ENHANCING SECURITY FOR SAP HANA IN THE...

20
White Paper SAP Co-Innovation Lab ENHANCING SECURITY FOR SAP HANA® IN THE CLOUD A COLLABORATIVE SAP® CO-INNOVATION LAB PROJECT WITH INTEL, VORMETRIC, AND VIRTUSTREAM Editors: Ashvin Kamaraju Sergio Pacheco-Sanchez September 2014 Version 1

Transcript of ENHANCING SECURITY FOR SAP HANA IN THE...

Page 1: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

 

White Paper SAP Co-Innovation Lab

 

ENHANCING SECURITY FOR SAP HANA® IN THE CLOUD A COLLABORATIVE SAP® CO-INNOVATION LAB PROJECT WITH INTEL, VORMETRIC, AND VIRTUSTREAM Editors: Ashvin Kamaraju Sergio Pacheco-Sanchez September 2014 Version 1

Page 2: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 2

Acknowledgements This  document   is   the  work  of   a   virtual   project   team  at   SAP  Co-­‐innovation  Lab,  whose  members   include:  David   Cruickshank   (SAP   SE),   Tariq   Ellahi   (SAP),   Roger   Guedes   (SAP),   Mark   Hourani   (SAP),   Heather   Li  (SAP),  Kevin   Liu*   (SAP),   Sergio   Pacheco-­‐Sanchez   (SAP),   Carmelo   Ragusa   (SAP),   Jay   Thoden   van   Velzen  (SAP),  Kathy  Barboza  (Intel  Corporation),  Todd  Christ  (Intel),  Martin  Guttmann  (Intel),  Bing  Wang*  (Intel),  Ashvin  Kamaraju*   (Vormetric,   Inc.),   Sridharan  Sudarsan   (Vormetric),  Carlos  Wong   (Vormetric),  Michael  Powell   (Virtustream   Inc.),   Gregsie   Leighton   (Virtustream),   Vince   Lubsey*   (Virtustream),   Pete   Nicoletti  (Virtustream),  and  many  colleagues  from  the  participating  companies  who  helped  with  this  project.        *  project  lead  from  each  participating  company    

Page 3: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 3

1 Executive Summary With   corporate   and   government   data   breaches   in   daily   headlines,   it   is   no   longer   sufficient   to   secure   just   the  perimeter   of   data   centers.   Data,   which   is   the  most   important   asset   of   every   enterprise,  must   be   secured   using   a  combination  of   access   controls,  mature   key  management,   and   encryption.   This   is   even  more  pertinent  when   such  data  is  stored  in  the  cloud,  where  others  are  managing  the  customers’  systems  and  may  have  access  to  client  data.    However,   the   overhead   of   encrypting   data   often   leads   to   tradeoffs   between   performance   and   security.   Thanks   to  recent   innovations   in   hardware   to   accelerate   encryption   at   the   processor   level,   such   tradeoffs   are   no   longer  necessary.  Intel  introduced  a  set  of  six  instructions,  called  AES-­‐NI  (Advanced  Encryption  Standard  New  Instructions)  in  its  Xeon  E7  processor  family.  These  instructions  accelerate  encryption  using  the  AES  algorithms,  thereby  reducing  the  performance   overhead   associated  with   encryption.   Since   the   introduction   of   AES-­‐NI,   Intel   has   been   improving   the  AES-­‐NI   performance   with   better   pipelining   and   other   optimizations   in   its   Xeon   E7   V2   and   Xeon   E5   V3   processor  family.      Vormetric,   a   leader   in   encryption   software,   has   been   working   closely   with   Intel   to   exploit   the   AES-­‐NI   hardware  acceleration  with  a  new  multi-­‐threaded  encryption  engine.  This  has  led  to  significant  performance  breakthroughs  for  a  variety  of  enterprise  workloads  required  for  mission-­‐critical  applications.    The  SAP  HANA®  platform,  which  is  used  by  enterprises  both  for  transactional  data  operations  as  well  as  for  real-­‐time  analytics,   delivers   high-­‐performance   throughput   as   well   as   low   latency.   SAP   HANA   stores   and   processes   sensitive  enterprise  data  that  must  be  secured  in  order  to  meet  industry-­‐specific  regulatory  requirements,  as  well  as  offering  real  security   in  an  age  of  porous  perimeters.  With  SAP  HANA  deployed   in  the  cloud  and  offered  as  a  service,  cloud  security,  especially  data  security,  becomes  even  more  important.    With   the   recent   AES-­‐NI   innovations   in   the   Intel   Xeon   processor   family   and   the   Vormetric   encryption   software  enhancements  optimally  exploiting  AES  NI,  large  data  sets  on  SAP  HANA  can  be  encrypted  or  decrypted  with  virtually  no  performance  overhead.    SAP®  Co-­‐innovation  Lab  has  shown  through  a  series  of  tests  that  we  can:  

• Secure  customers’  data  using  a  combination  of  access  controls  and  encryption  • Lock  cloud  administrators  out  of  access  to  the  data  without  impeding  their  ability  to  perform  administrative  

tasks  (and  even  applying  to  “root”  accounts)  • Leave  the  owner  of  the  data  in  full  control  of  the  encryption  keys  

                 

Page 4: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 4

Table  of  Contents  1   Executive Summary ...................................................................................................................................... 3  

2   Introduction .................................................................................................................................................... 5  2.1   Project scope ................................................................................................................................................... 6  

3   SAP HANA ...................................................................................................................................................... 7  

4   Vormetric Technology ................................................................................................................................... 8  

5   Performance Evaluation ............................................................................................................................. 10  

6   System Landscape ...................................................................................................................................... 11  6.1   System configurations ................................................................................................................................... 11  6.2   Software configurations ................................................................................................................................. 11  

