Environmental Engineering Science . PART # 16

29
Princi ples of W ater Quality Modeling Saumyen Guha 

Transcript of Environmental Engineering Science . PART # 16

Page 1: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 1/29

Principles of WaterQuality Modeling

Saumyen Guha 

Page 2: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 2/29

Outline

Models for small ponds and lakes: SingleCompartment Model

BOD-DO

General Mass-Balance Equation in 3-D

1-D models for rivers: with and withoutdispersion

Different source/sink scenarios in river

Page 3: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 3/29

Single Compartment Model

Key Assumption:Volume is Completely

mixed with uniform

concentration

C (t ): concentration, afunction of time (ML-3)

 M i: Source (MT-1)

S i: Sink (MT-1

)

V : Volume (L3), may be

a function of timeV, C 

Q in, C in Q out, C 

Page 4: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 4/29

Single Compartment Model: Water Balance

Volume Balance:

Qin: inflow to the lake/pond (L3T-1)

Qout : outflow from the lake/pond (L3T-1)G: exchange with groundwater flow (L3T-1)

 p: rate of precipitation (LT-1)

e: rate of evaporation (LT-1)

 A: surface area of the lake/pond (L2)

An initial condition required: V =V 0 at t =t 0

 Ae pGQQdt 

dV out in  

Page 5: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 5/29

Single Compartment Model: Mass Balance

An initial condition is required: C =C 0 at t =t 0

Solution Scenarios:Constant Volume: A reasonable assumption. Although volumedoes not remain constant throughout the year, once the volumeequation is solved for an annual cycle, the component mass

 balance equation can be solved for a few critical cases ofvolumes.

Steady State: inflow concentration, source and sink arereasonably constant for long period of time. Appropriate forlarge time scales and for engineered systems.

Unsteady State: inflow concentration, source and sink has largevariability in the chosen time scale. Appropriate for mostnatural systems.

iiout inin   S  M C QC Q

dt 

VC d 

Each Term has a dimension of MT-1!

Page 6: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 6/29

Single Compartment Model: Source/Sink 

All processes have to be parameterized. Final terms in

the equation should have a dimension of MT-1.

Page 7: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 7/29

Single Compartment Model: BOD in a

Small Lake/Pond

Steady State BOD for long-term steady input/output:

Time of dissipation for accidental spill in a clean lake,

initially at steady state:

Q

C C CV k QC QC 

dt 

VC d 

l in  

     

1 0 0

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

  

    t k 

in

t k 

in

l in

l l 

eV 

 M C 

k eC C 

 M C 

C k dt 

dC 

C C t CV k  M QC QC dt 

VC d 

  

  

 

  

11

0

0

11

1

 ,0at

 Always Check for Dimensional Consistency of each term! 

Page 8: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 8/29

Single Compartment Model: DO in a Small

Lake/Pond

Dissolved Oxygen:

Initial Condition: t =0, DO = DO0

k a = re-aeration mass transfer coefficient (LT-1)

k l = first order rate constant for BOD decay (LT-1)

 A s = top surface area at air-water interface (L2)

 Ab

= bottom surface area at sediment-water interface (L2)

k  sod = sediment oxygen demand (ML-2T-1)

 DO s = saturation dissolved oxygen concentration (ML-3)

Can be solved analytically for steady as well as

unsteady cases

  b sod  s sal in   Ak  A DO DOk CV k QDOQDO

dt 

VDOd 

Page 9: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 9/29

Single Compartment Model: Nitrogen

   

 

constants.tricstoichiomeare and . ,

, ,.. ,0at:ConditionsInitial

 

.

....

033022

0440

2342

23333

2342222

421444

1

.

324

3

2

4

321

niam

niam

b sod  s sal in

 NO

out inin

 NO

out inin

 NH 

out inin

 N Org 

out inin

k k k 

 f  f  NO NO NO NO

 NH  NH  N Org  N Org t

V  NOk  f V  NH k  f 

 Ak  A DO DOk CV k QDOQDOdt 

VDOd 

V  NOk  M  NOQ NOQdt 

 NOV d 

V  NOk V  NH k  M  NOQ NOQdt  NOV d 

V  NH k V  N Org k  M  NH Q NH Qdt 

 NH V d 

V  N Org k  M  N Org Q N Org Qdt 

 N Org V d 

 NO NO NH  N Org 

         

Page 10: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 10/29

Single Compartment Model: Time Varying Input

and Attenuation with Constant Flow and Volume

C in can have periodic variation, diurnal, seasonal or annual

M can be step input or periodic in nature, weekly, seasonal,

etc. (examples)

Time

M

Time

M

Page 11: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 11/29

Single Compartment Model: General Time

 Varying Flow/Source/Sink 

Flow:

Time varying source/sink:

Analytical solution does not exist for food-chain model and timevarying input. Use numerical method for coupled system of ODEs.

