Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

32
Entanglement Tsunami Hong Liu

Transcript of Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Page 1: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Entanglement Tsunami

Hong Liu

Page 2: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Josephine Suh Mark Mezei

Page 3: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Based on

HL and Josephine Suh, 1305.7244, PRL 112, 011601 (2014)HL and Josephine Suh, 1311.1200, PRD 89, 066012 (2014)HL, Mezei, Suh, unpublished, Casini, unpublishedCasini, Hubeny, HL, Maxfield, Mezei, Suh, to appear

See also

Hyungwon Kim and Huse arXiv:1306.4306

Shenker and Stanford arXiv: 1306.0622, 1312.3296

Hubeny and Maxfield arXiv: 1312.6887

Hartman and Maldacena arXiv:1303.1080

Page 4: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Entanglement generation

A B

How fast can entanglement be generated?

In most physical systems: Local Hamiltonian

C D

: UV cutoff

Page 5: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Small incremental entangling conjecture/theorem

A B

C D SA : entanglement entropy of A

For spin systems:

dC : dimension of Hilbert space of C

Dur, Vidal et al, Bravyi, KitaevBennett et al, Van Acoleyen, Marien, Verstraete

Page 6: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

A B

C D

For more general quantum systems, e.g. a QFT

In this talks we will describe some hints.

Page 7: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

A simple setup: global quenches

1. Start with a QFT in the ground state.

2. At t=0 in a very short time interval inject a uniform energy density • initial state homogeneous, isotropic, entanglement properties as vacuum

3. The system evolves to (thermal) equilibrium

A

Also a question of interest for thermalization.

Page 8: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

VA : volume of region A

In equilibrium, system behaves macroscopically as a thermal state, with entanglement entropy disguised as thermal entropy:

Essentially all d.o.f. inside A becomes long ranged entangled with those outside A.

Page 9: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

A A

essentially no long range entanglement

almost all d.o.f. long range entangled

t=0 equilibrium

Page 10: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Previous results in (1+1)-d CFTs

ΔS/Seq

t/RtS

1. Linear growth with time

Calabrese and Cardy

(not too early and too late)

2R

2. Slope = 1

3. Can be reproduced by free particles

Page 11: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Special techniques in one spatial dimension do not apply to higher dimensions:

• Equilibration processes: complicated non-equilibrium many-body dynamics, generally out of theoretical control.

• Entanglement entropy is notoriously difficult to calculate even for simple regions in the vacuum of a free theory, not to mention for general regions in interacting theories far from equilibrium.

Page 12: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

String theory to the rescue!

Page 13: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Earlier work:

Hubeny, Rangamani, Takayanagi: arXiv:0705.0016

Abajo-Arrastia, Aparicio and Lopez, arXiv:1006.4090

Albash and Johnson, arXiv:1008.3027

Balasubramanian, Bernamonti, de Boer, Copland, Craps, Keski-Vakkuri, Muller, Schafer, Shigemori, Staessens arXiv:1012.4753, arXiv:1103.2683

Aparicio and Lopez, arXiv:1109.3571

Caceres and A. Kundu, arXiv:1205.2354

……………

Page 14: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Holographic description of quench

quench: thin shell collapse to form a black hole.

Black hole

AdS

Page 15: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Holographic Entanglement entropyRyu, TakayanagiHubeny, Rangamani, Takayanagi

A

Extremal surface: M

Page 16: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

A

R: characteristic size of the region

Interested in long-distance physics:

Area:

Volume:

Page 17: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Gravity description

Each extremal surface can also be specified bythe location of (and boundary conditions at) the tip.

Page 18: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Large size and critical extremal surfaces

Critical extremal surfaces determinelarge R, large time behavior

In general a rather complicated problemto determine timeevolution of extremal surfaces

Page 19: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Four scaling regimes in general dimensions

Late timememory loss

Linear growth

In the large size R limit:

Saturation

Early quadratic growth

Page 20: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Linear growth

For

independent of shape, holographic theories under consideration, the nature of equilibrium state, also likelythermalization processes

vE: dimensionless number characterizing final eq state.

See also Hartman, Maldacena

: Equilibrium entropy density

Page 21: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Critical extremal surface for linear growth

: horizon size

The critical extremal surface runs along a constant radial slice inside the horizon

D: # of spatial dimensions

Determined by equilibrium state

Page 22: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Entanglement Tsunami

suggests a picture of tsunami wave of entanglement, with a sharp wave front.

natural with evolution from a local Hamiltonian

vE

A - vEt

d.o.f. in the region covered by the wave is now entangled with those outside A

Page 23: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Tsunami velocity

Neutral system (AdS Schwarzschild ):

Turning on chemical potential reduces vE.

Page 24: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Upper bound on vE ?

Null energy condition important

vE should be constrained by causality.

In all gravity examples:

Page 25: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Comparing with free particle streaming

Assume:

• At t=0, there is a uniform density of “photons” with only local entanglement correlations.

• Entanglement spreads when photons propagate.

Leading to shape independent linear growth,

Page 26: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

In strongly coupled systems, entanglement tsunami propagates faster than those from free particles traveling at speed of light !

For D=1:

HL, Mezei, SuhCasini

Page 27: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Bound on entanglement growth?

For any non-equilibrium processes:

Indications from gravity: after local equilibration (t >>1/T)

dimensionless, can be compared among region A of different shapes, sizes, and systems of different number of d.o.f.

Page 28: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Comparing with small incremental entangling conjecture/theorem:

A B

C D

Page 29: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Future directions

• More examples:

Both holographic and field theoretical

• Continuum limit of small incremental theorem

• Implications for black hole physics

• More physical intuition on

• Direct probe of entanglement tsunami

……………..

Page 30: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Thank You

Page 31: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Entanglement in the vacuum

A short-range entanglement near Σ, cutoff dependent

long range entanglement, insensitive to UV physics near Σ

Vacuum: R: characteristic size of A

Long ranged entangled d.o.f. are measure zero.

Page 32: Entanglement Tsunami Hong Liu. Josephine Suh Mark Mezei.

Entanglement in equilibrium stateThe system behaves macroscopically as a thermal state, with entanglement entropy disguised as thermal entropy:

Essentially all d.o.f. inside A becomes long ranged entangled with those outside A.

VA : volume of region A