7   Experimentation Plan .................................................................................................................................. 12  

8   Performance Evaluation Results and Analysis ........................................................................................ 14  8.1   OLTP-Bench workload .................................................................................................................................. 14  8.2   SAP-OLTP workload ..................................................................................................................................... 15  8.3   SAP-OLAP workload ..................................................................................................................................... 17  

9   Summary ...................................................................................................................................................... 19  

10   References ................................................................................................................................................... 19  

Page 5: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 5

2 Introduction With   several   powerful   trends   playing   out   in   the   industry   –   real-­‐time   data   analytics,   cloud   computing,   increasing  regulatory  requirements  for  data  protection,  and  a  daily  stream  of  news  of  security  breaches  –  security  becomes  the  catalyst  for  migrating  enterprise  workloads  to  the  cloud.    Many   companies   are   using,   or   planning   to   perform,   sophisticated   predictive   and   prescriptive   analytics   on   all   their  data   using   SAP   HANA   (Intel   Real-­‐Time   Business   Intelligence,   2014).   Achieving   full   value   from   SAP   HANA   requires  integrating  and  analyzing  core  business  data,  which  typically  includes  both  sensitive  customer  information  as  well  as  an  enterprise’s   intellectual  property.  Data  must  be  secured  using  encryption  and  access  control   in  order   to  comply  with  regulatory  requirements  and  to  protect  against  data  breaches.    Security  is  even  more  important  when  hosting  sensitive  data  in  the  cloud,  in  a  service  provider’s  data  center.  There  is  an  inherent  loss  of  control  when  using  a  cloud  hosting  provider  as  suddenly,  others  are  administering  the  customers’  technology   landscapes.   While   a   partner   relationship   implies   trust,   this   does   not   necessarily   protect   a   customer  against  rogue  employees  at  the  cloud  hosting  provider.  Nor  does  a  trusted  partner  relationship  protect  against  state  actors  who  might   compel   such  providers   to   hand  over   data,   potentially   even  preventing   them   from   informing   the  customer.  We  can  dramatically   increase  the  trust   levels  between  cloud  hosting  providers  and  their  customers   if  we  can  demonstrate  that:  

• Any  cloud  administrator  managing  customers’  applications  and  cloud  infrastructure  does  not  have  access  to  customers’  sensitive  data  

• Such  data  is  encrypted  on  disk  with  the  customer  as  the  owner  of  the  data  holding  the  encryption  keys    To  address  potential  performance  impact  associated  with  data  protection  of  large  data  sets  and  enterprise  workloads  on  SAP  HANA,  SAP,  Vormetric,  Intel,  and  Virtustream  collaborated  at  SAP  Co-­‐innovation  Lab  to  address  the  following:      

1. Secure  SAP  HANA  data  and  log  volumes  using  Vormetric  Transparent  Encryption  and  Data  Security  Manager  technologies    

2. Quantify  the  performance  overhead  required  for  the  data  encryption  solution  for  SAP  HANA      

The  results  derived  of  this  project  have  demonstrated:  • Robust  security  enabling  customers  to  become  the  custodians  of  their  encryption  keys    • Effective  enablement  of  data-­‐access  control  policies    • Minimal  performance  overhead  required  to  encrypt  large  data  sets  for  solutions  running  on  SAP  HANA    

 Vormetric  solutions  not  only  complement  cloud  security  best  practices,  but  also  provide  security   for   the  enterprise  customers’  data,  and  help  customers  comply  with  regulatory  requirements.      Figure  1  illustrates  a  deployment  model  where  the  Vormetric  Data  Security  Manager  (DSM)  resides  on  the  customer’s  premises  while  the  SAP  HANA  database  and  the  related  server  and  storage  infrastructure  resides  in  the  data  center  of  a  service  provider  such  as  Virtustream.  The  DSM  is  used  by  the  customer  to  define  the  policies  that  govern  access  to  the   SAP   HANA   database   and   encryption   of   data   sets   in   SAP   HANA.   Because   the   DSM   resides   on   the   customer’s  premise,  the  customer  becomes  the  custodian  of  the  policies  and  encryption  keys,  and  only  the  customer’s  security  administrators   are   authorized   to   define   the   polices   and   the   encryption   keys   used   in   these   policies.   The   service  provider’s  operational  personnel  can  provision  the  necessary  infrastructure  and  update  all  relevant  software,  but  will  

Page 6: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 6

not  have  access  to  the  data.  This  separation  of  duties,  which  allows  the  customer  to  be  the  custodian  of  encryption  keys,  enhances  the  security  of  SAP  HANA  when  it  is  deployed  in  the  cloud.    

Figure 1. Vormetric Security Solution for SAP HANA in the cloud

2.1 Project scope

The  scope  of  this  project  executed  by  teams  across  SAP,  Vormetric,  Intel,  and  Virtustream  at  SAP  Co-­‐innovation  Lab  and  SAP  facilities  has  focused  on:      

1. Installation   and   configuration   of   Vormetric   Data   Security   Transparent   Encryption   on   SAP   HANA   database  servers  

2. Management   of   the   Vormetric   Data   Security  Manager   by   creating   encryption   keys   and   necessary   security  policies  that  define  encryption  settings  and  access  to  user’s  data  

3. Measuring   the   performance   overhead   of   the   system   while   the   Vormetric   Data   Security   Transparent  Encryption  solution  is  enabled  for  a  defined  set  of  workloads  

 The  aforementioned  performance  overhead  investigation  accounts  for  two  generations  of  the Intel®  Xeon®  Processor  E7-­‐4800  product  family.    

