960

1,880

2,590

3,080

4,062

NREU (GJ/t) GWP (kg CO2 eq./t)

13

Page 14: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

Cradle-to-factory gate NREU & GWP100a Based on the “waste valuation” method

Mech. recyc

ling (s

taple)

Semi-mech. re

cyclin

g (POY)

Chem. recyc

ling (B

HET route, P

OY)

V-PET (W

.EU, staple/POY)

GJ/t

0

20

40

60

80

100

NREU based on "cut-off"approach

Shifted energy from the first life

26

26

26

13

23

40

95

Mech. recyc

ling (s

taple)

Semi-mech. re

cyclin

g (POY)

Chem. recyc

ling (B

HET route, P

OY)

V-PET (W

.EU, staple/POY)

kg C

O2 e

q./

t0

1000

2000

3000

4000

5000

GWP based on cut-off approach

Shifted GWP from the first life

960

1,880

2,590

4,060

1,070

1,070

1,070

NREU (GJ/t) GWP (kg CO2 eq./t)

14

Page 15: Environmental impact assessment of man-made cellulose ... · World fibre production 1920-2005 (kton) 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 1915 1925 1935 1945 1955 1965

NREU and GWP100a (cradle to grave excl. use phase)

Virgin PET

(staple&POY)

Mechanical

recycling

(Staple)

Semi-

mechanical

recycling (POY)

Chemical

recycling, back

to BHET (POY)

VPET fibre

RPET fibre

Incineration with credits

79

23

33

48

Virgin PET

(staple&POY)

Mechanical

recycling (Staple)

Semi-mechanical

recycling (POY)

Chemical recycling,

back to BHET

(POY)

Incineration with credits

VPET fibre

RPET fibre

5,540

1,330

2,210

2,820

NREU (GJ/t) GWP (kg CO2 eq./t)

15