Environmental Health Criteria 215 - World Health Organization · Please note that the layout and...

62
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Environmental Health Criteria 215 VINYL CHLORIDE Please note that the layout and pagination of this pdf file and the printed EHC are not identical. The corrigenda published by November 30, 2004 for this EHC are incorporated in this file Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 1999

Transcript of Environmental Health Criteria 215 - World Health Organization · Please note that the layout and...

This report contains the collective views of an international group ofexperts and does not necessarily represent the decisions or the statedpolicy of the United Nations Environment Programme, the InternationalLabour Organisation, or the World Health Organization.

Environmental Health Criteria 215

VINYL CHLORIDE

Please note that the layout and pagination of this pdf fileand the printed EHC are not identical.The corrigenda published by November 30, 2004 for thisEHC are incorporated in this file

Published under the joint sponsorship of the United NationsEnvironment Programme, the International LabourOrganisation, and the World Health Organization, andproduced within the framework of the Inter-OrganizationProgramme for the Sound Management of Chemicals.

World Health OrganizationGeneva, 1999

The International Programme on Chemical Safety (IPCS), established in1980, is a joint venture of the United Nations Environment Programme (UNEP),the International Labour Organisation (ILO), and the World Health Organization(WHO). The overall objectives of the IPCS are to establish the scientific basis forassessment of the risk to human health and the environment from exposure tochemicals, through international peer review processes, as a prerequisite for thepromotion of chemical safety, and to provide technical assistance in strengtheningnational capacities for the sound management of chemicals.

The Inter-Organization Programme for the Sound Management ofChemicals (IOMC) was established in 1995 by UNEP, ILO, the Food andAgriculture Organization of the United Nations, WHO, the United NationsIndustrial Development Organization, the United Nations Institute for Training andResearch, and the Organisation for Economic Co-operation and Development(Participating Organizations), following recommendations made by the 1992 UNConference on Environment and Development to strengthen cooperation andincrease coordination in the field of chemical safety. The purpose of the IOMC isto promote coordination of the policies and activities pursued by the ParticipatingOrganizations, jointly or separately, to achieve the sound management of chemicalsin relation to human health and the environment.

WHO Library Cataloguing-in-Publication Data

Vinyl chloride.

(Environmental health criteria ; 215)

1.Vinyl chloride – analysis 2.Vinyl chloride – toxicity 3.Vinyl chloride –adverse effects 4.Environmental exposure 5.Occupational exposureI.International Programme on Chemical Safety II.Series

ISBN 92 4 157215 9 (NLM Classification: QV 633)ISSN 0250-863X

The World Health Organization welcomes requests for permission to reproduceor translate its publications, in part or in full. Applications and enquiries shouldbe addressed to the Office of Publications, World Health Organization, Geneva,Switzerland, which will be glad to provide the latest information on any changesmade to the text, plans for new editions, and reprints and translations alreadyavailable.

©World Health Organization 1999

Publications of the World Health Organization enjoy copyright protection inaccordance with the provisions of Protocol 2 of the Universal CopyrightConvention. All rights reserved.

The designations employed and the presentation of the material in thispublication do not imply the expression of any opinion whatsoever on the part ofthe Secretariat of the World Health Organization concerning the legal status of anycountry, territory, city, or area or of its authorities, or concerning the delimitationof its frontiers or boundaries.

The mention of specific companies or of certain manufacturers’ products doesnot imply that they are endorsed or recommended by the World HealthOrganization in preference to others of a similar nature that are not mentioned.Errors and omissions excepted, the names of proprietary products are distinguishedby initial capital letters.

Computer typesetting by I. Xavier Lourduraj, Chennai, India

______________________________________________________

iii

CONTENTS

ENVIRONMENTAL HEALTH CRITERIA FOR VINYL CHLORIDE

1. SUMMARY .... .................................................... 1

1.1 Identity, physical and chemical properties, and analytical methods ................................................. 1

1.2 Sources of human and environmental exposure ........... 2 1.3 Environmental transport, distribution and

transformation .... .................................................... 3 1.4 Environmental levels and human exposure .................. 4 1.5 Kinetics and metabolism in laboratory animals

and humans .... .................................................... 6 1.6 Effects on laboratory mammals and in vitro test

systems .... .................................................... 7 1.7 Effects on humans ... .................................................. 10 1.8 Effects on other organisms in the laboratory and

field .... .................................................. 11 2. IDENTITY, PHYSICAL AND CHEMICAL

PROPERTIES, AND ANALYTICAL METHODS.............. 13

2.1 Identity .... .................................................. 13 2.2 Physical and chemical properties................................ 14 2.3 Conversion factors... .................................................. 16 2.4 Analytical methods .. .................................................. 17

2.4.1 General analytical methods and detection .... .................................................. 17

2.4.2 Sample preparation, extraction and analysis for different matrices ....................... 17 2.4.2.1 Air.................................................. 17 2.4.2.2 Water ............................................. 25 2.4.2.3 PVC resins and PVC products ....... 25 2.4.2.4 Food, liquid drug and cosmetic

products ......................................... 26 2.4.2.5 Biological samples......................... 26

EHC 215: Vinyl Chloride ______________________________________________________

iv

2.4.2.6 Human monitoring......................... 26 2.4.2.7 Workplace air monitoring .............. 27

3. SOURCES OF HUMAN AND ENVIRONMENTAL EXPOSURE .... .................................................. 29

3.1 Natural occurrence... .................................................. 29 3.2 Anthropogenic sources ............................................... 29

3.2.1 Production levels and processes .................... 29 3.2.1.1 Production of VC........................... 31 3.2.1.2 Production of PVC from VC.......... 32 3.2.1.3 PVC products................................. 34

3.2.2 Emissions from VC/PVC plants .................... 35 3.2.2.1 Sources of emission during

the production of VC ..................... 35 3.2.2.2 Emission of VC and dioxins

from VC/PVC plants during production...................................... 37

3.2.3 Accidental releases of VC ............................. 38 3.2.3.1 PVC plant and transport

accidents ........................................ 38 3.2.3.2 Leakage and discharge from

VC/PVC plants .............................. 39 3.2.4 VC residues in virgin PVC resin and

products .... .................................................. 40 3.2.4.1 VC residues in different PVC

samples .......................................... 40 3.2.4.2 VC residues in PVC products ........ 40 3.2.4.3 VC formation as a result of

heating PVC................................... 41 3.2.5 Other sources of VC ...................................... 42

3.2.5.1 VC as a degradation product of chlorinated hydrocarbons............... 42

3.2.5.2 VC formation from tobacco ........... 48 3.3 Uses .... .................................................. 49

4. ENVIRONMENTAL TRANSPORT,

DISTRIBUTION AND TRANSFORMATION ................... 50

4.1 Transport and distribution between media.................. 50 4.1.1 Air .... .................................................. 50 4.1.2 Water and sediments...................................... 50

______________________________________________________

v

4.1.3 Soil and sewage sludge.................................. 51 4.1.4 Biota .... .................................................. 53

4.2 Transformation .... .................................................. 54 4.2.1 Microbial degradation ................................... 54 4.2.2 Abiotic degradation ....................................... 64

4.2.2.1 Photodegradation ........................... 64 4.2.2.2 Hydrolysis...................................... 72

4.2.3 Other interactions .......................................... 73 4.3 Bioaccumulation .... .................................................. 73 4.4 Ultimate fate following use ........................................ 74

4.4.1 Waste disposal............................................... 74 4.4.2 Fate of VC processed to PVC........................ 75

5. ENVIRONMENTAL LEVELS AND HUMAN

EXPOSURE .... .................................................. 76

5.1 Environmental levels .................................................. 76 5.1.1 Air .... .................................................. 76

5.1.1.1 Outdoor air..................................... 76 5.1.1.2 Indoor air ....................................... 82

5.1.2 Water and sediment ....................................... 82 5.1.3 Soil and sewage sludge.................................. 87

5.1.3.1 Soil................................................. 87 5.1.3.2 Sewage sludge ............................... 87

5.1.4 Food, feed and other products ....................... 87 5.1.5 Terrestrial and aquatic organisms................ 100

5.2 General population exposure .................................... 100 5.2.1 Estimations . ................................................ 100 5.2.2 Monitoring data of human tissues

or fluids .... ................................................ 102 5.3 Occupational exposure ............................................. 102

6. KINETICS AND METABOLISM IN LABORATORY

ANIMALS AND HUMANS .............................................. 110

6.1 Absorption .... ................................................ 110 6.1.1 Oral exposure .............................................. 110 6.1.2 Inhalation exposure ..................................... 112 6.1.3 Dermal exposure.......................................... 113

EHC 215: Vinyl Chloride ______________________________________________________

vi

6.2 Distribution and retention......................................... 113 6.2.1 Oral exposure .............................................. 114 6.2.2 Inhalation exposure ..................................... 114 6.2.3 Partition coefficients in vitro ....................... 116

6.3 Metabolic transformation.......................................... 116 6.4 Elimination and excretion......................................... 121

6.4.1 Oral exposure .............................................. 121 6.4.2 Inhalation exposure ..................................... 122

6.5 Reaction with body components............................... 124 6.5.1 Formation of DNA adducts ......................... 124 6.5.2 Alkylation of proteins.................................. 127

6.6 Modelling of pharmacokinetic data for vinyl chloride .... ................................................ 130

7. EFFECTS ON LABORATORY MAMMALS AND

IN VITRO TEST SYSTEMS............................................... 131

7.1 Acute toxicity .... ................................................ 131 7.2 Short-term toxicity... ................................................ 131

7.2.1 Oral exposure .............................................. 131 7.2.2 Inhalation exposure ..................................... 133 7.2.3 Dermal exposure.......................................... 138

7.3 Long-term toxicity – effects other than tumours....... 138 7.3.1 Oral exposure .............................................. 138 7.3.2 Inhalation exposure ..................................... 138

7.4 Skin and eye irritation; sensitization......................... 140 7.5 Reproductive toxicity, embryotoxicity and

teratogenicity .... ................................................ 140 7.5.1 Male reproductive toxicity........................... 140 7.5.2 Embryotoxicity and teratogenicity............... 141

7.6 Special studies .... ................................................ 143 7.6.1 Neurotoxicity............................................... 143 7.6.2 Immunotoxicity ........................................... 143 7.6.3 Cardiovascular effects ................................. 144 7.6.4 Hepatotoxicity ............................................. 145

7.7 Carcinogenicity .... ................................................ 145 7.7.1 Oral exposure .............................................. 145 7.7.2 Inhalation exposure ..................................... 149

7.7.2.1 Short-term exposure..................... 153

______________________________________________________

vii

7.7.2.2 Long-term exposure..................... 153 7.7.3 The effect of age on susceptibility

to tumour induction ..................................... 166 7.7.4 The effect of gender on susceptibility

to tumour induction ..................................... 168 7.7.5 Carcinogenicity of metabolites .................... 169

7.8 Genotoxicity .... ................................................ 169 7.8.1 In vitro studies ............................................. 169 7.8.2 In vivo studies.............................................. 175 7.8.3 Genotoxicity of VC metabolites .................. 180 7.8.4 Other toxic effects of VC metabolites ......... 181 7.8.5 Mutagenic and promutagenic properties

of DNA adducts formed by VC metabolites.. ................................................ 182

7.8.6 Mutations in VC-induced tumours .............. 182 7.9 Factors modifying toxicity........................................ 186 7.10 Mechanisms of toxicity – mode of action................. 187

7.10.1 Mechanisms of VC disease.......................... 187 7.10.2 Mechanism of carcinogenesis...................... 187

8. EFFECTS ON HUMANS.. ................................................ 190

8.1 General population .. ................................................ 190 8.2 Controlled human studies ......................................... 191 8.3 Occupational exposure ............................................. 191

8.3.1 Overview .... ................................................ 191 8.3.2 Non-neoplastic effects ................................. 192

8.3.2.1 Acute toxicity .............................. 192 8.3.2.2 Effects of short- and long-term

exposure....................................... 192 8.3.2.3 Organ effects................................ 193

8.3.3 Neoplastic effects ........................................ 199 8.3.3.1 Liver and biliary tract cancers...... 203 8.3.3.2 Brain and central nervous

system (CNS)............................... 212 8.3.3.3 Respiratory tract........................... 213 8.3.3.4 Lymphatic and haematopoietic

cancers ......................................... 213 8.3.3.5 Malignant melanoma ................... 214

EHC 215: Vinyl Chloride ______________________________________________________

viii

8.3.3.6 Breast cancer................................ 214 8.3.3.7 Other cancer sites......................... 214

8.4 Genotoxicity studies ................................................ 215 8.4.1 Cytogenetic studies of VC-exposed

workers .... ................................................ 215 8.4.2 Mutations at the hypoxanthine guanine

phosphoribosyltransferase (hprt) locus........ 219 8.4.3 Mutations in ASL from VC-exposed

workers .... ................................................ 219 8.4.3.1 p53 gene....................................... 219 8.4.3.2 ras genes ...................................... 221

8.5 Studies on biological markers................................... 222 8.5.1 Excretion of metabolites .............................. 222 8.5.2 Genetic assays ............................................. 223 8.5.3 Enzyme studies............................................ 223 8.5.4 von Willebrand factor.................................. 224 8.5.5 p53 and ras proteins .................................... 224

8.6 Susceptible subpopulations....................................... 224 8.6.1 Age susceptibility ........................................ 224 8.6.2 Immunological susceptibility....................... 226 8.6.3 Polymorphic genes in VC metabolism ........ 226

9. EFFECTS ON OTHER ORGANISMS IN THE

LABORATORY AND FIELD ........................................... 227

9.1 Laboratory experiments ............................................ 227 9.1.1 Microorganisms........................................... 227

9.1.1.1 Water ........................................... 227 9.1.1.2 Soil............................................... 228

9.1.2 Aquatic organisms ....................................... 228 9.1.2.1 Invertebrates ................................ 228 9.1.2.2 Vertebrates................................... 229

9.2 Field observations.... ................................................ 230 9.2.1 Aquatic organisms ....................................... 230

10. EVALUATION OF HUMAN HEALTH RISKS

AND EFFECTS ON THE ENVIRONMENT..................... 231

10.1 Evaluation of human health effects .......................... 231

______________________________________________________

ix

10.1.1 Hazard identification ................................... 231 10.1.1.1 Non-neoplastic effects ................. 231 10.1.1.2 Neoplastic effects......................... 233

10.1.2 Dose-response analysis................................ 235 10.1.2.1 Non-neoplastic effects ................. 235 10.1.2.2 Neoplastic effects......................... 237

10.1.3 Human exposure.......................................... 244 10.1.3.1 General population....................... 245 10.1.3.2 Occupational exposure................. 246

10.1.4 Risk characterization ................................... 247 10.2 Evaluation of effects on the environment ................. 247

11. RECOMMENDATIONS FOR PROTECTION

OF HUMAN HEALTH .... ................................................ 249

11.1 Public health .... ................................................ 249 11.2 Occupational health . ................................................ 249

12. FURTHER RESEARCH ... ................................................ 250 13. PREVIOUS EVALUATIONS BY

INTERNATIONAL BODIES............................................. 251 REFERENCES .... ................................................ 252 ANNEX 1. REGULATIONS CONCERNING VINYL CHLORIDE .... ................................................ 312 ANNEX 2. PHYSIOLOGICAL MODELLING AND RECENT RISK ASSESSMENTS ............................................... 314 ANNEX 3. EXECUTIVE SUMMARY OF VINYL CHLORIDE PANEL REPORT .. ................................................ 324 RESUME .... ................................................ 328 RESUMEN .... ................................................ 343

x

NOTE TO READERS OF THE CRITERIA MONOGRAPHS

Every effort has been made to present information in the criteria monographs as accurately as possible without unduly delaying their publication. In the interest of all users of the Environmental Health Criteria monographs, readers are requested to communicate any errors that may have occurred to the Director of the International Programme on Chemical Safety, World Health Organization, Geneva, Switzerland, in order that they may be included in corrigenda.