Page 7: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 7

3 SAP HANA High-­‐speed  data  analytics   is  changing  the  way  companies  compete,  enabling  them  to  generate  real-­‐time  insights  to  support  their  most  important  business  processes.  The  SAP  HANA  platform  is  a  clear  leader  in  this  arena,  providing  not  just  a  uniquely  fast  and  adaptable  platform  for  real-­‐time  business,  but  as  well  to  ultimately  coexist  and  integrate  with  other  cloud  technologies.    Cloud   computing   provides   game-­‐changing   capabilities   for   business   computing.   Yet   many   companies   have   been  reluctant  to  deploy  mission-­‐critical  applications  such  as  SAP  HANA  in  cloud  environments.  Customers  today  recognize  the  potential  benefits  and  want  nothing  more  than  to  run  all  applications   from  the  cloud;  yet   they  all  have  unique  requirements  regarding  security  and  compliance.  Virtustream  answers  those  security  and  compliance  concerns  with  a  global   cloud   infrastructure   designed   specifically   for   hosting   mission-­‐critical   workloads.   Now   Virtustream   is   taking  cloud  security  to  even  higher  levels  by  integrating  Vormetric  Data  Security  into  its  cloud  infrastructure  and  utilizing  a  variety   of   security   technologies   that   are   built   into   the   latest   Intel   Xeon   processor   E7   V2   family.   Intel,   Vormetric,  Virtustream,  and  SAP  have  been  working  together  in  SAP  Co-­‐Innovation  Lab  to  integrate  and  test  this  solution.    With  this  enhanced  security  architecture,  customers  can  implement  even  stronger  data  encryption  and  more  granular  access  controls  for  SAP  HANA.  Most   important,  customers  retain  complete  control  over  their  data   in  this  enhanced  cloud   environment.   And   with   SAP   HANA   running   on   the   latest   Intel   Xeon   processor   E7   V2   family,   customers   can  experience   real-­‐time   performance   across   very   large   data   sets   –   up   to   three   times   larger   than   could   be   supported  using  previous-­‐generation  platforms  such  as  the  ones  configured  with  Xeon  E7  family.  

Page 8: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 8

4 Vormetric Technology Overview:  The  Vormetric  Data  Security  solution  consists  of  two  distinct  components  that  work  in  tandem:      

• Vormetric   Data   Security   Manager   (DSM),   which   is   used   by   the   security   administrator(s)   to   define  policies   rules   and   encryption   keys   for   each   of   the   data   servers  where   access   to   the   data  must   be  controlled  and  the  data  must  be  encrypted  

• Transparent   encryption,   which   resides   on   the   data   server   and   provides   access   control   and  encryption/decryption  of  data  based  on  the  policies  defined  by  the  security  administrator  

 The  Vormetric  DSM  and  the  Transparent  Encryption  agent  communicate  with  each  other  using  secure  communication  protocols  such  as  the  Transport  Layer  Security  (TLS).  Both  are  certified  for  data  security  standards  such  as  FIPS  140-­‐2.    Vormetric  Data  Security  transparent  encryption  exploits  Intel®  Xeon®  Processor  product  family  security  features  such  as  AES-­‐NI  to  minimize  the  performance  overhead  associated  with  encryption.        

     Figure  2   illustrates   the   location  of   the   transparent  encryption  component  within   the  operating  system  stack  at   the  data  server.  The  transparent  encryption  software  is  an  operating  system–level  product  that   layers  above  the  native  file  system,   for  example,  EXT3  on  SuSe  Linux  SLES  11,  and   intercepts  all   system  calls   related  to   file   I/O  and  the   file  system.   The   policies   defined   by   the   security   administrator   are   applied   to   each   of   the   I/O   access   system   calls   to  determine  whether  the  data  must  be  encrypted  (write),  decrypted  (read),  and  whether  access  to  the  data  must  be  allowed  or  denied.  The  transparent  encryption  software   is  a  secure  file  system,  with  the  exception  that   it  does  not  

Figure 2. Vormetric security solution functionality

Approved  processes  and  users

Privileged  users

*$^!@#)(

-­‐|”_}?$%-­‐:>>

Encrypted and controlled

John  Smith   401  Main  Street      

Clear Text

Cloud  provider Infrastructure  and  storage  admins

*$^!@#)( -­‐|”_}?$%-­‐

:>>

Encrypted and controlled

Figure 2. Vormetric security solution functionality

Page 9: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 9

have  a  disk  layout  of  its  own.  It  creates  an  overlay  mount  on  the  underlying  file  system.  This  overlay  mount  is  called  a  “guard  point.”  A  guard  point  can  also  be  created  on  raw  or  logical  volumes  (similar  to  file  systems).  However,  guard  points  on  raw  volumes  are  not  used  in  the  case  of  SAP  HANA.    Another   important  feature  of  the  transparent  encryption   is   its  ability  to  prevent  data  access  by  privileged  users.  As  illustrated  in  Figure  2,  privileged  users  such  as  “root  user”  or  other  system  administrators  with  privileged  access  can  be   denied   access   to   the   data.   Denying   privileged   users   access   to   the   data   is   defined   in   a   policy   by   the   security  administrator,   using   the   DSM.   The   policy,   which   is   made   available   to   the   transparent   encryption   software,   is  evaluated   and   enforced   by   the   transparent   encryption   software   running   on   a   data   server.   Only   authorized  applications  and  authorized  users  can  access  the  data.    Vormetric  Transparent  Encryption  secures  SAP  HANA  data  located  in  both  the  data  and  log  volumes.  Access  to  data  sets  in  SAP  HANA  is  enforced  according  to  the  security  policies  defined  by  the  security  administrator  using  the  DSM.  The   DSM,   with   centralized   key   management   and   other   important   security   administration   features,   provides  separation   of   duties   and   enforces   the   security   of   the   SAP   HANA   database   regardless   of   whether   SAP   HANA   is  deployed  in  the  cloud  or  in  the  enterprise.      