Simple methods such as Euler Implicit or Runge-Kutta (2nd

or 4th

order) should be good enough.

Watch the stability limit for time step if you are using explicit methodslike R-K!

If there are large differences in the kinetic constants of different processes, you may land up with stiff-system . Use BDF’s or Gear’smethods.

0

1

 ,0at C C t 

CV t k t  M C t Qt C t Qdt VC d 

  n

i

iout inin

 

  t  At et  pt Gt Qt Qdt 

dV out in  

Page 12: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 12/29

Single Compartment Model: Extension to

multiple compartments

Q 1 , C 1 V 1 , C 1 Q 01, C 01

Q 2 , C 2 V 2 , C 2 Q 02 , C 02 

Mass Flux (ML-2T-1) from

compartment i to j due to exchange

at the interface = - K (C i-C  j)

This leads to continuum approximation of the state variables as Δx → 0.

Page 13: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 13/29

Outline

Models for small ponds and lakes: SingleCompartment Model

BOD-DO

General Mass-Balance Equation in 3-D

1-D models for rivers: with and withoutdispersion

Different source/sink scenarios in river

Page 14: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 14/29

General Mass Balance: Representative Elementary Volume

 x

 y

 z C ( x, y, z, t ) is concentration

of contaminant (ML-3)

u = (u, v, w) is the velocity

vector (LT-1)

q=(q x , q y , q z ) is the net mass-

flux vector (ML-2

T-1

) D = Dispersion Coefficient

(L2T-1)

Source (mi) and Sink ( si)

inside the control volume

The system is monitored

for infinitesimal time

length t in the interval (t ,

t+  t )

D x

D y

D z 

q x x+D xq x

 x

q y y

q y y+D y

q z  z 

q z  z +D z 

Page 15: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 15/29

Mass Flux, Source and Sink 

Advection Flux (ML-2T-1): uC = (uC, vC, wC )

Dipersion Flux (ML-2T-1): Fick’s Law

Net Mass Flux (ML-2T-1): q = uC  –  D 

Source (ML-3

T-1

): mi , external addition, transfer fromanother phase, generation of secondary compounds, etc.

Sink (ML-3T-1): si , attenuation through physical, chemical, photochemical and biological pathways.

 

 

 

 

 z 

C  D

 y

C  D

 x

C  DC  D ,,

 z 

C  DwC q

 y

C  DvC q

 x

C  DuC q   z  y x

 , ,

Page 16: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 16/29

General Mass Balance Equation

C t + t  

x  

y  

z   – 

C t  

x  

y  

z =q x x   y  z  t   – q x x + x   y  z  t +

q y y  x   z  t   – q y y + y  x   z  t +

q z z  x   y   t  – q z z + z  x   y  t +

m i   x   y   z  t - s i   x   y  z  t 

Dimension of each term is M. Divide both sides

 by D x  D y  D z  Dt 

ii

 z 

 z 

 z 

 z  z 

 y

 y

 y

 y y x

 x

 x

 x xt t t   sm

 z 

qq

 y

qq

 x

qq

C C 

D

D

D

D

  DDDD

 x

 f 

 x

 f  f 

 x

 Lt  x x x

D

DD

0Let D x→0, D y→0, D z →0, Dt →0 and recognize

ii

 z  y x

 sm z 

q

 y

q

 x

q

Dimension of each term is ML-3T-1

Page 17: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 17/29

General Mass Balance Equation

iiii

 z  y x

 smt C  sm

 z q

 yq

 xq

t C 

qor

  iiii   smC  DC C  smC  DC t 

uuu

Continuity Equation for incompressible flow   q = 0

ii

ii

 sm z 

 y

 x

C  D

 z 

C w

 y

C v

 x

C u

 smC  DC t 

 

  

 

2

2

2

2

2

2

2 or  u

Each Term has a dimension of ML-3

T-1

!

Page 18: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 18/29

 A Comparison with single compartment model

V, C  Q in, C in Q out, C 

Cross Section A

Δx 

V = AΔ x

Use 1-D approximation

Difference approximation of

space derivative.

Steady Flow: Qin = Qout = QQ = uA

Completely mixed. Constant

concentration everywhere in

the box. Concentration

gradient is zero. Therefore,

Difffusion Flux is Zero due

to Fick’s Law.