* * * A detailed data profile and a legal file can be obtained from the International Register of Potentially Toxic Chemicals, Case postale 356, 1219 Châtelaine, Geneva, Switzerland (telephone no. + 41 22 - 9799111, fax no. + 41 22 - 7973460, E-mail [email protected]).

* * * This publication was made possible by grant number 5 U01 EX02617-15 from the National Institute of Environmental Health Sciences, National Institutes of Health, USA, and by financial support from the European Commission.

xi

Environmental Health Criteria

PREAMBLE Objectives In 1973 the WHO Environmental Health Criteria Programme was initiated with the following objectives: (i) to assess information on the relationship between exposure to

environmental pollutants and human health, and to provide guidelines for setting exposure limits;

(ii) to identify new or potential pollutants; (iii) to identify gaps in knowledge concerning the health effects of

pollutants; (iv) to promote the harmonization of toxicological and epidemio-

logical methods in order to have internationally comparable results.

The first Environmental Health Criteria (EHC) monograph, on mercury, was published in 1976, and since that time an ever-increasing number of assessments of chemicals and of physical effects have been produced. In addition, many EHC monographs have been devoted to evaluating toxicological methodology, e.g., for genetic, neurotoxic, teratogenic and nephrotoxic effects. Other publications have been concerned with epidemiological guidelines, evaluation of short-term tests for carcinogens, biomarkers, effects on the elderly and so forth. Since its inauguration the EHC Programme has widened its scope, and the importance of environmental effects, in addition to health effects, has been increasingly emphasized in the total evaluation of chemicals. The original impetus for the Programme came from World Health Assembly resolutions and the recommendations of the 1972 UN Conference on the Human Environment. Subsequently the work became an integral part of the International Programme on Chemical Safety (IPCS), a cooperative programme of UNEP, ILO and WHO. In

EHC 215: Vinyl Chloride

xii

this manner, with the strong support of the new partners, the importance of occupational health and environmental effects was fully recognized. The EHC monographs have become widely established, used and recognized throughout the world. The recommendations of the 1992 UN Conference on Environ-ment and Development and the subsequent establishment of the Intergovernmental Forum on Chemical Safety with the priorities for action in the six programme areas of Chapter 19, Agenda 21, all lend further weight to the need for EHC assessments of the risks of chemicals. Scope The criteria monographs are intended to provide critical reviews on the effect on human health and the environment of chemicals and of combinations of chemicals and physical and biological agents. As such, they include and review studies that are of direct relevance for the evaluation. However, they do not describe every study carried out. Worldwide data are used and are quoted from original studies, not from abstracts or reviews. Both published and unpublished reports are considered and it is incumbent on the authors to assess all the articles cited in the references. Preference is always given to published data. Unpublished data are used only when relevant published data are absent or when they are pivotal to the risk assessment. A detailed policy statement is available that describes the procedures used for unpublished proprietary data so that this information can be used in the evaluation without compromising its confidential nature (WHO (1990) Revised Guidelines for the Preparation of Environmental Health Criteria Monographs. PCS/90.69, Geneva, World Health Organization). In the evaluation of human health risks, sound human data, whenever available, are preferred to animal data. Animal and in vitro studies provide support and are used mainly to supply evidence missing from human studies. It is mandatory that research on human subjects is conducted in full accord with ethical principles, including the provisions of the Helsinki Declaration. The EHC monographs are intended to assist national and international authorities in making risk assessments and subsequent

xiii

risk management decisions. They represent a thorough evaluation of risks and are not, in any sense, recommendations for regulation or standard setting. These latter are the exclusive purview of national and regional governments. Content The layout of EHC monographs for chemicals is outlined below. • Summary — a review of the salient facts and the risk evaluation

of the chemical • Identity — physical and chemical properties, analytical methods • Sources of exposure • Environmental transport, distribution and transformation • Environmental levels and human exposure • Kinetics and metabolism in laboratory animals and humans • Effects on laboratory mammals and in vitro test systems • Effects on humans • Effects on other organisms in the laboratory and field • Evaluation of human health risks and effects on the environment • Conclusions and recommendations for protection of human health

and the environment • Further research • Previous evaluations by international bodies, e.g., IARC, JECFA,

JMPR Selection of chemicals Since the inception of the EHC Programme, the IPCS has organized meetings of scientists to establish lists of priority chemicals for subsequent evaluation. Such meetings have been held in Ispra, Italy, 1980; Oxford, United Kingdom, 1984; Berlin, Germany, 1987; and North Carolina, USA, 1995. The selection of chemicals has been based on the following criteria: the existence of scientific evidence that the substance presents a hazard to human health and/or the environment; the possible use, persistence, accumulation or degradation of the substance shows that there may be significant human or environmental exposure; the size and nature of populations at risk (both human and other species) and risks for environment;

EHC 215: Vinyl Chloride

xiv

international concern, i.e. the substance is of major interest to several countries; adequate data on the hazards are available. If an EHC monograph is proposed for a chemical not on the priority list, the IPCS Secretariat consults with the Cooperating Organizations and all the Participating Institutions before embarking on the preparation of the monograph. Procedures The order of procedures that result in the publication of an EHC monograph is shown in the flow chart on p. xv. A designated staff member of IPCS, responsible for the scientific quality of the document, serves as Responsible Officer (RO). The IPCS Editor is responsible for layout and language. The first draft, prepared by consultants or, more usually, staff from an IPCS Participating Institution, is based initially on data provided from the International Register of Potentially Toxic Chemicals, and reference data bases such as Medline and Toxline. The draft document, when received by the RO, may require an initial review by a small panel of experts to determine its scientific quality and objectivity. Once the RO finds the document acceptable as a first draft, it is distributed, in its unedited form, to well over 150 EHC contact points throughout the world who are asked to comment on its completeness and accuracy and, where necessary, provide additional material. The contact points, usually designated by governments, may be Participating Institutions, IPCS Focal Points, or individual scientists known for their particular expertise. Generally some four months are allowed before the comments are considered by the RO and author(s). A second draft incorporating comments received and approved by the Director, IPCS, is then distributed to Task Group members, who carry out the peer review, at least six weeks before their meeting. The Task Group members serve as individual scientists, not as representatives of any organization, government or industry. Their function is to evaluate the accuracy, significance and relevance of the information in the document and to assess the health and environmental risks from exposure to the chemical. A summary and recommendations for further research and improved safety aspects are also required. The composition of the Task Group is dictated by the range of expertise required for the subject of the meeting and by the need for a balanced geographical distribution.

xv

EHC PREPARATION FLOW CHART

Possible meetingof a few expertsto resolvecontroversial issues

Revision asnecessary

PublicationProofs

Library forCIP data

Routine procedure

Optional procedure

Final editing

Word-processing

Camera-ready copy

Editing

Commitment to draft EHC

Printer

Document preparation initiated

Draft sent to IPCS Responsible Officer (RO)

Responsible Officer, Editor check for coherenceof text and readability (not language editing)

First Draft

International circulation to contact points (150+)

Comments to IPCS (RO)

Review of comments, reference cross-check;preparation of Task Group (TG) draft

Working group, if neededTask group meeting

Insertion of TG changes

Post-TG draft, detailed reference cross-checking

French/Spanishtranslations of SummaryGraphics

Approval by director, IPCS

WHO Publication Office

Editor

EHC 215: Vinyl Chloride

xvi

The three cooperating organizations of the IPCS recognize the important role played by nongovernmental organizations. Representatives from relevant national and international associations may be invited to join the Task Group as observers. Although observers may provide a valuable contribution to the process, they can only speak at the invitation of the Chairperson. Observers do not participate in the final evaluation of the chemical; this is the sole responsibility of the Task Group members. When the Task Group considers it to be appropriate, it may meet in camera. All individuals who as authors, consultants or advisers participate in the preparation of the EHC monograph must, in addition to serving in their personal capacity as scientists, inform the RO if at any time a conflict of interest, whether actual or potential, could be perceived in their work. They are required to sign a conflict of interest statement. Such a procedure ensures the transparency and probity of the process. When the Task Group has completed its review and the RO is satisfied as to the scientific correctness and completeness of the document, it then goes for language editing, reference checking and preparation of camera-ready copy. After approval by the Director, IPCS, the monograph is submitted to the WHO Office of Publications for printing. At this time a copy of the final draft is sent to the Chairperson and Rapporteur of the Task Group to check for any errors. It is accepted that the following criteria should initiate the updating of an EHC monograph: new data are available that would substantially change the evaluation; there is public concern for health or environmental effects of the agent because of greater exposure; an appreciable time period has elapsed since the last evaluation. All Participating Institutions are informed, through the EHC progress report, of the authors and institutions proposed for the drafting of the documents. A comprehensive file of all comments received on drafts of each EHC monograph is maintained and is available on request. The Chairpersons of Task Groups are briefed before each meeting on their role and responsibility in ensuring that these rules are followed.

xvii

WHO TASK GROUP ON ENVIRONMENTAL HEALTH CRITERIA FOR VINYL CHLORIDE

Members

Dr A. Barbin, International Agency for Research on Cancer, Lyon, France

Professor V.J. Feron, TNO Nutrition and Food Research Institute,

HE Zeist, Netherlands Ms P. Heikkilä, Uusimaa Regional Institute of Occupational Health,

Helsinki, Finland Dr J. Kielhorn, Chemical Risk Assessment, Fraunhofer Institute for

Toxicology and Aerosol Research, Hanover, Germany (Co-Rapporteur)

Professor M. Kogevinas, Respiratory and Environmental Health

Research Unit, Municipal Institute of Medical Investigation (IMIM), Barcelona, Spain

Mr H. Malcolm, Institute of Terrestrial Ecology, Monks Wood,

Abbots Ripton, Huntingdon, Cambridgeshire, United Kingdom (Co-Rapporteur)

Dr W. Pepelko, National Center for Environmental Assessment,

Office of Research and Development, US EPA, Washington DC, USA

Dr A. Pintér, National Institute of Environmental Health, Budapest,

Hungary (Vice-Chairman) Dr L. Simonato, Department of Oncology, University of Padua,

Venetian Tumours Registry, Padua, Italy Professor H. Vainio, Division of Health Risk Assessment, National

Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden (Chairman)

EHC 215: Vinyl Chloride

xviii

Dr E.M. Ward, Division of Surveillance Hazard, Evaluation and Field Studies, National Institute for Occupational Safety and Health (NIOSH), Robert Taft Laboratory, Cincinnati, Ohio, USA (Contact address: Environmental Cancer Epidemiology, International Agency for Research on Cancer, Lyon, France

Dr J.M. Zielinski, Biostatistics and Research Coordination Division,

Ottawa, Ontario, Canada Secretariat Dr A. Aitio, International Programme on Chemical Safety, World

Health Organization, Geneva, Switzerland (Secretary) Dr I. Mangelsdorf, Chemical Risk Assessment, Fraunhofer Institute

for Toxicology and Aerosol Research, Hanover, Germany Dr C. Melber, Chemical Risk Assessment, Fraunhofer Institute for

Toxicology and Aerosol Research, Hanover, Germany Dr U. Wahnschaffe, Chemical Risk Assessment, Fraunhofer

Institute for Toxicology and Aerosol Research, Hanover, Germany

xix

WHO TASK GROUP ON ENVIRONMENTAL HEALTH CRITERIA FOR VINYL CHLORIDE

A WHO Task Group on Environmental Health Criteria for Vinyl Chloride met at the Fraunhofer Institute for Toxicology and Aerosol Research, Hanover, Germany, from 25 to 29 January 1999. Professor H. Muhle welcomed the participants on behalf of the Institute and its Director, Professor U. Heinrich. Dr A. Aitio, IPCS, welcomed the participants on behalf of the Director, IPCS, and the three IPCS co-operating organisations (UNEP, ILO, and WHO). The Group reviewed and revised the draft and made an evaluation of the risks for human health and the environment from exposure to vinyl chloride.

The first and second drafts of this monograph were prepared,

under the co-ordination of Dr I. Mangelsdorf, by the authors Dr J. Kielhorn, Dr C. Melber and Dr U. Wahnschaffe. In the preparation of the second draft, the comments received from the IPCS contact points were carefully considered.