Page 10: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 10

5 Performance Evaluation For  performance  evaluation  purposes,  we  have  chosen  a  set  of  representative  application  workloads  running  on  SAP  HANA.  The  following  workloads  have  been  selected:              

• OLTP-­‐Bench:   This   is   a   database   management   system   (DBMS)   test-­‐bed   framework   for   online   transaction  processing   (OLTP)   and  Web-­‐based   workloads   (OLTP-­‐Bench,   2014).   From   the   variety   of   tests   available,   we  have  chosen  the  “TPC-­‐C  alike”  workload.  This  workload  simulates  an  order-­‐entry  system  environment  where  a   population   of   users   executes   transactions   against   a   database.   There   is   a   mix   of   five   different   types   of  transactions   executing   concurrently.   Clearly,   the   throughput   is   measured   in   transactions   per   minute.   In  summary,  this  workload  represents  the  activity  of  any  industry  that  must  manage,  sell,  or  distribute  a  product  or  a  service.  

• SAP-­‐OLTP:  This  is  an  SAP  internal  transactional  workload  representative  of  a  sales  and  distribution  scenario  in  

the   SAP   ERP   application.   SAP-­‐OLTP   includes   standard   business   transactions,   as   it   essentially   depicts   the  execution   of   a   general   sales   cycle   in   an   SAP   system   that   refers   to   the   creation   of   a   sales   order   document  followed  by  delivery  and  billing.  The  workload  encompasses  six  transaction  types:      • One  transaction  displays  all  sales  orders  relating  to  a  particular  customer  or  material.  

 • Another  transaction  creates  a  sales  order.  

 • Another  transaction  displays  a  sales  order  given  an  order  number.  

 • Another  transaction  creates  a  billing  document,  that  is,  sales  invoice.  

 • Another  transaction  creates  an  outbound  delivery  with  order  reference  number.  

 • Finally,  another  transaction  changes  the  outbound  delivery  and  posts  goods  issue.    In  general,  workloads  on  SAP  ERP   include  a   large  set  of   transaction  types  arranged   in  workflow  sequences.  SAP-­‐OLTP  throughput  is  typically  measured  in  dialog  steps  per  second,  frequently  normalized  to  hours.  Dialog  steps,   that   is,   requests,   are   the   basic   units   of   work   in   SAP   ERP   that   are   served   within   work   processes  (enterprise  resource  planning,  or  ERP,  software  threads)  non-­‐preemptively.  

• SAP-­‐OLAP:  This  is  a  SAP  internal  online  analytical  processing  (OLAP)  workload  customized  for  SAP  systems.  It  

is  known  that  the  OLAP  data  set  is  entirely  loaded  into  memory  before  the  execution  of  the  system  workload;  thereafter,   all   operations   are   executed   in-­‐memory  where   no   encryption/decryption   is   conducted.   This   fact  clearly   obviates   the   need   to   account   for   this   workload   into   this   work.   However,   aiming   for   performance  evaluation   completeness   that   encompasses   both   OLTP   and   OLAP   worlds,   we   are   showing   experimental  results  that  demonstrate  no  encryption  overhead.  

 

Page 11: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 11

6 System Landscape

6.1 System configurations

Table  1  reflects  the  system  configurations  that  are  relevant  for  setting  our  joint  activities:        

Memory     Storage     Processor     Cores    

1TB    800GB    (Intel   SSD   910   Series   PCIe   2.0   x8  Flash  card)  

Intel  Xeon  E7-­‐4870    4  socket,    40  cores    @  2.4GHz  

1TB    800GB    (Intel   SSD   910   Series   PCIe   2.0   x8  Flash  card)    

Intel  Xeon  E7-­‐4890  V2    4  socket,    60  cores    @  2.8GHz  

Table 1. System configurations

 NOTE:  An  additional  server  was  used  to  act  as  the  client  system  that  executes  the  testing  against  the  server  running  SAP  HANA.  The  same  client  system  has  been  consistently  used  for  all  the  experiments.   6.2 Software configurations

Table  2  shows  the  details  of  the  software  components  used  on  the  SAP  HANA  database  servers:      

Software  Component   Description   Version  Operating  system   SuSe  Linux  Enterprise  Server   SLES  11  SP3  

File  system   Ext3.   File   system   storing   SAP  HANA  data  and  log  volumes   Not  applicable  

SAP  HANA   SAP   HANA   support   package  stack  (SPS)  

SPS  06  revision  631  Stand-­‐alone  deployment  

Table 2. Software configurations

The  Vormetric  Transparent  Encryption  software  encrypted  the  SAP  HANA  data  and  log  volumes  using  the  American  Encryption  Standard  (AES)  algorithm.  The  symmetric  key  used  for  encryption  had  a  key  size  of  256  bits.  This  key  size  (also  known  as  key  strength)  provides  the  strongest  level  of  security.  

1 The SAP HANA revision used for conducting SAP-OLTP experimentation is 1.00.71.00. The reason behind this decision is that the SAP-OLTP application used is shipped for SAP HANA 1.00.71.00. The rest of the experimental plan has been executed while using the aforementioned SAP HANA revision 63.

Page 12: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 12

7 Experimentation Plan Table   3   accounts   for   the   detailed   system   configurations   and   workloads   while   enabling/disabling   the   Vormetric  encryption  solution  for  the  Intel®  Xeon®  Processor  E7-­‐4800  and  E7-­‐4800  v2  product  family.    