V, C 

Q in, C in Q out, C 

Page 19: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 19/29

 A Comparison with single compartment model

ii   sm x

C  D

 x

C u

2

2

ii   sm z 

 y

 x

C  D z 

C w y

C v x

C ut 

 

  

 

2

2

2

2

2

2

 x A s x AmC C Q x Adt 

dC iiin   DDD )(

 x A s x Am x

C  x Au x Adt 

dC ii   DD

DDDD

iiin   S  M QC QC 

dt 

VC d 

Source/Sink terms in the continuum equation are same when divided by volume.

Can you identify approximation involved in each step?

Page 20: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 20/29

Models for small rivers or streams

ii   sm x

C u

Approximations:

• One dimensional advection: v = 0, w = 0

• Longitudinal Dispersion is negligible: D = 0

The Equation becomes:

Point Source 

Point Source 

Area Source 

Page 21: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 21/29

Point Source

Point Source: Qin (L3T-1), C in (ML-3)

 No entry in the governing equation. A point has zero

volume. The point has to be a physical boundary and

the boundary condition has to be specified. If the

location of the point discharge is ( x0), and the

discharge and concentration in the river at that point

are Qr0 and C r0, the boundary condition is given by:

0

000000  and ,At

QC QC QC C QQQQ x x   ininr r 

inr 

Page 22: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 22/29

Line Source

Line Source: qin (L2T-1), C in (ML-3)

If the volume addition is considered, u becomes

function of x. Often ignored unless substantial volume

is added.

Source Strength: sin = qin C in (ML-1T-1)

 A

C q

 A

 s

t  x A

t  x sm   inininin

i   DD

DD 

Cross Section A

Δx 

Line Source s in 

Page 23: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 23/29

 Area Source

Line Source: pin (LT-1), C in (ML-3)

If the volume addition is considered, u becomes

function of x. Often ignored unless substantial volume

is added.

Source Strength: ain = pin C in (ML-2T-1)

h

C  p

h

a

t  xbh

t  xbam   inininin

i  DDDD 

Δx 

Area Source a in 

Page 24: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 24/29

BOD-DO Model: Streeter-Phelps Equation

Assumptions: 1-D, Steady State, No Dispersion, First

order BOD decay, Re-aeration through air-water interface.

BOD Equation:

DO Equation:

Boundary Conditions:

 DO DOk C k dx

dDOu

 DO DO

h

k C k 

dx

dDOu

 sal 

 sa

or

C k dxdC u l 

00 and ,0at  DO DOC C  x  

Page 25: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 25/29

BOD-DO Model: Streeter-Phelps Equation

BOD Equation:

DO Equation:

Many packages exist to simulate Streeter-Phelps. Some

of these are: SIREM, MACRIV, QUAL2K 

 xk l 

eC C 

0

 

 

 

 

 

 xk 

 xk 

l a

l U 

 xk 

 s s

al a

ee

k k 

C k e DO DO DO DO 0

0

Page 26: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 26/29

Models for Large Rivers and Estuary 

Approximations: 1-D advection, v = 0, w = 0

General Equation: requires one initial and two boundary

conditions

Steady State: requires two boundary conditions

Typical BC’s:

ii   sm x

C  D

 x

C u

2

2

ii   smdx

C d  D

dx

dC u   2

2

 boundedis , as and ,0at0

  C  xC C  x  

Page 27: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 27/29

Modeling Rivers: Other Applications

The “continuum model” can be used to simulate all the

 processes that was done using the “single compartment model”

The source/sink terms M i and S i used to represent each process

in the “single compartment model” has to be replaced by mi

and si in the “continuum model”

These terms in the the “single compartment model” has

dimension of (MT-1) but in continuum model, they have

dimension of (ML-3T-1).

Each of these terms in the “single compartment model” has to

 be divided by the volume (V ) of the compartment in order to

obtain the equivalent term in the “continuum model”.

Page 28: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 28/29

Modeling Rivers: Example Nitrogen

 

 

         

2342

2333

234222

42144

1

.

324

3

2

4

321

.

...

 NOk  f  NH k  f h

k  DO DOk C k 

 DOu

 DO

 NOk mt 

 NOu

 NO

 NOk  NH k mt 

 NOu

 NO

 NH k  N Org k mt 

 NH u

 NH 

 N Org k mt 

 N Org u

 N Org 

 NO NO NH  N Org 

niam sod 

 sal 

 NO

 NO

 NH 

 N Org 

k k k 

Page 29: Environmental Engineering Science . PART # 16

8/10/2019 Environmental Engineering Science . PART # 16

http://slidepdf.com/reader/full/environmental-engineering-science-part-16 29/29

Thank You