Dr A. Aitio of the IPCS Central Unit was responsible for the

scientific aspects of the monograph, and Dr P.G. Jenkins for the technical editing.

The efforts of all who helped in the preparation and finalisation of

the monograph are gratefully acknowledged.

* * * The Federal Ministry for the Environment, Nature Conservation

and Nuclear Safety, Germany, contributed financially to the preparation of this Environmental Health Criteria monograph, and the meeting was organised by the Fraunhofer Institute for Toxicology and Aerosol Research.

xx

ABBREVIATIONS

Epsilon A 1, N 6-ethenoadenine

Epsilon C 3, N 4-ethenocytosine

Epsilon dA 1, N 6-etheno-2'-deoxyadenosine

Epsilon dC 3, N 4-etheno-2'-deoxycytidine

Epsilon G ethenoguanine

7-OEG 7-(2'-oxoethyl)guanine

ALAT alanine aminotransferase

ASAT aspartate aminotransferase

ASL angiosarcoma of the liver

BCF bioconcentration factor

CA chromosomal aberration

CAA chloroacetaldehyde

CEO chloroethylene oxide

CI confidence interval (95% unless otherwise stated)

CNS central nervous system

CYP2E1 cytochrome P-450 isozyme 2e1

ECD electron capture detection

EDC 1,2-dichloroethane

FDA Food and Drug Administration (USA)

FID flame ionization detector

GC gas chromatography

GST glutathione S-transferase

HCC hepatocellular carcinoma

HLA human-leukocyte-associated antigen

HPLC high performance liquid chromatography

HWD hazardous waste dump

IR infrared

LOAEL lowest-observed-adverse-effect level

xxi

MN micronuclei

MOR morbidity odds ratio

MS mass spectrometry

MSW municipal solid waste

NER non-extractable residue

NOAEC no-observed-adverse-effect concentration

NOAEL no-observed-adverse-effect level

NOEL no-observed-effect level

PCDD polychlorinated dibenzodioxin

PCDF polychlorinated dibenzofuran

PCE tetrachloroethene (perchloroethene)

PID photoionization detector

PVC polyvinyl chloride

SCE sister chromatid exchange

SIR standardized incidence ratio

SLRL sex-linked recessive lethal

SMR standardized mortality ratio

TCE trichloroethene

TEQ toxic equivalent quantity

UV ultraviolet

VC vinyl chloride

VOC volatile organic compound

1

1. SUMMARY

This monograph deals with vinyl chloride (VC) monomer itselfand is not an evaluation of polyvinyl chloride (PVC), the polymer ofVC. Exposures to VC in mixtures are not addressed.

1.1 Identity, physical and chemical properties, and analytical methods

Under ambient conditions, VC is a colourless, flammable gas witha slightly sweet odour. It has a high vapour pressure, a high value forHenry’s Law constant and a relatively low water solubility. It isheavier than air and is soluble in almost all organic solvents. It istransported in liquid form under pressure.

At ambient temperatures in the absence of air, dry purified VC ishighly stable and non-corrosive but above 450 °C, or in the presenceof sodium or potassium hydroxide, partial decomposition can occur.Combustion of VC in air produces carbon dioxide and hydrogenchloride. With air and oxygen, very explosive peroxides can beformed, necessitating a continuous monitoring and limitation of theoxygen content, particularly in VC recovery plants. In the presence ofwater, hydrochloric acid is formed.

Polymerization reactions to PVC are technically the mostimportant reactions from an industrial view, but addition reactionswith other halogens at the double bond, e.g., to yield 1,1,2-trichloroethane or 1,1-dichloroethane, are also important.

The concentration of VC in air can be monitored by trapping it onadsorbents and, after liquid or thermal desorption, analysis by gaschromatography. In ambient air measurements, several adsorbents inseries or refrigerated traps may be needed to increase the efficiency oftrapping. Peak concentrations at workplaces can be measured withdirect-reading instruments based on, for instance, FID or PID. Incontinuous monitoring, IR and GC/FID analysers combined with datalogging and processing have been used. In analysis of VC in liquidsand solids, direct injection, extraction and more increasingly headspace or purge-and-trap techniques are applied. Also in thesesamples, VC is analysed by GC fitted to, for instance, FID or MSdetectors.

EHC 215: Vinyl Chloride______________________________________________________

2

1.2 Sources of human and environmental exposure

VC is not known to occur naturally although it has been found inlandfill gas and groundwater as a degradation product of chlorinatedhydrocarbons deposited as solvent wastes in landfills or in theenvironment of workplaces using such solvents. VC is also present incigarette smoke.

VC is produced industrially by two main reactions: a) thehydrochlorination of acetylene; and b) thermal cracking (at about500 /C) of 1,2-dichloroethane (EDC) produced by direct chlorination(ethylene and chlorine) or oxychlorination (ethylene, HCl and air/O2)of ethylene in the “balanced process”. The latter process is the mostusual nowadays.

The world production of PVC (and therefore VC) in 1998 wasabout 27 million tonnes. PVC accounts for 20% of plastics materialusage and is used in most industrial sectors. About 95% of the worldproduction of VC is used for the production of PVC. The remaindergoes into the production of chlorinated solvents, primarily 1,1,1-trichloroethane (10 000 tonnes/year).

Three main processes are used for the commercial production ofPVC: suspension (providing 80% of world production), emulsion(12%) and mass or bulk (8%). Most of the case studies describingadverse effects of VC concern plants using the suspension (also calleddispersion) process.

There have been reports of VC release through accidents in PVCplants or during transportation. VC recovery has been introduced inmany countries to recover residual non-converted VC frompolymerization and other sources of the process such as in off-gas andwater effluents. Where special precautions are not taken, VC can bedetected in PVC resins and products.

The level of residual VC in PVC has been regulated since the late1970s in many countries. Since then, release of VC from the thermaldegradation of PVC is either not detectable or is at very low levels.

Summary______________________________________________________

3

Dioxins can be formed as contaminants in VC production. Thelevels of dioxins emitted into the environment are controversial.

1.3 Environmental transport, distribution and transformation

Owing to its high vapour pressure, VC released to the atmosphereis expected to exist almost entirely in the vapour phase. There areindications for wet deposition.

VC has a relatively low solubility in water and has a lowadsorption capacity to particulate matter and sediment. Volatilizationof VC is the most rapid process for removal of VC introduced intosurface waters. Half-lives reported for volatilization from surfacewaters range from about 1 to 40 h.

Volatilization half-lives from soil were calculated to be 0.2–0.5days. Estimated losses of VC (after one year under a 1 m soil cover)ranged from 0.1–45%, depending on soil type. Soil sorptioncoefficients estimated from physicochemical data indicate a lowsorption potential and therefore a high mobility in soil. Anotherimportant distribution route is leaching through the soil intogroundwater where VC may persist for years.

Laboratory experiments with aquatic organisms showed somebioaccumulation, but no biomagnification within the foodchain.

With few exceptions, VC is not easily degraded by unadaptedmicrobial consortia under environmental conditions. Maximumunacclimated biodegradation half-lives of VC were estimated to be inthe order of several months or years. However, special enrichment orpure (e.g., Mycobacterium sp.) cultures are capable of degrading VCunder optimal culture conditions. The main degradation productswere glycolic acid or carbon dioxide after aerobic conversion andethane, ethene, methane or chloromethane after anaerobictransformation. Frequently, the degradation reaction of VC proceededfaster with aerobes than with anaerobes.

Reaction with photochemically produced OH radicals is thedominant atmospheric transformation process, resulting in calculated

EHC 215: Vinyl Chloride______________________________________________________

4

tropospheric half-lives of 1 to 4 days. Several critical compounds,such as chloroacetaldehyde, formaldehyde and formyl chloride, aregenerated during experimental photolysis reactions.

Photolytic reactions as well as chemical hydrolysis are thought tobe of minor importance in aqueous media. However, the presence ofphotosensitizers may enhance the transformation of VC.

There are indications for reactions of VC with chlorine orchloride used for water disinfection, thus leading tochloroacetaldehyde and other undesirable compounds. Anotherpossibility for interaction is with salts, many of which have the abilityto form complexes with VC, perhaps resulting in increased solubility.

Methods employed (with differing success) for removal of VCfrom contaminated waters include stripping, extraction, adsorptionand oxidation. Some in situ bioremediation techniques (forgroundwater or soil) couple evaporative and other methods withmicrobial treatment. VC in waste gases can be recycled, incineratedor microbially degraded. Most of the VC produced industrially isbound in PVC articles. Their incineration involves a risk of formationof PCDDs/PCDFs and other unwanted chlorinated organiccompounds.

1.4 Environmental levels and human exposure

There is very little exposure of the general population to VC.

Atmospheric concentrations of VC in ambient air are low, usuallyless than 3 :g/m3. Exposure of the general population may be higherin situations where large amounts of VC are accidentally released tothe environment, such as in a spill during transportation. However,such exposure is likely to be transient. Near VC/PVC industry andwaste disposal sites, much higher concentrations (up to 8000 :g/m3

and 100 :g/m3, respectively) have been recorded.

Indoor air concentrations in houses adjacent to land fills reachedmaximal concentrations of 1000 :g/m3.

The main route of occupational exposure is via inhalation andoccurs primarily in VC/PVC plants. Occupational exposures to VC

Summary______________________________________________________

5

amounted to several thousands of mg/m3 in the 1940s and 1950s, andwere several hundreds of mg/m3 in the 1960s and early 1970s. Afterthe recognition of the carcinogenic hazards of VC, occupationalexposure standards were set at approximately 13–26 mg/m3

(5–10 ppm) in most countries in the 1970s. Compliance with theseguidelines has considerably lowered workplace VC concentrations,but even in the 1990s higher concentrations have been reported andmay still be encountered in some countries.

VC has occasionally been detected in surface waters, sedimentand sewage sludges, with maxima of 570 :g/litre, 580 :g/kg, and62 000 :g/litre, respectively. Soil samples near an abandonedchemical cleaning shop contained very high VC concentrations (upto 900 mg/kg). Maximal VC concentrations in groundwater orleachate from areas contaminated with chlorinated hydrocarbonsamounted to 60 000 :g/litre (or more). High concentrations (up to200 mg/litre) were detected in well water in the vicinity of a PVCplant 10 years after leakages.

The few data available show that VC can be present in tissues ofsmall aquatic invertebrates and fish.

In the majority of drinking-water samples analysed, VC was notpresent at detectable concentrations. The maximum VC concentrationreported in finished drinking-water was 10 :g/litre. There is a lackof recent data on VC concentrations in drinking-water, but theselevels are expected to be below 10 :g/litre. If contaminated water isused as the source of drinking-water, higher exposures may occur.Some recent studies have identified VC in PVC-bottled drinking-water at levels below 1 :g/litre. The frequency of occurrence of VCin such water is expected to be higher than in tap water.

Packaging with certain PVC materials can result in VCcontamination of foodstuff, pharmaceutical or cosmetic products,including liquors (up to 20 mg/kg), vegetable oils (up to 18 mg/kg),vinegars (up to 9.8 mg/kg) and mouthwashes (up to 7.9 mg/kg).Owing to the legislative action of many countries, a significantreduction in VC levels and/or in the number of positive samples hasbeen achieved since the early 1970s.

EHC 215: Vinyl Chloride______________________________________________________

6

Dietary exposure to VC from PVC packages used for food hasbeen calculated by several agencies and, based upon estimated averageintakes in the United Kingdom and USA, an exposure of < 0.0004:g/kg per day was estimated for the late 1970s and early 1980s. Anearly study identified VC in tobacco smoke at the ng/cigarette range.

1.5 Kinetics and metabolism in laboratory animals and humans

VC is rapidly and well absorbed after inhalation or oral exposure.The primary route of exposure to VC is inhalation. In animal andhuman studies, under steady-state conditions, approximately 40% ofinspired VC is absorbed after exposure by inhalation. Animal studiesshowed an absorption of more than 95% after oral exposure. Dermalabsorption of VC in the gaseous state is not significant.

Data from oral and inhalation studies on rats indicate rapid andwidespread distribution of VC. Rapid metabolism and excretion limitsaccumulation of VC in the body. Placental transfer of VC occursrapidly in rats. No studies on distribution after dermal exposure havebeen reported.

The main route of metabolism of VC after inhalation or oraluptake involves oxidation by cytochrome P-450 (CYP2E1) to formchloroethylene oxide (CEO), a highly reactive, short-lived epoxidewhich rapidly rearranges to form chloroacetaldehyde (CAA). Theprimary detoxification reaction of these two reactive metabolites aswell as chloroacetic acid, the dehydrogenation product of CAA, isconjugation with glutathione catalysed by glutathione S-transferase.The conjugation products are further modified to substituted cysteinederivatives (S-(2-hydroxyethyl)-cysteine, N-acetyl-S-(2-hydroxyethyl)cysteine, S-carboxymethyl cysteine and thiodiglycolicacid) and are excreted via urine. The metabolite carbon dioxide isexhaled in air.

CYP2E1 and glutathione S-transferase isoenzymes are known tohave large inter-species and inter-individual variation in activity.

After inhalative or oral exposure to low doses, VC ismetabolically eliminated and non-volatile metabolites are excretedmainly in the urine. Comparative investigations of VC uptake via

Summary______________________________________________________

7

inhalation revealed a lower velocity of metabolic elimination inhumans than in laboratory animals, on a body weight basis. However,when corrected on a body surface area basis, the metabolic clearanceof VC in humans becomes comparable to that of other mammalianspecies. With increasing oral or inhalative exposure, the major routeof excretion in animals is exhalation of unchanged VC, indicatingsaturation of metabolic pathways. Independently of applied dose, theexcretion of metabolites via faeces is only a minor route. No studieswere located that specifically investigated excretion via the bile.

CEO is thought to be the most important metabolite in vivo,concerning the mutagenic and carcinogenic effects of VC. CEOreacts with DNA to produce the major adduct 7-(2'-oxoethyl)guanine(7-OEG), and, at lower levels, the exocyclic etheno adducts,1,N6-ethenoadenine (,A), 3,N4-ethenocytosine (,C) and N2,3-etheno-guanine (,G). The etheno DNA adducts exhibit pro-mutagenicproperties, in contrast to the major adduct 7-OEG. 7-OEG, ,A, ,Cand ,G have been measured in various tissues from rodents exposedto VC. Physiologically based toxicokinetic (PBTK) models have beendeveloped to describe the relationship between target tissue dose andtoxic end-points for VC.