Batch  ID  

Experiment  ID   CPU  platform   Encryption   Workload  

Data  set  size  (GB)  

 Hyper-­‐Threading  

 CPU  utilization  

Performance  Evaluation  Without  Encryption    

1  

1   Intel  Xeon  E7-­‐4870    

NO  

OLTP-­‐Bench   365   OFF   Entry  midrange  

2   Intel  Xeon  E7-­‐4870     OLTP-­‐Bench   182   OFF   Entry  midrange  

3   Intel  Xeon  E7-­‐4870     SAP-­‐OLTP   4   OFF   Midrange  

4   Intel  Xeon  E7-­‐4870     SAP-­‐OLTP   4     OFF   High  

5   Intel  Xeon  E7-­‐4870     SAP-­‐OLTP   4     ON   Midrange  

6   Intel  Xeon  E7-­‐4870     SAP-­‐OLTP   4     ON   High  

7   Intel  Xeon  E7-­‐4870     SAP-­‐OLAP   21   ON   High  

 

2  

8   Intel  Xeon  E7-­‐4890  V2  

NO  

OLTP-­‐Bench   365   OFF   Entry  midrange  

9   Intel  Xeon  E7-­‐4890  V2   OLTP-­‐Bench   182     OFF   Entry  midrange  

10   Intel  Xeon  E7-­‐4890  V2   SAP-­‐OLTP   4     OFF   Midrange  

11   Intel  Xeon  E7-­‐4890  V2   SAP-­‐OLTP   4   OFF   High  

12   Intel  Xeon  E7-­‐4890  V2   SAP-­‐OLTP   4   ON   Midrange  

13   Intel  Xeon  E7-­‐4890  V2   SAP-­‐OLTP   4   ON   High  

Performance  Evaluation  with  Vormetric  Solution  

3  

14   Intel  Xeon  E7-­‐4870    

YES  

OLTP-­‐Bench   365   OFF   Entry  midrange  

15   Intel  Xeon  E7-­‐4870     OLTP-­‐Bench   182   OFF   Entry  midrange  

16   Intel  Xeon  E7-­‐4870     SAP-­‐OLTP   4   OFF   Midrange  

17   Intel  Xeon  E7-­‐4870     SAP-­‐OLTP   4     OFF   High  

18   Intel  Xeon  E7-­‐4870     SAP-­‐OLTP   4     ON   Midrange  

19   Intel  Xeon  E7-­‐4870     SAP-­‐OLTP   4   ON   High  

20   Intel  Xeon  E7-­‐4870     SAP-­‐OLAP   21   ON   High  

 

4  

21   Intel  Xeon  E7-­‐4890  V2  

YES  

OLTP-­‐Bench   365   OFF   Entry  midrange  

22   Intel  Xeon  E7-­‐4890  V2   OLTP-­‐Bench   182   OFF   Entry  midrange  

23   Intel  Xeon  E7-­‐4890  V2   SAP-­‐OLTP   4     OFF   Midrange  

24   Intel  Xeon  E7-­‐4890  V2   SAP-­‐OLTP   4     OFF   High  

25   Intel  Xeon  E7-­‐4890  V2   SAP-­‐OLTP   4       ON   Midrange  

26   Intel  Xeon  E7-­‐4890  V2   SAP-­‐OLTP   4     ON   High  

Table 3. Experimental Plan  

Page 13: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 13

The  experimentation  plan  shown  in  the  table  above  encompasses  4  batches  of  experiments,  which   in  total  account  for   26   experiments,   replicated   at   least   3   times.   Clearly,   experiment   batches   with   ID   1   and   2   represent   the  experimental  baseline  whose   results  will   be   compared  against   the   cases  when   system  encryption   is   enabled.  Note  that  SAP-­‐OLAP  is  accounted  for  to  accomplish  a  complete  performance  evaluation  of  both  OLTP  and  OLAP  schemes  as  discussed  above  in  section  5;  the  experiments  conducted  for  this  purpose  are  experiments  with  ID  7  and  20.      In   total,   OLTP-­‐Bench   is   used   in   8   system   configurations,   whereas   SAP-­‐OLTP   is   accounted   for   in   16   system  configurations.  The  former  considers  2  large  data  sets  that  are  in  the  order  of  hundreds  of  gigabytes  that  drive  CPU  utilization  of  up  40%  of  usage,  which  can  be  classified  as  entry  midrange  system  usage.  The  latter  accounts  for  smaller  data  sets;  however,  it  drives  CPU  utilization  to  midrange  levels,  60%  to  89%,  and  high  usage  levels,  above  90%.      Given  the  fact  that  only  midrange  system  usage  has  been  achieved  by  completing  OLTP-­‐Bench,  it  has  been  thought  to  enable   the   CPU   Hyper-­‐Threading   (HT)   feature   only   for   higher-­‐CPU   utilization   scenarios.   This   means   that   the   HT  feature  has  been  enabled  for  SAP-­‐OLTP  workloads  only  as  it  drives  CPU  usage  higher  than  OLTP-­‐Bench,  thus  yielding  system  usage  scenarios  where  the  impact  of  HT  is  likely  to  be  more  visible.      In  summary,  the  workload  variety  used  in  this  work  exemplifies  a  real-­‐world  representative  approach  for  stressing  the  system  as  a  whole  under  different  system  load  levels  and  data-­‐set  sizes.      

Page 14: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 14

8 Performance Evaluation Results and Analysis

8.1 OLTP-Bench workload

The  evaluation  methodology  for  this  workload  indicates  to  include  the  ramp-­‐up  and  ramp-­‐down  phases.  The  former  represents   the   system  warm-­‐up   that   eliminates   the   initialization   overheads   from   system  measurements.   After   the  ramp-­‐up,  the  system  enters  the  steady-­‐state  phase,  the  one  that  is  accounted  for  performance  analysis;  as  the  name  suggests,   during   this   phase   the   transactional   throughput   stabilizes.   Thereafter,   in   the   ramp-­‐down   phase,   users  progressively  stop  to  send  requests  to  the  database  server.  Both  the  ramp-­‐up  and  ramp-­‐down  phases  each  last  for  20  minutes,  and  the  workload  steady-­‐state  phase  is  configured  to  last  for  two  hours.    Figure  3  depicts  the  performance  overhead  of  encryption  for  the  eight  system  configurations  determined  according  to  section  7.  The  plot  shows  the  performance  degradation,  with  respect  to  the  baseline,  in  terms  of  throughput  loss,  quantified   in   transactions   per  minute,   when   encryption   is   enabled   on   the   two   different   Intel   hardware   platforms  while  using  two  different  data-­‐set  sizes.  The  throughput  measurements  are  normalized  by  the  throughput  given  by  the  E7-­‐4870  system  baseline  and  data-­‐set  size  of  182GB.  

Figure 3. OLTP-Bench throughput

We  learn  from  Figure  3  above  that  for  the  same  data-­‐set  sizes,  the  E7-­‐4890  V2  processor  outperforms  the  E7-­‐4870  by  approximately   75%.  Moreover,  when   the   data-­‐set   size   is   doubled,   the   E7-­‐4870   encrypted   system   is   taxed   only   an  additional  0.4%.  In  contrast,  the  E7-­‐4890  V2  system  shows  no  encryption  overhead  while  using  the  182GB  data  set,  and  the  encryption  overhead  is  only  1%  with  the  365GB  data  set.  

0  

0.5  

1  

1.5  

2  

Xeon  E7-­‐4870   Xeon  E7-­‐4890  V2  

Normalized

 Throu

ghpu

t  

Intel  Xeon  Processors  

Baseline-­‐182GB  

Encrypwon-­‐182GB  

Baseline  -­‐365GB  

Encrypwon-­‐365GB  

-­‐7%   -­‐7.4%  

0%  

-­‐1%  

Page 15: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 15

8.2 SAP-OLTP workload

As   previously   described,   SAP-­‐OLTP   is   an   internal   transactional   workload   that   encompasses   standard   business  transactions.  In  our  experiments,  the  workload  placed  on  the  system  is  equivalent  to  that  generated  by  40,000  users  accessing  the  SAP  HANA  database  for  various  ERP  functions.    Similar  to  the  evaluation  methodology  of  previous  workload,  testing  this  application  also  encompasses  the  ramp-­‐up  and  ramp-­‐down  phases.   In   the  ramp-­‐up  phase,  all  users   log  on  one  after  another,  and  the  number  of  concurrently  working  users  is  increased  until  reaching  the  40,000th  user.  The  experimental  run  continues  with  the  high  load  phase,  that  is,  steady  phase,  which  is  the  actual  interval  considered  for  performance  analysis.  This  is  very  important  because  before   entering   the   high   load   phase,   it   is   necessary   that   the   system   has   the   buffers   and   cache   already   filled;   this  allows   using   representative  measurements.   In   the   ramp-­‐down  phase,   all   users   log   off   one   after   another.   Both   the  ramp-­‐up  and  ramp-­‐down  phases  last  each  for  10  minutes,  and  the  workload  high  load  phase  is  configured  to  last  for  30  minutes.  We  have  confirmed  through  a  sensitivity  analysis   that  a  30-­‐minute  period   is   representative  of  a  phase  with   stable   transactional   throughput.  That   is,   similar  measurements  would  be  obtained  when   running  experiments  for  longer  periods  of  time.    Figure  4  depicts  the  performance  overhead  of  encryption  for  4  out  of  the  16  different  system  configurations  defined  according   to   section   7.   The   plot   shows   the   performance   degradation,   with   respect   to   the   baseline,   in   terms   of  throughput   loss   when   encryption   is   enabled   on   the   two   Intel   hardware   platforms   evaluated.   The   throughput  measurements  are  normalized  by  the  throughput  given  by  the  E7-­‐4870  system  baseline.      We   have   chosen   the   system   configurations   of   high   CPU   utilization   when   no   HT   is   enabled.   That   is,   in   order   to  summarize  the  presentation  of  the  experimental  results,  we  show  only  the  results  of  the  four  system  configurations  that   stress   the   system   the   most.   For   instance   the   CPU   utilization   of   the   Intel   Xeon   E7-­‐4870   systems   has   been  approximately   97%,   whereas   the   same   measurements   for   the   Intel   Xeon   E7-­‐4890   V2   systems   have   been   slightly  lower,  about  92%.  

 We  learn  from  Figure  4  above  that  when  comparing  the  baselines,  the  E7-­‐4890  V2  system  delivers  an  additional  126%  of  throughput  compared  to  the  E7-­‐4870  system.  Regarding  the  performance  overhead,  when  encryption  is  enabled  