1.6 Effects on laboratory mammals and in vitro test systems

VC appears to be of low acute toxicity when administered tovarious species by inhalation. The 2-h LC50 for rat, mouse, guinea-pigand rabbit were reported to be 390 000, 293 000, 595 000 and295 000 mg/m3, respectively. No data are available on acute toxicityafter oral or dermal application. VC has a narcotic effect after acuteinhalation administration. In rats, mice and hamsters, death waspreceded by increased motor activity, ataxia and convulsions, followedby respiratory failure. In dogs, severe cardiac arrythmias occurredunder narcosis after inhalative exposure to 260 000 mg/m3. Afteracute inhalation exposure to VC in rats, pathological findingsincluded congestion of the internal organs, particularly lung, liver andkidney, as well as pulmonary oedema.

No studies or relevant data are available for assessing effects ofdermal exposure, skin irritation or sensitizing property of VC.

EHC 215: Vinyl Chloride______________________________________________________

8

Short-term oral exposure to VC for 13 weeks in rats resulted ina no-observed-effect level (NOEL), based on increase in liver weight,of 30 mg/kg.

In various species, the main target organ for short-term (up to6 months) inhalation exposure to VC was the liver. Increases inrelative liver weights and hepatocellular changes were noted in ratsat 26 mg/m3 (the lowest dose level tested); at higher levels ($ 260mg/m3) more pronounced liver changes occurred in a dose-relatedmanner. Other target organs were the kidney, lung and testis. Rats,mice and rabbits seem to be more sensitive than guinea-pigs and dogs.

Long-term exposure to VC by inhalation resulted in statisticallysignificant increases in mortality in some strains of rats at a dose ofas low as 260 mg/m³, in mice at 130 mg/m³ and in hamsters at 520mg/m³ for various lengths of exposure. Rats exposed to 130 mg/m³showed reduced body weight and increased relative spleen weight,hepatocellular degeneration and proliferation of cells lining the liversinusoids. Exposure to higher levels produced degenerative alterationin the testis, tubular nephrosis and focal degeneration of themyocardium in rats. For rats and mice exposed via inhalation, the no-observed-adverse-effect level (NOAEL) concerning non-neoplasticeffects is below 130 mg/m³.

Chronic feeding studies showed increased mortality, increasedliver weights and morphological alteration of the liver.

After oral exposure, liver cell polymorphism (variation in sizeand shape of hepatocytes and their nuclei) could be seen in rats atlevels as low as 1.3 mg/kg body weight. The NOAEL was 0.13 mg/kgbody weight.

Long-term feeding studies in rats with VC in PVC granulesyielded significantly increased tumour incidences of liverangiosarcoma (ASL) at 5.0 mg/kg body weight per day and neoplasticliver nodules (females) and hepatocellular carcinoma (HCC) (males)at 1.3 mg/kg body weight per day.

In inhalation studies with VC in Sprague-Dawley rats, a cleardose–response relationship was observed for ASL and, at high

Summary______________________________________________________

9

concentrations, Zymbal gland carcinomas. No clear dose-dependencyfor hepatoma or extrahepatic angiosarcoma, nephroblastomas,neuroblastomas, or mammary malignant tumours was observed. Inmice, the spectrum of tumours induced by long-term inhalationexposure is similar to that observed in rats but an increase in lungtumours was only observed in mice. In hamsters, an increased tumourincidence of ASL, mammary gland and acoustic duct tumours,melanomas, stomach and skin epithelial tumours was reported.

The mutagenic and genotoxic effects of VC have been detected ina number of in vitro test systems, predominantly after metabolicactivation. VC is mutagenic in the Ames test in S. typhimuriumstrains TA100, TA1530 and TA1535 but not in TA98, TA1537 andTA1538, indicating mutations as a result of base-pair substitutions(transversion and transition) rather than frameshift mutations. Thisis in agreement with the finding that etheno-DNA adducts formed bythe reactive metabolites CEO and CAA convert to actual mutations bybase-pair substitutions.

Other gene mutation assays in bacteria, yeast cells andmammalian cells have revealed positive results exclusively in thepresence of metabolic activation. Mutagenic effects were also reportedin a human cell line containing cloned cytochrome P-450IIE1, whichis capable of metabolizing VC. Gene mutation was also detected inplant (Tradescantia) cuttings exposed to VC. In gene conversionassays, positive results were reported with Saccharomyces cerevisiaein the presence of a metabolic activation system. VC exposure inducedunscheduled DNA synthesis in rat hepatocytes and increased sister-chromatid exchange (SCE) in human lymphocytes after addition ofexogenic activation system. No growth inhibition was detected inDNA repair-deficient bacteria without metabolic activation. Celltransformation assays revealed positive results both with and withoutmetabolic activation.

VC exposure induced gene mutation and mitotic recombinationin Drosophila melanogaster but not gene mutation in mammaliangerm cells. VC showed clastogenic effects in rodents, increased SCEin hamsters and induced DNA breaks in mice. In host-mediated (rat)assays, VC induced gene conversion and forward mutations in yeast.

EHC 215: Vinyl Chloride______________________________________________________

10

CEO and CAA were found to be mutagenic in different testsystems. CEO is a potent mutagen, whereas CAA is highly toxic.CEO and CAA were found to be carcinogenic in mice, CEO beingmuch more active than CAA.

Mutations of the ras and p53 genes were analysed in livertumours induced by VC in Sprague-Dawley rats: base-pairsubstitutions were found in the Ha-ras gene in hepatocellularcarcinoma (HCC) and in the p53 gene in ASL. These mutations arein agreement with the observed formation and persistence of ethenoadducts in liver DNA, following exposure of rats to VC, and with theknown pro-mutagenic properties of etheno adducts.

Studies into the mechanism of carcinogenicity of VC suggest thatthe reactive epoxide intermediate CEO interacts with DNA to formetheno adducts, which result in a base-pair substitution leading toneoplastic transformation.

1.7 Effects on humans

Concentrations of VC in the region of 2590 mg/m3 (1000 ppm),which were not unusual prior to 1974, over periods ranging from 1month to several years, have been reported to cause a specificpathological syndrome found in VC workers called the “vinyl chlorideillness”. Symptoms described were earache and headache, dizziness,unclear vision, fatigue and lack of appetite, nausea, sleeplessness,breathlessness, stomachache, pain in the liver/spleen area, pain andtingling sensation in the arms/legs, cold sensation at the extremities,loss of libido and weight loss. Clinical findings included scleroderma-like changes in the fingers with subsequent bony changes in the tipsof the fingers described as acroosteolysis, peripheral circulatorychanges identical with the classical picture of Raynaud’s disease andenlargement of the liver and spleen with a specific histologicalappearance, and respiratory manifestations.

Studies in humans have not been adequate to confirm effects onthe reproductive system. A few morbidity studies have reportedelevated incidence of circulatory diseases among vinyl chlorideworkers. However, large cohort studies have found lowercardiovascular disease mortality.

Summary______________________________________________________

11

There is strong and consistent evidence from epidemiologicalstudies that VC exposure causes the rare tumour, angiosarcoma of theliver. Brain tumours and hepatocellular carcinoma of the liver mayalso be associated with VC, although the evidence cannot beconsidered definitive. Other cancer sites reported to be in excess, butless consistently, include lung, lymphatic and haematopoietic tissue,and skin.

VC is mutagenic and clastogenic in humans. Frequencies ofchromosomal aberrations (CA), micronuclei (MN) and SCE in theperipheral blood lymphocytes of workers exposed to high levels of VChave been shown to be raised compared to controls. Although in manystudies the exposure concentrations and duration of exposure wereonly estimated, a dose–response relationship and a “normalization”of genotoxic effects with time after reduction of exposure can be seen.

Point mutations have been detected in p53 and ras genes intumours from highly exposed (before 1974) autoclave workers withliver angiosarcoma (ASL) and another VC worker with hepatocellularcarcinoma.

Biological markers that have been investigated as indicators forVC exposure or VC-induced effects include a) excretion of VCmetabolites (e.g., thiodiglycolic acid), b) genetic assays (e.g.,chromosomal abnormalities or micronucleus assay), c) levels ofenzymes (e.g., in liver function tests), d) serum oncoproteins (p21 andp53) and/or their antibodies as biomarkers of VC-induced effects.

Children living near landfill sites and other point sources may beat increased risk based on suggested evidence of early life sensitivityin animal studies. However, there is no direct evidence in humans.

In epidemiological studies, a clear dose–response is only evidentfor ASL alone or in combination with other liver tumours. Only oneepidemiological study has sufficient data for quantitativedose–response estimation.

1.8 Effects on other organisms in the laboratory and field

There is a lack of standard toxicity data on the survival andreproduction of aquatic organisms exposed to VC. Care must be taken

EHC 215: Vinyl Chloride______________________________________________________

12

when interpreting the data that are available, as most of it wasgenerated from tests where the exposure concentration was notmeasured and therefore losses due to volatilization were not taken intoaccount.

The lowest concentration of VC that caused an effect inmicroorganisms was 40 mg/litre. This was an EC50 value based uponinhibition of respiration in anaerobic microorganisms in a batch assayover 3.5 days.

The lowest concentration that caused an effect in higherorganisms was 210 mg/litre (48-h LC50 for a freshwater fish); with acorresponding no-observed-adverse-effect concentration (NOAEC) of128 mg/litre. Effects due to VC have been reported at lowerconcentrations in other species, but the ecological significance ofthese effects was not verified.

VC concentrations predicted to be non-hazardous to freshwaterfish were calculated to range from 0.088 to 29 mg/litre.

There is a paucity of data concerning the effects of VC onterrestrial organisms.

328

RESUME

La présente monographie traite du chlorure de vinyle monomèrelui-même, à l’exclusion de son polymère, le chlorure de polyvinyle(PVC). Le problème de l’exposition à des mélanges contenant duchlorure de vinyle n’est pas abordé.

1. Identité, propriétés physiques et chimiques etméthodes d’analyse

Dans les conditions ambiantes, le chlorure de vinyle se présentesous la forme d’un gaz incolore inflammable à l’odeur douceâtre. Satension de vapeur est élevée, de même que la valeur de sa constantepour la loi d’Henry; sa solubilité dans l’eau est relativement faible. Ilest plus lourd que l’air et il est soluble dans presque tous les solvantsorganiques. On le transporte à l’état liquide sous pression.

A la température ambiante et en l’absence d’air, le chlorure devinyle pur et sec est très stable et non corrosif. Toutefois, au-dessus de450 °C ou en présence d’hydroxyde de sodium ou de potassium, ilpeut subir une décomposition partielle. Sa combustion dans l’airdonne naissance à du dioxyde de carbone et à du chlorured’hydrogène. En présence d’air et d’oxygène, des peroxydes trèsexplosifs peuvent se former, ce qui exige une surveillance permanenteet la limitation de la teneur en oxygène, en particulier dans lesinstallations de récupération du chlorure de vinyle. En présence d’eau,il se forme de l’acide chlorhydrique.

Du point de vue industriel, ce sont les réactions de polymérisationconduisant au chlorure de polyvinyle qui sont techniquement les plusimportantes, mais les réactions d’addition des halogènes sur la doubleliaison, qui conduisent au 1,1,2-trichloréthane ou au 1,1-dichloréthane, ont aussi leur importance.

On peut surveiller la concentration de chlorure de vinyle dansl’atmosphère en piégeant le composé sur un support adsorbant et enprocédant à une analyse par chromatographie en phase gazeuse aprèsdésorption liquide ou thermique. Pour le dosage dans l’air ambiant,il peut être nécessaire d’utiliser plusieurs supports adsorbants oupièges froids disposés en série pour mieux capter le composé. Les pics

Résumé______________________________________________________

329

de concentration sur les lieux de travail peuvent se mesurer au moyend’instruments à lecture directe utilisant notamment des détecteurs àionisation de flamme ou à photo-ionisation. Pour le contrôle encontinu, ont utilise des analyseurs basés sur la spectrophotométrieinfrarouge ou sur la chromatographie en phase gazeuse avec détectionpar ionisation de flamme et qui sont munis d’un systèmed’enregistrement et de traitement des données. Pour doser le chlorurede vinyle dans les liquides et les solides, on a recours à l’injectiondirecte, à l’extraction et de plus en plus, à la technique de l’espace detête ou à celle de purgeage-piégeage. Pour l’analyse de ceséchantillons, on utilise aussi la chromatographie en phase gazeuseavec détection par ionisation de flamme ou spectrométrie de masse.

2. Sources d’exposition humaine dans l’environnement

Le chlorure de vinyle n’existe pas à l’état naturel, même si on ena décelé la présence dans les gaz qui s’échappent des décharges etdans les eaux souterraines, par suite de la décomposition de rejets desolvants constitués d’hydrocarbures chlorés, ou encore dansl’environnement des lieux de travail où on fait usage de ce genre desolvants. Il y a également du chlorure de vinyle dans la fumée decigarette.

La production industrielle du chlorure de vinyle utilise deuxréactions principales: a) l’hydrochloration de l’acétylène et b) lecraquage thermique (à environ 500 °C) du 1,2-dichloréthane produitpar chloration ou oxychloration directes de l’éthylène par le chlore oupar un mélange HCl + air/O2. Ce procédé est actuellement le pluscouramment utilisé.

La production mondiale de PVC et par conséquent celle dechlorure de vinyle monomère a été d’environ 27 millions de tonnes en1998. Vingt pour cent des matières plastiques utilisées dans le mondesont à base de PVC et ce polymère se retrouve dans presque tous lessecteurs de l’industrie. Environ 95% de la production mondiale dechlorure de vinyle sert à la fabrication de PVC. Le reste est utilisépour la production de solvants chlorés, essentiellement du 1,1,1-trichloréthane (10 000 tonnes par an).