0  

0.5  

1  

1.5  

2  

2.5  

Xeon  E7-­‐4870   Xeon  E7-­‐4890  V2  

Normalized

 Throu

ghpu

t  

Intel  Xeon  Processors  

Baseline    

Encrypwon  -­‐1.2%  

+5%  

Figure 4. SAP-OLTP throughput

Page 16: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 16

compared  to  the  baseline,  the  E7-­‐4870  system  suffers  a  slight  (negligible)  throughput  degradation  of  about  1.2%.  In  contrast,   the  E7-­‐4890  V2  system  delivers  consistently  along  all  experiment  replications  a   throughput  that   is  slightly  higher  by  approximately  5%.      We   surmise   that   this   “counterintuitive”   behavior   of   slightly   higher   throughput   stems   from   the   fact   that   Intel   has  made  significant  enhancements  (pipelining)  to  the  AES-­‐NI  instructions  in  the  Intel  Xeon  E7-­‐4890  V2  processor  family.  Vormetric   encryption   software   takes   advantage   of   these   enhancements   in   order   to   deliver   faster   encryption  processing   times.   In   addition,   Vormetric   encryption   software   parallelizes   I/O   requests   into   multiple  encryption/decryption  threads,  which  in  effect  leverages  the  multiple  processor  cores  in  the  system  more  optimally.  Together,  these  hardware  and  software  enhancements  result  in  very  low  overhead  and  consequently  greater  system  performance.    It  is  important  to  highlight  that  this  “counterintuitive”  behavior  is  observed  only  on  the  newer  Intel  Xeon  E7-­‐4890  V2–based  systems.  Actually,  during  OLTP-­‐Bench  experimentation,  a  similar  behavior  has  been  observed  while  using  the  182GB   data   set.  Only   until   the   data   set   of   365GB   is   used   has   this   “anomalous”   system  behavior   stopped,   and  we  actually  observed  a   transactional   throughput   loss  of  approximately  1%  with  encryption  on.  Clearly,   this   substantial  increase  in  data-­‐set  size  entails  a  system  load  increase.  Based  on  these  results,  we  could  hypothesize  that  as  the  data-­‐set  size  increases,  the  more  likely  that  we  continue  observing  a  progressive  performance  degradation  trend.    In   summary,   the   hypothesis   formulated   behind   this   “counterintuitive   behavior”   is   that,   given   the   fact   that   more  resources   are   available   on   the   Xeon   E7-­‐4890   V2   platform,   the   Vormetric   software   is   able   to   increase   the  parallelization  of  the  encryption/decryption  operations.  This  parallelization  effort,  which  is  witnessed  by  a  significant  increase   in   the   system-­‐context   switching   activity,   seems   to   induce   higher   throughput   related   to   a   combination   of  factors.  These  factors   include,  as  a  possibility,  better  data   locality  and  not  a  fine-­‐tuned  multi-­‐threading   level,  which  exceeds   to   a  point   for   not  only  hiding   the   latencies,   but   also   for   delivering   slightly   higher   transactional   processing  capability.    In   addition,   Figure  5   illustrates   the  encryption  performance   improvements  of   the   Intel  Xeon  E7-­‐4890  V2  processor  versus   the   E7-­‐4870  CPU  by   showing  memory-­‐speed   test   results,   quantified   in  megabytes   per   second,   for   different  memory  buffer  sizes.    

Figure 5. Comparison of encryption performance: Xeon E7 vs. Xeon E7 V2 processor family

Page 17: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 17

The  memory-­‐speed  tests  were  conducted  by  using  Vormetric  Transparent  Encryption  software  that  encrypts  data  in  memory  buffers  of  varying  size.  That  is,  there  was  no  I/O  related  to  storage  accesses.  These  tests  were  conducted  to  measure   the   AES-­‐NI   related   enhancements   in   the   Xeon   E7   V2   family   of   processors   together   with   the   code  optimization   in  Vormetric   encryption   to   increase   the  pipelining  of   the  AES   rounds.   The   results  have  demonstrated  that   the   pure   cost   of   encryption   was   significantly   lower   on   the   Xeon   E7   V2   family   of   processors.   Clearly,   these  enhancements  could  further  explain  the  fact  that  the  parallelization  achieved  with  the  Vormetric  encryption  engine  could  lead  to  better  performance  than  the  baseline  for  the  same  workload.    8.3 SAP-OLAP workload

SAP  has  defined  “T-­‐shirt  sizes”   for  SAP  HANA  appliances.  These  T-­‐shirt  sizes  are  based  on  the  compressed  data-­‐set  sizes  that  can  be  loaded  into  memory  for  processing.  Sizing  recommendations  state  that  50%  of  the  system  memory  should   be   used   for   storing   data,  whereas   the   other   50%   should   be   used   for   intermediate   results,   temporary   data  objects,   and   so   on.   Keeping   these   sizing   guidelines   in   mind,   the   1TB   server   should   be   able   to   hold   512GB   of  compressed  data.  In  other  words,  in  order  to  process  512GB  of  compressed  data,  1TB  of  memory  is  required.      The  evaluation  methodology   for   this  workload   indicates   to  warm  up  the  system  before   the  actual  experimentation  stage;  the  warm-­‐up  phase  preloads  the  data  set  into  memory.  This  implies  that  the  data  read  from  persistent  storage  is  decrypted  prior   to  caching   it   into  memory.  Therefore,   there   is  no  encryption  or  decryption  of  data  associated  to  query   answering   during   the   execution   of   the   experiments   that   take   place   after   the   warm-­‐up   phase.   While   this  important  point  is  well  understood,  and  obviated  the  need  for  taking  into  account  this  workload,  we  decided  to  prove  our  hypothesis  by  setting  a  simple  set  of  experiments.  This  has  entailed  using  a  data  set  smaller  than  512GB;  thus  we  have  set  the  data-­‐set  size  to  21GB,  as  shown  above  in  section  7.      Similar  to  the  experimentation  using  the  other  two  workloads,  we  have  configured  the  system  to  hold  both  data  and  log  volumes  on  the  Intel  SSD  PCIe  Flash  card.  However,  even  if  both  volumes  had  been  placed  on  a  slower  device  such  as  mechanical  media,   it  would  not  affect  the  performance  shown  in  Figure  6  below,  except  during  the  data-­‐loading  phase  (loading  from  persistence  to  memory),  which  is  not  accounted  for  in  this  experiment.      In  our  test  bed,  we  have  100  users  running  on  the  client  hardware  sending  queries  to  the  server.  In  total,  during  each  experimental  run,  18,000  queries  are  sent  to  the  server,  which  on  average  take  about  49  minutes  to  execute.      The  SAP-­‐OLAP  experimentation   showed   that   there   is  no  overhead  on   the   system  when  encryption   is   enabled.   The  system  is  actually  saturated  at  approximately  97%  of  CPU  usage,  on  average.  It  is  also  important  to  highlight  that  I/O  activity  is  nonexistent  at  about  36  I/O  operations  per  second  (IOPS),  on  average.  In  contrast,  during  the  execution  of  SAP-­‐OLTP   and   OLTP-­‐Bench,   the   system   delivered   approximately   10,000   IOPS   on   average,   showing   spikes   of   up   to  19,000  IOPS.      Figure   6   depicts   system   throughput,   in   terms   of   queries   per   hour,   of   both   the   baseline   and   the   encryption  experimental  runs.  The  throughput  measurements  are  normalized  by  the  values  of  the  baseline.    