EHC 215: Vinyl Chloride______________________________________________________

330

Trois procédés principaux sont utilisés pour la productionindustrielle du PVC: la polymérisation en suspension (80% de laproduction mondiale), la polymérisation en émulsion (12%) et lapolymérisation en masse (8%). La plupart des études de cas faisantétat des effets nocifs du chlorure de vinyle concernent des usinesproduisant du PVC par polymérisation en suspension (on dit aussipolymérisation en perles).

On a signalé des émissions de chlorure de vinyle lors d’accidentssurvenus dans des usines produisant du PVC ou pendant le transport.Dans de nombreux pays, on récupère le chlorure de vinyle résiduelnon polymérisé lors de la production de PVC ou qui se trouve dans lesrejets gazeux ou les eaux usées. Faute de certaines précautions, il estpossible de retrouver du chlorure de vinyle dans les résines et autresproduits à base de PVC.

Le taux de chlorure de vinyle résiduel présent dans le PVC estréglementé dans de nombreux pays depuis la fin des années 1970.Depuis lors, les émissions de chlorure de vinyle dues à ladécomposition thermique du PVC sont soit indétectables, soit trèsfaibles.

Des dioxines peuvent se former lors de la production de chlorurede vinyle. Les quantités qui sont répandues dans l’environnement sontcontroversées.

3. Transport, distribution et transformation dansl’environnement

En raison de sa forte tension de vapeur, le chlorure de vinylelibéré dans l’environnement devrait exister presque uniquement enphase gazeuse. Il existe des indices de dépôts sous forme liquide.

Le chlorure de vinyle est relativement peu soluble dans l’eau et sacapacité d’adsorption aux particules et aux solides en suspension estfaible. C’est par volatilisation que le composé s’élimine le plusrapidement des eaux de surface. La demi-vie de volatilisation à partirdes eaux de surface varie d’environ 1h à 40 h.

Résumé______________________________________________________

331

A partir du sol, la demi-vie de volatilisation est, selon les calculs,égale à 0,2–0,5 jours. On estime que les pertes de chlorure de vinyle(au bout d’un an sous un mètre de terre) vont de 0,1 à 45%, selon letype de sol. Le coefficient de sorption pédologique tiré des donnéesphysico-chimiques indique que le potentiel de sorption du composé estfaible et que par conséquent il est très mobile dans le sol. Il existe uneautre voie importante de distribution dans l’environnement, à savoirle lessivage qui peut entraîner le chlorure de vinyle jusqu’aux nappesd’eau souterraines où il est susceptible de persister pendant desannées.

Les études de laboratoire portant sur des organismes aquatiquesrévèlent une certaine tendance à la bioaccumulation, mais pas debioamplification le long de la chaîne alimentaire.

A quelques exceptions près, le chlorure de vinyle ne se laisse pasfacilement dégrader par les groupements de microorganismesinadaptés dans les conditions ambiantes. On estime que la demi-viede biodégradation par des micro-organismes non acclimatés est del’ordre de plusieurs mois ou années. Toutefois, certaines culturesmicrobiennes enrichies ou pures (par exemple Mycobacterium sp.)sont capables de décomposer le chlorure de vinyle lorsque lesconditions culturales sont optimales. Les principaux produits dedégradation sont l’acide glycolique ou le dioxyde de carbone aprèsconversion aérobie et l’éthane, l’éthylène, le méthane ou lechlorométhane après transformation anaérobie. Souvent, lesmicroorganismes aérobies décomposent plus rapidement le chlorurede vinyle que les microorganismes anaérobies.

Le principal processus atmosphérique est la réaction avec lesradicaux OH produits par voie photochimique; la demi-vietroposphérique résultant de ce processus est de 1 à 4 jours. Lesréactions de photolyse réalisées dans des conditions expérimentalesdonnent naissance à plusieurs composés importants, comme lechloracétaldéhyde, le formaldéhyde et le chlorure de formyle.

On pense que les réactions de photolyse, de même que l’hydrolysechimique, sont de peu d’importance en milieu aqueux. Toutefois, laprésence de photosensibilisateurs peut faciliter la transformation duchlorure de vinyle.

EHC 215: Vinyl Chloride______________________________________________________

332

On a des raisons de penser que le chlorure de vinyle réagit avecle chlore ou les chlorures utilisés pour la désinfection de l’eau pourdonner du chloracétaldéhyde et autres composés indésirables. Il existed’autres interactions possibles, notamment avec les sels, dont ungrand nombre sont susceptibles de former des complexes avec lechlorure de vinyle, ce qui peut en accroître la solubilité.

Parmi les méthodes utilisées (avec des succès divers) pouréliminer le chlorure de vinyle présent dans l’eau, on peut citer lelavage, l’extraction, l’adsorption et l’oxydation. Certaines méthodesde biopurification (applicables aux eaux souterraines et aux sols)associent l’évaporation ou d’autres techniques à un traitementmicrobien. Le chlorure de vinyle présent dans les rejets gazeux peutêtre recyclé, incinéré ou décomposé par voie microbienne. La majeurepartie du chlorure de vinyle produit industriellement se retrouve àl’état lié dans des articles en PVC. L’incinération de ces produitscomporte un risque de formation de PCDD, de PCDF et d’autresdérivés chlorés indésirables.

4. Concentrations dans l’environnement et expositionhumaine

La population dans son ensemble est très peu exposée au chlorurede vinyle.

La concentration de chlorure de vinyle dans l’air ambiant estfaible, généralement inférieure à 3 :g/m3. La population peut êtredavantage exposée lorsque de grandes quantités de chlorure de vinylesont libérées accidentellement dans l’environnement, par exemple encas de déversement pendant le transport. Il s’agit cependant d’uneexposition qui a toutes chances d’être passagère. A proximité de sitesindustriels où l’on produit du chlorure de vinyle et du PVC ou près dedécharges, on a enregistré des concentrations beaucoup plus élevées(pouvant aller respectivement jusqu’à 8000 :g/m3 et 100 :g/m3).

La principale voie d’exposition professionnelle est la voierespiratoire et elle intervient principalement dans les usines quiproduisent du chlorure de vinyle et du PVC. Dans les années 1940 et1950, l’exposition professionnelle au chlorure de vinyle était deplusieurs milliers de mg/m3; elle atteignait encore plusieurs centaines

Résumé______________________________________________________

333

de mg/m3 dans les années 1960 et au début des années 1970.Une foisreconnu le risque cancérogène inhérent au chlorure de vinyle, lanorme d’exposition à ce composé a été fixée au cours des années 1970à environ 13–26 mg/m3 (5–10 ppm) dans la plupart des pays. Lerespect de ces directives a fait fortement chuter la concentration duchlorure de vinyle sur les lieux de travail, mais au cours des années1990 on a tout de même fait état de concentrations plus élevées et cepourrait encore être le cas actuellement dans quelques pays.

Il est arrivé que l’on trouve du chlorure de vinyle dans les eaux desurface, dans les sédiments et dans les boues d’égout, avec desconcentrations maximales respectivement égales à 570 :g/litre,580 :g/kg et 62 000 :g/litre. Des échantillons de sol prélevés prèsd’une teinturerie abandonnée se sont révélés présenter une forteteneur en chlorure de vinyle (jusqu’à 900 mg/kg) . On a mis enévidence des concentrations de l’ordre de 60 000 :g/litre oudavantage dans des eaux souterraines ou dans des eaux de lessivageprovenant de zones contaminées par des hydrocarbures chlorés. Desteneurs élevées (jusqu’à 200 mg/litre) ont également été mises enévidence, 10 ans après le repérage des premières fuites, dans l’eau depuits situés à proximité d’une usine de PVC.

Les quelques données disponibles montrent que les tissus despetits vertébrés aquatiques et des poissons peuvent contenir duchlorure de vinyle.

Dans la majorité des échantillons d’eau de boisson analysés, lechlorure de vinyle n’était pas présent à des concentrations décelables.La concentration maximale dont il ait été fait état était de 10 :g/litredans de l’eau prête à être consommée. On manque de donnéesrécentes sur la concentration du composé dans l’eau de boisson, maiselle devrait être inférieure à 10 :g/litre. Si la source utilisée pour laboisson est contaminée, l’exposition peut être plus importante. Desétudes récentes ont permis de déceler la présence de chlorure de vinyledans de l’eau minérale en bouteilles de PVC à une concentrationinférieure à 1 :g/litre. On peut penser que la présence de chlorure devinyle est plus fréquente dans ces eaux en bouteilles que dans l’eau durobinet.

L’utilisation de PVC pour l’emballage peut entraîner la présencede chlorure de vinyle dans les denrées alimentaires, les produits

EHC 215: Vinyl Chloride______________________________________________________

334

pharmaceutiques et les cosmétiques. On en a décelé jusqu’à 20 mg/kgdans des liqueurs, jusqu’à 18 mg/kg dans des huiles végétales etjusqu’à 9,8 mg/kg dans du vinaigre. Depuis le début des années 1970,le nombre d’échantillons contrôlés positifs pour le chlorure de vinyleest moindre et la concentration est plus faible qu’auparavant, grâceaux mesures législatives prises par un certain nombre de pays.

Plusieurs organismes ont calculé l’exposition au chlorure devinyle due à la contamination des denrées alimentaires par leuremballage de PVC. En se basant sur valeur estimative moyenne de ladose ingérée au Royaume-Uni et aux Etats-Unis, on a calculé qu’à lafin des années 1970 et au début des années 1980, l’exposition devaitêtre inférieure à 0,0004 :g/kg par jour. Une étude ancienne a misévidence du chlorure de vinyle dans la fumée de tabac à desconcentrations de quelques ng par cigarette.

5. Cinétique et métabolisme chez les animaux delaboratoire et l’Homme

Après inhalation ou ingestion, le chlorure de vinyle est facilementet rapidement absorbé. Des études effectuées sur des animaux et dessujets humains, dans des conditions d’équilibre dynamique, ontmontré qu’environ 40% de la dose inhalée étaient absorbés aprèsexposition par la voie respiratoire. L’expérimentation animale montreque l’absorption peut dépasser 95% après ingestion. L’absorptionpercutanée de chlorure de vinyle à l’état gazeux est peu importante.

Les données fournies par les études sur l’inhalation et l’ingestionde chlorure de vinyle par des rats montrent que le composé se répartitrapidement et largement dans l’organisme. Par suite d’unemétabolisation et d’une excrétion rapides, son accumulation estlimitée. Chez le rat, le passage transplacentaire se produit rapidement.On n’a pas connaissance d’études consacrées à la répartition ducomposé dans l’organisme après exposition par voie percutanée.

Après inhalation ou ingestion, la principale voie métaboliqueconsiste en une oxydation par le cytochrome P-450 (CYP2E1) quiconduit à la formation d’oxyde de chloréthylène, un époxyde à courtevie extrêmement réactif, qui se transpose très vite en chlor-acétaldéhyde. La principale réaction de détoxication de ces deux

Résumé______________________________________________________

335

métabolites réactifs ainsi que de l’acide chloracétique, produit dedéshydrogénation du chloracétaldéhyde, consiste en une conjugaisonavec le glutathion catalysée par la glutathion-S-transférase. Lesconjugués sont ensuite transformés en dérivés de la cystéine[S-(2-hydroxyéthyl)cystéine, N-acétyl-S-(2-hydroxyéthyl)cystéine,S-carboxyméthylcystéine et acide thiodiglycolique] et ils sont excrétésdans l’urine. Un autre métabolite, le dioxyde de carbone, est excrétédans l’air exhalé.

Les isozymes de la CYP2E1 et de la glutathion-S-transféraseprésentent d’importantes variations d’activité interspécifiques etinterindividuelles.

Après exposition par inhalation ou ingestion de faibles doses dechlorure de vinyle, le composé est éliminé par métabolisation et sesmétabolites non volatils sont principalement excrétés par la voieurinaire. L’étude comparée de l’absorption après inhalation montreque relativement au poids corporel, le chlorure de vinyle estmétabolisé moins rapidement par l’organisme humain que parl’organisme animal. Toutefois, si on tient compte de la superficie ducorps, on constate que la clairance métabolique est comparable chezl’Homme et chez les autres mammifères. Lorsque l’exposition -toujours par inhalation ou ingestion – est plus importante, laprincipale voie d’excrétion chez l’animal consiste dans l’éliminationdu composé initial dans l’air expiré, ce qui témoigne de la saturationdes voies métaboliques. Quelle que soit la dose, l’excrétion par la voiefécale est secondaire. On n’a pas trouvé d’étude qui soit spécialementconsacrée à l’excrétion par la voie biliaire.

On estime que l’oxyde de chloréthylène est le métabolite le plusimportant in vivo, pour ce qui est des effets cancérogènes etmutagènes du chlorure de vinyle. Cet époxyde réagit sur d’ADN pourformer un certain nombre d’adduits, principalement de la 7-(2N-oxoéthyl)guanine (7-OEG) et, en moindre quantité, des éthénoadduitsexocycliques comme la 1,N 6-éthénoadénine (,A), la 3,N 4-éthénocytosine (,C) et la N2,3-éthénoguanine (,G). Contrairement àl’adduit principal, la 7-OEG, ces éthénoadduits avec l’ADN ont despropriétés promutagènes . On a pu doser la 7-OEG, la ,A, la ,C et la,G dans les divers tissus de rongeurs exposés à du chlorure de vinyle.On a mis au point des modèles toxicocinétiques à base physiologique

EHC 215: Vinyl Chloride______________________________________________________

336

pour rendre compte de la relation entre la dose aux tissus cibles et lespoints d’aboutissement toxicologique du chlorure de vinyle.

6. Effets sur les mammifères de laboratoire et lessystèmes d’épreuve in vitro

Administré par inhalation à des animaux de plusieurs espèces, lechlorure de vinyle s’est révélé d’une faible toxicité aiguë. La CL50 à2 h pour le rat, la souris, le cobaye et le lapin a été trouvéerespectivement égale à 390 000, 293 000, 595 000 et 295 000 mg/m3.On ne possède aucune donnée sur la toxicité aiguë du composé parvoie orale ou percutanée. L’inhalation brutale de chlorure de vinylea un effet stuporeux. Chez des rats, des souris et des hamsters, la morta été précédée d’un accroissement de l’activité motrice, d’ataxie et deconvulsions suivies d’une défaillance respiratoire. Chez des chiensplongés dans un état stuporeux après exposition brutale à uneconcentration de 260 000 mg/m3, on a noté de graves arythmiescardiaques. Des rats, exposés par la voie respiratoire à du chlorure devinyle, ont présenté un certain nombre d’anomalies anatomopatho-logiques telles que congestion des organes internes, notamment despoumons, du foie et des reins, et oedème pulmonaire.

On ne dispose pas d’études ni de données appropriées quipermettent d’évaluer les effets de l’exposition par voie percutanée ouencore le pouvoir irritant ou sensibilisateur au niveau cutané.

Une exposition de courte durée (13 semaines) au chlorure devinyle par la voie orale a permis d’obtenir une valeur de 30 mg/kgpour la NOEL, c’est-à-dire la dose sans effet observable, le critèreretenu étant l’augmentation du poids du foie.

Chez plusieurs espèces, le principal organe cible après expositionde courte durée (jusqu’à 6 mois) par voie respiratoire se révèle être lefoie. Chez des rats soumis à une dose de 26 mg/m3 (la dose la plusfaible utilisée) on a constaté une augmentation du poids relatif du foieet des modification hépatocellulaires; à dose plus élevée($ 260 mg/m3), les anomalies hépatiques étaient plus prononcées etdépendaient de la dose. Les autres organes cibles étaient le rein, lepoumon et le testicule. Les rats, les souris et les lapins se sont révélésplus sensibles que les cobayes et les chiens.

Résumé______________________________________________________

337

Une exposition de longue durée par la voie respiratoire a entraînéune augmentation statistiquement significative de la mortalité chezcertaines souches de rats à des doses ne dépassant pas 260 mg/m3,chez des souris à la dose de 130 mg/m3 et chez des hamsters à la dosede 520 mg/m3 sur des durées d’exposition variables. Des rats exposésà une dose de 130 mg/m3 ont présenté une diminution du poidscorporel et une augmentation du poids relatif de la rate ainsi qu’unedégénérescence hépatocellulaire et une prolifération des cellulespariétales des capillaires sinusoïdes. A dose plus élevée, on a noté unedégénérescence testiculaire, une néphrose tubulaire et des foyers dedégénérescence au niveau du myocarde. Chez des rats et des sourisexposés par la voie respiratoire la dose sans effet nocif observable(NOAEL) est inférieure à 130 mg/m3 pour ce qui est des effetscancérogènes.

Des études d’alimentation de longue durée ont fait ressortir uneaugmentation de la mortalité, un accroissement du poids du foie etune modification de la morphologie de cet organe.

Après exposition par la voie orale, on a observé unpolymorphisme hépatocellulaire (variation de la taille et de la formedes hépatocytes et de leur noyau) chez des rats soumis à des doses dechlorure de vinyle ne dépassant pas 1,3 mg/kg de poids corporel. LaNOAEL était égale à 0,13 mg/kg de poids corporel.

Après administration prolongée à des rats de chlorure de vinyledans des granulés de PVC par la voie alimentaire, on a observé unaccroissement significatif de l’incidence des tumeurs au niveau dufoie. Il s’agissait d’angiosarcomes à la dose quotidienne de 5,0 mg/kgp.c., et de nodules néoplasiques (femelles) ou de carcinomes hépato-cellulaires (mâles) à la dose de 1,3 mg/kg p.c.

Des études au cours desquelles on a fait inhaler du chlorure devinyle à des rats Sprague-Dawley ont fait ressortir une relation dose-réponse dans le cas des angiosarcomes du foie et, à forteconcentration, pour les carcinomes de la glande de Zymbal. Enrevanche, on n’a pas observé de relation dose-réponse bien nette dansle cas des hépatomes ou des angiosarcomes extrahépatiques, desnéphroblastomes, des neuroblastomes ou des tumeurs des glandesmammaires. Chez la souris, le spectre tumoral induit par une

EHC 215: Vinyl Chloride______________________________________________________

338

exposition respiratoire de longue durée est analogue à celui que l’onobserve chez le rat, mais on a aussi noté une augmentation destumeurs pulmonaires propre à la souris. Chez des hamsters, on arelevé une augmentation de l’incidence des angiosarcomes hépatiques,des tumeurs des glandes mammaires et du conduit auditif, desmélanomes et des épithéliomas gastriques et cutanés.

Un certain nombre de systèmes d’épreuve in vitro ont permis demettre en évidence les effets mutagènes et génotoxiques du chlorurede vinyle, surtout après activation métabolique. Le composé s’estrévélé mutagène dans le test d’Ames sur les souches TA100, TA1530et TA1535 de S. typhimurium, à l’exclusion des souches TA98,TA1537 et TA1538, ce qui dénote des mutations par substitution depaires de bases (transversion et transition) plutôt que des mutationspar décalage du cadre de lecture. Ces résultats concordent avec uneautre observation, à savoir que les éthénoadduits qui se forment lorsde l’attaque de l’ADN par l’oxyde de chloréthylène et par lechloracétaldéhyde aboutissent effectivement à des mutations parsubstitution de paires de bases.

D’autres tests de mutation génique effectués sur des bactéries, deslevures et des cellules mammaliennes ont donné des résultats positifs,mais seulement en présence d’activation métabolique. Des effetsmutagènes ont également été observés dans des lignées cellulaireshumaines contenant le cytochrome P-450IIE1 obtenu par clonage, quiest capable de métaboliser le chlorure de vinyle. On a aussi décelé desmutations dans des fragments d’un végétal (Tradescantia) mis enprésence de chlorure de vinyle. Des tests de conversion génique ontdonné des résultats positifs dans le cas de Saccharomyces cerevisiaeen présence d’un système d’activation métabolique. En présence dechlorure de vinyle, des hépatocytes de rat ont été le siège d’unesynthèse non programmée de l’ADN et un accroissement deséchanges entre chromatides-soeurs a été observé dans des lymphocyteshumains après addition d’un système activateur exogène. Chez desbactéries dont le système de réparation de l’ADN était défectueux, onn’a pas décelé d’inhibition de la croissance en l’absence de systèmeactivateur. Les tests de transformation cellulaire ont donné desrésultats positifs avec ou sans activation métabolique.

Résumé______________________________________________________

339

Chez Drosophila melanogaster, l’exposition au chlorure de vinylea provoqué des mutations géniques et des recombinaisons mitotiques,mais ces effets n’ont pas été observés sur des cellules germinales demammifères. Le composé a des effets clastogènes chez des rongeurs,il augmente les échanges entre chromatides-soeurs chez le hamster etprovoque la rupture des brins de l’ADN chez la souris. Des tests parpassage sur hôte (rat) ont montré que le chlorure de vinyle provoquaitune conversion génique et les mutations directes chez des levures.

L’oxyde de chloréthylène et le chloracétaldéhyde se sont révélésmutagènes dans un certain nombre de systèmes. L’oxyde dechloréthylène est un mutagène puissant, alors que lechloracétaldéhyde est fortement toxique. Ces deux composés sontcancérogènes pour la souris, l’oxyde de chloréthylène étant de loin leplus actif.

Les mutations observées au niveau des gènes ras et p53 ont étéanalysées sur des tumeurs hépatiques induites chez des rats Sprague-Dawley par du chlorure de vinyle: dans les carcinomes, on a constatéla présence de substitutions de paires de bases au niveau du gène Ha-ras; dans les angiosarcomes, ces substitutions intéressaient le gènep53. La présence de ces mutations concorde avec la formation,observée après exposition au chlorure de vinyle, d’éthénoadduitspersistants dans l’ADN des hépatocytes, éthénoadduits dont onconnaît le caractère promutagène.

L’étude du mécanisme par lequel s’exerce l’effet cancérogène duchlorure de vinyle donne à penser que l’intermédiaire réactif queconstitue l’oxyde de chloréthylène attaque l’ADN pour former deséthénoadduits, ce qui conduit à la substitution de paires de bases et àla transformation néoplasique.

7. Effets sur l’Homme

L’exposition à des concentrations de l’ordre de 2590 mg/m3

(1000 ppm), qui n’étaient pas rares avant 1974, pendant des périodesde 1 mois à plusieurs années, seraient à l’origine d’un syndromepathologique particulier observé chez des ouvriers travaillant sur lechlorure de vinyle et appelé “maladie du chlorure de vinyle”. Lessymptômes évoqués consistaient en douleurs auriculaires et céphalées,étourdissements, troubles visuels, fatigue et perte d’appétit, nausées,

EHC 215: Vinyl Chloride______________________________________________________

340

insomnies, essoufflement, douleurs au niveau de l’estomac et dans larégion du foie et de la rate, douleurs et picotements dans les membres,sensation de froid aux extrémités, diminution de la libido et perte depoids. Sur le plan clinique, on a relevé au niveau des doigts desmodifications à type de sclérodermie évoluant vers des anomaliesosseuses qualifiées d’acro-ostéolyse, avec des anomalies de lacirculation périphérique identiques à celles qui sont caractéristiquesde la maladie de Raynaud, une hypertrophie du foie et de la rated’histologie particulière et des manifestations respiratoires.

Les études sur l’Homme ne sont pas suffisantes pour pouvoirconfirmer la présence d’effets sur la fonction de reproduction. Uncertain nombre d’études font état d’une augmentation de l’incidencedes affections de l’appareil circulatoire chez des ouvriers travaillantsur le chlorure de vinyle. Toutefois, les études effectuées sur descohortes d’effectif plus important ont mis en évidence une diminutionde la mortalité due aux maladies cardiovasculaires.

Les études épidémiologiques fournissent une argumentation solideet cohérente tendant à prouver que l’exposition au chlorure de vinyleprovoque une forme rare de cancer, l’angiosarcome du foie. On aégalement établi un lien entre certaines tumeurs cérébrales oucarcinomes hépatocellulaires et le chlorure de vinyle, sans qu’onpuisse considérer les données obtenues à cet égard comme définitives.Les autres localisations où l’on a observé une augmentation descancers sont le poumon, les tissus lymphatiques et hématopoïétiqueset la peau.

Le chlorure de vinyle a des effets mutagènes et clastogènes chezl’Homme. On a ainsi constaté que chez des ouvriers exposés à defortes concentrations de chlorure de vinyle, la fréquence desaberrations chromosomiques, des micronoyaux et des échanges entrechromatides-soeurs dans les lymphocytes du sang périphériques, étaitplus élevée que chez les témoins. Dans de nombreuses études,l’intensité et la durée de l’exposition ne sont qu’estimatives, mais onpeut néanmoins observer l’existence d’une relation dose–réponse etune “normalisation” des effets génotoxiques avec le temps lorsquel’exposition diminue.

Des mutations ponctuelles ont été décelées au niveau des gènesp53 et ras dans des tumeurs (angiosarcomes du foie) prélevées sur des

Résumé______________________________________________________

341

ouvriers très exposés travaillant sur des autoclaves (avant 1974) ainsique dans un carcinome hépatocellulaire dont était porteur un autreouvrier également exposé au chlorure de vinyle.

Parmi les marqueurs biologiques dont on a étudié la possibilitéd’utilisation comme indicateurs d’une exposition au chlorure devinyle, on peut citer a) l’excrétion de métabolites (par exemple l’acidethiodiglycolique), b) des marqueurs génétiques comme la présenced’anomalies chromosomiques ou de micronoyaux, c) le taux decertaines enzymes (par exemple celles qui sont mesurées dans les testsde la fonction hépatique), d) les oncoprotéines sériques et leursanticorps en tant que biomarqueurs des effets induits par le chlorurede vinyle.

Les enfants qui vivent à proximité de décharges et autres sourcesponctuelles d’exposition au chlorure de vinyle pourraient courir unrisque accru, compte tenu de la sensibilité plus forte constatée chez lesjeunes animaux. On n’a toutefois pas de preuves directes d’une tellesensibilité chez l’Homme.

C’est seulement dans le cas de l’angiosarcome du foie-seul ou enassociation avec d’autres tumeurs hépatiques - qu’une relationdose–réponse claire ressort des études épidémiologiques. Il n’existequ’une seule étude épidémiologique qui ait produit des donnéessuffisantes pour une estimation quantitative de la relationdose–réponse.

8. Effets sur les autres êtres vivants au laboratoire etdans leur milieu naturel

On manque des données toxicologiques habituelles au sujet de lasurvie et de la reproduction des organismes aquatiques exposés auchlorure de vinyle. Il faut interpréter avec prudence les donnéesdisponibles car pour la plupart, elles proviennent de tests au coursdesquels on n’a pas mesuré les concentrations auxquelles cesorganismes étaient exposés et il n’a donc pas été tenu compte despertes par volatilisation.

La concentration la plus faible de chlorure de vinyle qui produiseun effet sur des microorganismes a été trouvée égale à 40 mg/litre. Il

EHC 215: Vinyl Chloride______________________________________________________

342

s’agit d’une valeur de la CE50 obtenue lors d’un test statique de3,5 jours sur des microorganismes anaérobies pour lequel le critèreretenu était l’inhibition de la respiration.

La concentration la plus faible qui produise un effet sur desorganismes supérieurs a été trouvée égale à 210 mg/litre (CL50 à 48 hpour un poisson d’eau douce); avec une concentration sans effet nocifobservable (NOAEC) de 128 mg/litre. Chez d’autres espèces, on aconstaté des effets à plus faible concentration, mais la portéeécologique de ces effets n’a pas été vérifiée.

On peut prévoir que la concentration de chlorure de vinyle sanseffet nocif pour les poissons d’eau douce se situe entre 0,088 et29 mg/litre.

On manque de données concernant des effets du chlorure devinyle sur les organismes terrestres.

343

RESUMEN

Esta monografía se ocupa exclusivamente del cloruro de vinilo(VC) como monómero y no es una evaluación del cloruro de polivinilo(PVC), polímero del VC. No se tratan las exposiciones a mezclas conVC.