Page 18: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 18

Figure 6. SAP-OLAP throughput

We   can   observe   that,   for   the   16   replications   of   the   experiment   (that   encompass   baseline   and   encryption),   the  difference  in  throughput  between  the  baseline  and  encrypted  systems  is  minimal  at  0.96%.  This  difference  is  a  minor  variance,  possibly  introduced  by  factors  other  than  encryption.  In  the  long  run,  on  average,  the  system  throughput  of  both  the  baseline  and  the  encryption  will  converge.        

0.0  

0.5  

1.0  

1.5  

2.0  

1   2   3   4   5   6   7   8  

Normalized

 Throu

ghpu

t  

Experiment  ReplicaQons  

Baseline  

Encrypwon  

Page 19: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Enhancing Security for SAP HANA in the Cloud 19

9 Summary Installing   and   configuring   the   SAP   HANA   application,   the   Vormetric   Data   Security   appliance,   and   the   physical   SAP  HANA  database   servers   has   been  procedural   and   straightforward.  Most   of   the   project   effort   has   been   focused   on  measuring  the  performance  overhead  of  encryption  on  the  two  Intel  hardware  platforms  evaluated,  namely  the  Intel  Xeon  E7-­‐4870  processor  and  the  Intel  Xeon  E7-­‐4890  V2  processor.      We  have  measured  an  encryption  overhead  of  a  single  digit,  overall.   In  particular,  the  experimentation  on  the  Intel  Xeon   E7-­‐4870   platform   shows   an   overhead   of   less   than   8%  while   processing   transactional  workloads.   In   contrast,  experimentation   under   transactional   workloads   on   the   Intel   Xeon   E7-­‐4890   V2   platform   reveals   a   negligible  performance   overhead.   However,   we   surmise   that   the   counterintuitive   behavior   found   in   some   system  configurations  might  be  attributed  to  the  parallelization  effort  of  Vormetric  software  running  on  the   Intel  Xeon  E7-­‐4890  V2  platform.  Evidence  of  this  degree  of  parallelization  is  the  increased  context  switching  activity  on  encrypted  systems,  as  it  surges  up  to  a  25%  with  respect  to  the  baseline  reference  system.    We  also  have  provided  results  of  testing  that  no  performance  overhead  is  placed  on  the  system  processing  analytical  workloads  when  encryption  is  enabled.   We  plan  to  evaluate  the  high-­‐availability  features  of  the  Vormetric  security  software  in  combination  with  the  scale-­‐out  deployment  of  SAP  HANA.  We  also  aim  to  evaluate  the  operational  impact  of  the  data  transformation  methods  of  Vormetric  software  as  the  size  of  data  sets  in  data  centers  significantly  increases.  

10 References • SAP Web site, (2014) Retrieved from: http://www.sap.com • Vormetric Web site, (2014) Retrieved from: http://www.vormetric.com/ • Intel Web site, (2014) Retrieved from: http://www.intel.com • Intel Real-Time Business Intelligence. (2014). Intel white paper on Security in the Cloud for SAP HANA [White

paper]. Retrieved from http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cloud-security-xeon-e7-v2-sap-virtustream-paper.pdf

• Virtustream Web site, (2014) Retrieved from: http://www.virtustream.com/

• OLTP-Bench Web site, (2014) Retrieved from: www.oltpbenchmark.com

Copyright/Trademark  

Page 20: ENHANCING SECURITY FOR SAP HANA IN THE CLOUDa248.g.akamai.net/n/248/420835/f49d17ed6f7d1d1cb92ffcade8424d… · Enhancing Security for SAP HANA in the Cloud 6 not!have!access!tothe!data.!This!separationof!duties,!whichallows!the!customer!tobe!the!custodianof!encryption

Copyright© 2014 SAP SE or an SAP SE affiliate company. All rights reserved.No part of this publication may be reproduced or transmitted in anyform or for any purpose without the express permission of SAP SE.The information contained herein may be changed without prior notice.Some software products marketed by SAP SE and its distributors contain proprietary software componentsof other software vendors. National product specifications may vary.These materials are provided by SAP SE and its affiliated companies (“SAP SE Group”) for informationalpurposes only, without representation or warranty of any kind, and SAP SE Group shall not be liable forerrors or omissions with respect to the materials. The only warranties for SAP SE Group products andservices are those that are set forth in the express warranty statements accompanying such products andservices, if any. Nothing herein should be construed as constituting an additional warranty.SAP SE and other SAP SE products and services mentioned herein as well as their respective logos aretrademarks or registered trademarks of SAP SE in Germany and other countries.Please seehttp://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

for additional trademark information and notices.