1. Identidad, propiedades físicas y químicas y métodosanalíticos

En condiciones normales, el VC es un gas incoloro, inflamable,con un olor ligeramente dulce. Tiene una presión de vapor alta, unvalor elevado para la constante de la Ley de Henry y una solubilidaden agua relativamente baja. Es más pesado que el aire y soluble encasi todos los disolventes orgánicos. Se transporta en forma líquidabajo presión.

A temperatura ambiente en ausencia de aire, el VC purificadoseco es muy estable y no corrosivo, pero por encima de 450 °C, o enpresencia de hidróxido sódico o potásico, se puede producir unadescomposición parcial. La combustión del VC en el aire produceanhídrido carbónico y cloruro de hidrógeno. En presencia de aire y deoxígeno, se pueden formar peróxidos muy explosivos, por lo que hayque mantener una vigilancia constante y limitar el contenido deoxígeno, en particular en las plantas de recuperación de VC. Enpresencia de agua se forma ácido clorhídrico.

Desde el punto de vista industrial, las reacciones depolimerización para obtener PVC son técnicamente las másimportantes, aunque también lo son las reacciones de adición conotros halógenos en el doble enlace, por ejemplo, para obtener 1,1,2-tricloroetano o 1,1-dicloroetano.

La concentración de VC en el aire se puede vigilar mediante suretención en adsorbentes y, tras la desorción líquida o térmica, elanálisis por cromatografía de gases. En las mediciones del aireambiente, se pueden necesitar varios adsorbentes en serie o colectoresrefrigerados para aumentar la eficacia de la retención. Lasconcentraciones máximas en los lugares de trabajo se pueden medircon instrumentos de lectura directa, por ejemplo basados en la

EHC 215: Vinyl Chloride______________________________________________________

344

detección por FID o la PID. En la vigilancia continua se han utilizadoanalizadores de rayos infrarrojos y de cromatografía degases/detección de ionización de llama combinados con el registro yprocesamiento de datos. En el análisis del VC en líquidos y sólidos seutilizan la inyección directa, la extracción y cada vez más las técnicasdel espacio libre superior y de purga y retención. En estas muestrastambién se analiza el VC mediante cromatografía de gases,combinada, por ejemplo, con detectores de ionización de llama o deespectrometría de masas.

2. Fuentes de exposición humana y ambiental

No se tiene conocimiento de que el VC se produzca de formanatural, aunque se ha encontrado en los gases de vertedero y en elagua freática como producto de la degradación de hidrocarburosclorados depositados como residuos de disolventes en los vertederoso en el entorno de lugares de trabajo en los que se utilizan dichosdisolventes. El VC también está presente en el humo de loscigarrillos.

La producción industrial de VC se lleva a cabo mediante dosreacciones principales: a) hidrocloración del acetileno; y b)descomposición térmica (a unos 500 °C) del 1,2-dicloroetanoproducido mediante cloración directa (etileno y cloro) o laoxicloración (etileno, ClH y aire/O2) de etileno en el “procesoequilibrado”. En la actualidad se utiliza más el segundo proceso.

La producción mundial de PVC (y por consiguiente de VC) en1998 fue de unos 27 millones de toneladas. El PVC representa el 20%del material plástico utilizado y se emplea en la mayoría de lossectores industriales. Alrededor del 95% de la producción mundial deVC se utiliza para la fabricación de PVC. El resto se destina a laproducción de disolventes clorados, fundamentalmente de 1,1,1-tricloroetano (10 000 toneladas/año).

Son tres los procesos principales que se utilizan en la fabricacióncomercial de PVC: suspensión (equivalente al 80% de la producciónmundial), emulsión (12%) y en masa o a granel (8%). La mayoría delos estudios monográficos en los que se describen efectos adversos delVC se refieren a instalaciones que utilizan el proceso de suspensión(llamado también de dispersión).

Resumen______________________________________________________

345

Hay varios informes de liberación de VC a causa de accidentes eninstalaciones de fabricación de PVC o durante el transporte. Ennumerosos países se ha introducido la recuperación del VC noconvertido residual procedente de la polimerización y de otras fuentesdel proceso, como por ejemplo los efluentes de gases residuales y deagua. Cuando no se toman precauciones especiales, se puede detectarVC en resinas y productos de PVC.

La concentración residual de VC en el PVC está reglamentada enmuchos países desde finales de los años setenta. Desde entonces, laliberación de VC a partir de la degradación térmica del PVC no esdetectable o se produce a niveles muy bajos.

En la producción de VC se pueden formar dioxinas comocontaminantes. Las concentraciones de dioxinas liberadas al medioambiente son un tema polémico.

3. Transporte, distribución y transformación en el medioambiente

Debido a su alta presión de vapor, cabe esperar que el VC que selibera a la atmósfera se mantenga casi totalmente en la fase de vapor.Hay indicios de deposición húmeda.

La solubilidad del VC en agua es relativamente baja y sucapacidad de adsorción a la materia particulada y los sedimentosescasa. La volatilización es el proceso más rápido de eliminación delVC que se incorpora al agua superficial. Se han notificado semividaspara la volatilización del agua superficial que oscilan entre alrededorde una y 40 horas.

Las semividas de volatilización a partir del suelo se calcularon en0,2–0,5 días. Las pérdidas estimadas de VC (tras un año bajo unacubierta de suelo de 1 m) oscilaron entre el 0,1% y el 45%, en funcióndel tipo de suelo. Los coeficientes de sorción en el suelo estimados apartir de datos fisicoquímicos indican un potencial escaso y, porconsiguiente, una movilidad alta en el suelo. Otra vía importante dedistribución es la lixiviación a través del suelo hacia el agua freática,donde el VC puede persistir durante años.

EHC 215: Vinyl Chloride______________________________________________________

346

En experimentos de laboratorio con organismos acuáticos seobservó una cierta bioacumulación, pero no hubo bioamplificación enla cadena alimentaria.

Salvo en un pequeño número de excepciones, las agrupacionesmicrobianas no adaptadas no degradan fácilmente el VC encondiciones normales. Se estimó que las semividas de biodegradaciónmáxima sin adaptación del VC eran del orden de varios meses o años.Sin embargo, los cultivos enriquecidos especiales o puros (porejemplo, Mycobacterium spp.) son capaces de degradar el CV encondiciones de cultivo óptimas. Los productos principales dedegradación fueron el ácido glicólico o el anhídrido carbónico tras laconversión aerobia y etano, eteno, metano o clorometano mediantetransformación anaerobia. Con frecuencia, la reacción de degradacióndel CV es más rápida por vía aerobia que anaerobia.

El proceso predominante de transformación en la atmósfera es lareacción con radicales OH producidos por vía fotoquímica, dandolugar a semividas en la troposfera estimadas en 1–4 días. Durante lasreacciones experimentales de fotolisis se generan varios compuestoscríticos, como cloroacetaldehído, formaldehído y cloruro de formilo.

Se considera que las relaciones fotolíticas, así como la hidrólisisquímica, tienen escasa importancia en los medios acuosos. Sinembargo, la presencia de fotosensibilizadores puede potenciar latransformación del VC.

Hay indicios de que el VC reacciona con el cloro o el cloruroutilizado en la desinfección del agua, produciendo de esta maneracloroacetaldehído y otros compuestos no deseados. Otra posibilidad deinteracción es con las sales, muchas de las cuales tienen la capacidadde formar complejos con el VC, aumentando tal vez su solubilidad.

Los métodos utilizados (con diferente éxito) para la eliminacióndel VC de las aguas contaminadas son la separación, la extracción, laadsorción y la oxidación. Algunas técnicas de biocorrección in situ(para el agua freática o el suelo) combinan la evaporación y otrosmétodos con el tratamiento microbiano. El VC de los gases dedesecho se puede reciclar, incinerar o degradar por mediosmicrobiológicos. La mayor parte del CV de producción industrial se

Resumen______________________________________________________

347

encuentra en los artículos de PVC. Con su incineración se corre elriesgo de que se formen dibenzodioxinas policloradas/dibenzofuranospoliclorados y otros compuestos orgánicos clorados perjudiciales.

4. Niveles medioambientales y exposición humana

La exposición de la población general al VC es muy pequeña.

Las concentraciones atmosféricas de VC en el aire ambiente sonbajas, normalmente inferiores a 3 :g/m3. La exposición de lapoblación general puede ser mayor en situaciones en las cuales sehaya producido una liberación accidental de grandes cantidades deVC a la atmósfera, por ejemplo por un escape durante el transporte.Sin embargo, esta exposición probablemente es transitoria. Cerca dezonas industriales y de eliminación de desechos de VC/PVC se hanregistrado concentraciones mucho más altas (hasta 8000 :g/m3 y 100:g/m3, respectivamente).

Las concentraciones en el aire de los espacios cerrados en casasadyacentes a vertederos alcanzaron concentraciones máximas de1000 :g/m3.

La vía más importante de exposición ocupacional es la inhalacióny se produce fundamentalmente en instalaciones de VC/PVC. Laexposición ocupacional al VC ascendió a varios miles de mg/m3 en losaños cuarenta y cincuenta y fue de varios cientos de mg/m3 en lossesenta y comienzo de los setenta. Tras el reconocimiento del peligrocarcinogénico del VC, en los años setenta se establecieron en lamayoría de los países normas de exposición ocupacional de alrededorde 13–26 mg/m3 (5–10 ppm). El cumplimiento de estas directrices hareducido considerablemente las concentraciones de VC en los lugaresde trabajo, pero incluso en los años noventa se han notificadoconcentraciones más altas, que se pueden encontrar todavía enalgunos países.

Ocasionalmente se ha detectado VC en aguas superficiales,sedimento y fangos cloacales, con máximos de 570 :g/litro, 580:g/kg y 62 000 :g/litro, respectivamente. Las muestras de suelorecogidas cerca de una tienda de productos químicos de limpiezaabandonada contenían concentraciones muy elevadas de VC (hasta

EHC 215: Vinyl Chloride______________________________________________________

348

900 mg/kg). Las concentraciones máximas de VC en el agua freáticao lixiviada de zonas contaminadas por hidrocarburos cloradosascendieron a 60 000 :g/litro (o más). Se detectaron concentracionesaltas (hasta 200 mg/litro) en el agua de un pozo cercano a unainstalación de PVC 10 años después de las filtraciones.

Los escasos datos disponibles ponen de manifiesto que el VCpuede estar presente en los tejidos de pequeños invertebradosacuáticos y de peces.

En la mayoría de las muestras de agua de bebida analizadas, nohabía VC presente en concentraciones detectables. La concentraciónmáxima de VC notificada en agua de bebida tratada fue de 10:g/litro. No se dispone de datos recientes sobre las concentracionesde VC en el agua de bebida, pero cabe prever que sean inferiores a 10:g/litro. Si se utiliza agua contaminada como fuente de agua debebida, se podrían producir exposiciones más elevadas. En algunosestudios recientes se ha identificado VC en agua de bebidaembotellada en envases de PVC en concentraciones inferiores a1 :g/litro. Probablemente sea más frecuente la presencia de VC eneste tipo de agua que en la de grifo.

El envasado con ciertos materiales de PVC puede producir lacontaminación por CV de productos alimenticios, farmacéuticos ocosméticos, incluso licores (hasta 20 mg/kg), aceites vegetales (hasta18 mg/kg), vinagres (hasta 9,8 mg/kg) y colutorios (hasta 7,9 mg/kg).Gracias a las medidas legislativas adoptadas por numerosos países,desde comienzos de los años setenta se ha logrado una reducciónsignificativa de las concentraciones de VC y/o en el número demuestras positivas.

Varios organismos han calculado la exposición al VC a través delos envases de PVC utilizados para productos alimenticios y, teniendocuenta el promedio de ingesta estimado en el Reino Unido y en losEstados Unidos, se calculó una exposición < 0,0004 :g/kg parafinales de los años setenta y comienzos de los ochenta. En un estudioinicial se identificó VC en el humo del tabaco en concentraciones delorden de ng/cigarrillo.

Resumen______________________________________________________

349

5. Cinética y metabolismo en animales de laboratorio yen el ser humano

Tras las exposición por inhalación o por vía oral, el VC seabsorbe con rapidez y facilidad. La vía primaria de exposición al VCes la inhalación. En estudios realizados con animales y con personasen condiciones estables, después de la exposición por inhalación seabsorbe aproximadamente el 40% del VC inspirado. En estudios deexposición oral con animales se observó una absorción de más del95%. La absorción cutánea al VC en estado gaseoso no essignificativa.

Los datos obtenidos en estudios de administración oral y porinhalación en ratas indican una distribución rápida y generalizada delVC. La rapidez del metabolismo y la excreción limita la acumulaciónde VC en el organismo. En las ratas se produce un desplazamientorápido del VC a través de la placenta. No se ha informado de estudiossobre distribución tras la exposición cutánea.

La principal ruta de metabolismo del CV después de la inhalacióno la ingestión oral consiste en la oxidación por el citocromo P-450(CYP2E1) para formar óxido de cloroetileno (CEO), epóxido muyreactivo de vida breve que reacciona de nuevo rápidamente paraformar cloroacetaldehído (CAA). La reacción primaria dedesintoxicación de estos dos metabolitos reactivos, así como del ácidocloroacético, producto de la deshidrogenación del CAA, es laconjugación con el glutatión en una reacción catalizada por laglutatión-S-transferasa. Los productos de la conjugación sufrenulteriores modificaciones para formar derivados de la cisteína consustituciones (S-(2-hidroxietil)-cisteína, N-acetil-S-(2-hidroxietil)cisteína, S-carboximetil cisteína y ácido tiodiglicólico) y se excretanen la orina. Otro metabolito, el anhídrido carbónico, se exhala en elaire.

Se sabe que el CYP2E1 y las isoenzimas de la glutatión-S-transferasa tienen variaciones individuales importantes de actividadinterespecíficas e intraespecíficas.

Tras la exposición por inhalación o por vía oral a dosis bajas, elCV se elimina metabólicamente y los metabolitos no volátiles seexcretan fundamentalmente en la orina. En investigacionescomparativas de la absorción de VC por inhalación se puso de

EHC 215: Vinyl Chloride______________________________________________________

350

manifiesto una velocidad de eliminación metabólica en el ser humanomenor que en los animales de laboratorio, en función del pesocorporal. Sin embargo, una vez corregida con arreglo a la superficiecorporal, la eliminación metabólica del VC en el ser humano escomparable a la observada en otras especies de mamíferos. Alaumentar la exposición oral o por inhalación, la vía más importantede excreción en los animales es la exhalación de VC inalterado, locual indica que hay una saturación de las rutas metabólicas. Conindependencia de la dosis aplicada, la excreción de metabolitos por lasheces es sólo una vía secundaria. No se encontraron estudios en losque se investigase específicamente la excreción por la bilis.

Se considera que el CEO es el metabolito más importante in vivocon respecto a los efectos mutagénicos y carcinogénicos del VC. ElCEO reacciona con el ADN para producir el aducto principal7-(2N-oxoetil)guanina (7-OEG) y, a niveles más bajos, los aductosexocíclicos de eteno, 1,N 6-etenoadenina (,A), 3,N 4-etenocitosina(,C) y N 2,3-etenoguanina (,G). Los aductos de eteno del ADN tienenpropiedades promutagénicas, a diferencia del aducto principal 7-OEG.Se han medido las concentraciones de 7-OEG, ,A, ,C y ,G endiversos tejidos de roedores expuestos al VC. Se han creado modelostoxicocinéticos con una base fisiológica para describir la relaciónentre la concentración en el tejido destinatario y los efectos finalestóxicos del VC.

6. Efectos en mamíferos de laboratorio y en sistemas deprueba in vitro

La toxicidad aguda del VC administrado por inhalación adiversas especies parece ser baja. Se notificaron CL50 a las 2 horaspara ratas, ratones, cobayas y conejos de 390 000, 293 000, 595 000y 295 000 mg/m3, respectivamente. No hay datos disponibles sobre latoxicidad aguda tras la administración oral o la aplicación cutánea. ElVC tiene un efecto estupefaciente después de la administración agudapor inhalación. En ratas, ratones y hámsteres, la muerte estuvoprecedida por un aumento de la actividad motora, ataxia yconvulsiones, y a continuación colapso respiratorio. En perros seprodujo una arritmia cardíaca grave en estado de narcosis tras laexposición por inhalación a 260 000 mg/m3. Después de la exposiciónaguda de ratas al VC por inhalación se observaron diversos efectos

Resumen______________________________________________________

351

patológicos, entre ellos congestión de los órganos internos, sobre todolos pulmones, el hígado y los riñones, así como edema pulmonar.

No hay estudios o datos importantes disponibles para laevaluación de los efectos de la exposición cutánea, la irritación de lapiel o la propiedad de sensibilización del VC.

De la exposición oral de ratas al VC durante un período breve de13 semanas se obtuvo una concentración sin efectos observados(NOEL), basada en el aumento de peso del hígado, de 30 mg/kg.

En diversas especies, el principal órgano destinatario en laexposición breve (hasta 6 meses) al VC por inhalación fue el hígado.Con una concentración de 26 mg/m3 (la dosis más baja utilizada) seobservaron en ratas un aumento del peso relativo del hígado ycambios hepatocelulares; a concentraciones superiores ($ 260 mg/m3)se produjeron también cambios hepáticos más acentuadosdependientes de la dosis. Otros órganos destinatarios fueron losriñones, los pulmones y los testículos. Las ratas, los ratones y losconejos parecen ser más sensibles que los cobayas y los perros.

La exposición prolongada al VC por inhalación produjo unaumento estadísticamente significativo de la mortalidad en algunasestirpes de ratas con concentraciones de sólo 260 mg/m3, en ratonescon 130 mg/m3 y en hámsteres con 520 mg/m3 para diversos períodosde exposición. Las ratas expuestas a 130 mg/m3 mostraron unareducción del peso corporal y un aumento del peso relativo del bazo,degeneración hepatocelular y proliferación de las células derevestimiento de los sinusoides del hígado. La exposición de ratas aconcentraciones más elevadas produjo una alteración degenerativa delos testículos, nefrosis tubular y degeneración focal del miocardio. Enratas y ratones expuestos por inhalación, la concentración sin efectosadversos observados (NOAEL) para los efectos no neoplásicos esinferior a 130 mg/m3.

En estudios de alimentación crónica se puso de manifiesto unaumento de la mortalidad, un peso mayor del hígado y una alteraciónmorfológica del hígado.

EHC 215: Vinyl Chloride______________________________________________________

352

Tras la exposición oral de ratas a concentraciones de sólo1,3 mg/kg de peso corporal se pudo observar polimorfismo de lascélulas hepáticas (variación del tamaño y la forma de los hepatocitosy sus núcleos). La NOAEL fue de 0,13 mg/kg de peso corporal.

En estudios prolongados de alimentación realizados en ratas congránulos de VC y PVC se produjo un aumento significativo de laincidencia del angiosarcoma hepático (ASH) con 5,0 mg/kg de pesocorporal al día y nódulos neoplásicos en el hígado (hembras) ycarcinoma hepatocelular (CHC) (machos) con 1,3 mg/kg de pesocorporal al día.

En estudios de inhalación de VC en ratas Sprague-Dawley seobservó una relación dosis-respuesta en el caso del ASH y, aconcentraciones más altas, carcinoma de las glándulas de Zymbal. Nose observó una dependencia clara de la dosis para el hepatoma o elangiosarcoma extrahepático, los nefroblastomas, los neuroblastomaso los tumores mamarios malignos. En ratones, el espectro de tumoresinducidos por la exposición prolongada mediante inhalación essemejante al observado en ratas, pero se detectó sólo en ratones unaumento de los tumores pulmonares. En hámsteres se notificó unaumento de la incidencia de tumores de ASH, tumores de lasglándulas mamarias y el conducto acústico, melanomas, tumores deestómago y del epitelio cutáneo.

Se han detectado efectos mutagénicos y genotóxicos del VC envarios sistemas de prueba in vitro, fundamentalmente después de laactivación metabólica. El VC tiene un efecto mutagénico en la pruebade Ames con las cepas TA100, TA1530 y TA1535 de S. typhimurium,pero no con las cepas TA98, TA1537 y TA1538, lo cual indica que lasmutaciones son el resultado de la sustitución de pares de bases(transversión y transición) más que de mutaciones por desfase. Estoestá en consonancia con el resultado de que los aductos de eteno delADN formados por los metabolitos reactivos CEO y CAA seconvierten en mutaciones reales mediante las sustituciones de paresde bases.

Otras valoraciones de mutaciones genéticas en bacterias,levaduras y células de mamíferos han puesto de manifiesto resultadospositivos exclusivamente en presencia de una activación metabólica.

Resumen______________________________________________________

353

Se notificaron asimismo efectos mutagénicos en una línea de célulashumanas con citocromo P-450IIE1 clonado, que es capaz demetabolizar el VC. También se detectó una mutación genética enesquejes de plantas (Tradescantia) expuestos al VC. En lasvaloraciones de la conversión genética, se notificaron resultadospositivos con Saccharomyces cerevisiae en presencia de un sistemade activación metabólica. La exposición al VC indujo síntesis noprogramada de ADN en hepatocitos de rata y un aumento delintercambio de crómatidas hermanas en linfocitos humanos tras laadición del sistema de activación exógeno. No se detectó inhibicióndel crecimiento en bacterias deficientes en enzimas de reparación delADN sin activación metabólica. En valoraciones de la transformacióncelular se obtuvieron resultados positivos con activación metabólicay sin ella.

La exposición al VC indujo mutaciones genéticas yrecombinación mitótica en Drosophila melanogaster, pero no produjoninguna mutación genética en células germinales de mamíferos. ElVC mostró efectos clastogénicos en roedores, aumentó el intercambiode cromátidas hermanas de hámster e indujo el fraccionamiento delADN en ratones. En valoraciones mediadas por huéspedes (ratas), elVC indujo una conversión genética y mutaciones adaptativas enlevaduras.

Se observó un efecto mutagénico del CEO y el CAA en diferentessistemas de prueba. El CEO es un mutágeno potente, mientras que elCAA es muy tóxico. Ambos mostraron efectos carcinogénicos enratones, siendo el CEO mucho más activo que el CAA.

Se analizaron las mutaciones de los genes ras y p53 en tumoresde hígado inducidos por el VC en ratas Sprague-Dawley: seencontraron sustiticiones de pares de bases en el gen Ha-ras en elcarcinoma hepatocelular y en el gen p-53 en el ASH. Estasmutaciones coinciden con la formación observada y la persistencia deaductos de eteno en el ADN del hígado, tras la exposición de ratas aVC, y con las propiedades promutagénicas conocidas de los aductosde eteno.

Los estudios sobre los mecanismos de la carcinogenicidad del VCparecen indicar que el epóxido intermedio reactivo CEO tiene unainteracción con el ADN para formar aductos de eteno, que dan lugara una sustitución de pares de bases que lleva a una transformaciónneoplásica.

EHC 215: Vinyl Chloride______________________________________________________

354

7. Efectos en el ser humano

Se ha notificado que concentraciones de VC del orden de2590 mg/m3 (1000 ppm), que no eran raras antes de 1974, duranteperiodos comprendidos entre un mes y varios años provocaban unsíndrome patológico específico observado en los trabajadores del VC,llamado “enfermedad del cloruro de vinilo”. Los síntomas descritosfueron dolor de oídos y de cabeza, vértigo, visión borrosa, cansancioy falta de apetito, náuseas, insomnio, dificultad respiratoria, dolor deestómago, dolor en la zona del hígado/bazo, dolor y sensación dehormigueo en los brazos y las piernas, sensación de frío en lasextremidades, pérdida de la libido y disminución del peso. Entre losresultados clínicos figuraron cambios en los dedos del tipo delescleroderma, con modificaciones óseas posteriores en la punta de losdedos descritas como acroosteólisis, cambios en la circulaciónperiférica idénticos a los clásicos de la enfermedad de Raynaud yagrandamiento del hígado y del bazo con una aspecto histológicoespecífico, así como manifestaciones respiratorias.

Los estudios en seres humanos no han sido adecuados paraconfirmar los efectos en el sistema reproductor. En un pequeñonúmero de estudios de morbilidad se ha notificado una elevadaincidencia de enfermedades circulatorias entre los trabajadoresrelacionados con el cloruro de vinilo. Sin embargo, en estudios decohortes amplios se ha observado una mortalidad más baja que ladebida a enfermedades cardiovasculares.

Hay pruebas manifiestas y convincentes obtenidas de estudiosepidemiológicos de que la exposición al VC produce un tumor raro,el angiosarcoma hepático. También pueden asociarse con el VC casosde tumores cerebrales y carcinoma hepatocelular, aunque las pruebasno pueden considerarse definitivas. Otros puntos notificados como deuna mayor incidencia de cáncer, pero de manera menos convincente,son el pulmón, los tejidos linfático y hematopoyético y la piel.

El VC es mutagénico y clastogénico en el ser humano. Se haobservado un aumento de la frecuencia de aberraciones cromosómicas,micronúcleos e intercambio de cromátidas hermanas en los linfocitosde la sangre periférica de los trabajadores expuestos a concentracioneselevadas de VC en comparación con los testigos. Aunque en muchos

Resumen______________________________________________________

355

estudios solamente se estimaron las concentraciones y la duración dela exposición, se puede observar una relación dosis-respuesta y la“normalización” de los efectos genotóxicos con el paso del tiempodespués de la reducción de la exposición.

Se han detectado mutaciones puntuales en los genes p 53 y ras entumores de personas que trabajaban con autoclaves y que estaban muyexpuestas (antes de 1974) afectadas de angiosarcoma hepático y enotro trabajador relacionado con el CV con carcinoma hepatocelular.

Los marcadores biológicos investigados como indicadores de laexposición al VC o de los efectos inducidos por el VC son lossiguientes: a) excreción de metabolitos del VC (por ejemplo, ácidotiodiglicólico), b) valoraciones genéticas (por ejemplo, anomalíascromosómicas o valoración de micronúcleos), c) concentraciones deenzimas (por ejemplo, en pruebas de la función hepática), d)oncoproteínas séricas (p21 y p53) y/o sus anticuerpos comobiomarcadores de los efectos inducidos por el VC.

Los niños que viven en lugares cercanos a vertederos y otrasfuentes puntuales pueden correr un riesgo mayor, tomando como baselas pruebas que parecen derivarse de la sensibilidad en las primerasfases de la vida en estudios realizados con animales. Sin embargo, nohay pruebas directas en el ser humano.

En los estudios epidemiológicos solamente hay una relacióndosis-respuesta clara para el angiocarcinoma hepático solo o encombinación con otros tumores del hígado. Sólo en un estudioepidemiológico hay datos suficientes para una estimación cuantitativade la relación dosis-respuesta.

8. Efectos en otros organismos en el laboratorio y en elmedio ambiente

Se carece de datos normalizados de toxicidad relativos a lasupervivencia y la reproducción de los organismos acuáticos expuestosal VC. Hay que interpretar con cautela los datos disponibles, porquela mayoría de ellos se obtuvieron en pruebas en las cuales no se midióla concentración de la exposición, por lo que no se tuvieron en cuentalas pérdidas debidas a la volatilización.

EHC 215: Vinyl Chloride______________________________________________________

356

La concentración más baja de VC que produjo un efecto en losmicroorganismos fue de 40 mg/litro. Fue un valor de la CE50 basadoen la inhibición de la respiración de microorganismos anaerobios enla valoración de un lote durante 3,5 días.

La concentración más baja que produjo un efecto en organismossuperiores fue de 210 mg/litro (CL50 a las 48 horas para un pez deagua dulce), con una concentración sin efectos adversos observados(NOAEC) correspondiente de 128 mg/litro. Se han notificado efectosen otras especies debidos a concentraciones más bajas de VC, pero nose comprobó la importancia ecológica de dichos efectos.

Las concentraciones de VC estimadas como no peligrosas para lospeces de agua dulce se calculó que oscilaban entre 0,088 y 29mg/litro.

Hay pocos datos sobre los efectos del VC en los organismosterrestres.