Engineering Vibrations Chapter 2

34
University of Maryland B. Balachandran & E. Magrab Review of Chapter 3

description

Balachandran Chapter 2 review

Transcript of Engineering Vibrations Chapter 2

Page 1: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Review of Chapter 3

Page 2: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Lagrange’s Equations

Page 3: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

General Form:

1,...,knc

k k k

d L L DQ k ndt q q q ∂ ∂ ∂

− = − = ∂ ∂ ∂

General Lagrange’s Equations

L = T – U = Lagrangian

T = Kinetic Energy, U = Potential Energy

Where

= Rayleigh Dissipation Function12k kD c =

r.r

= Generalized force. 1,2knc

k

Q kq∂

= =∂

rF&

Page 4: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

NO. Newton’s Equations Lagrange’ s Equations

1 Vector-based Scalar-based

2 Requires free-body analysis Analysis of entire system

3 More equations than DOF Equations = DOF

4 Requires internal forces & reactions

Formulation is independent of internal forces & reactions

5 Requires deriving expressions of velocities & accelerations

Requires deriving expressions of ONLY the velocities

Lagrange’s Equations

Page 5: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Time Response of SDOF Systems

Page 6: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Behavior of Single DOF Systems

Derive the Equations of Motion

Determine Natural Frequencies

Determine System Stability

Predict System Response

Optimize System Response

Control System Response

Page 7: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Free Vibration

c = 0 , f =0

Page 8: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Free Vibration of a Single DOF System

Equation of Motion0mx kx+ =

2 0nx xω+ =

where 2 kn mω =

Assume tx Ceλ=where C & λ are to be determined

Page 9: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Single DOF Systems

But, as cos sinie iθ θ θ= +

1 2 1 2cos sinn ni t i tn nx C e C e A t A tω ω ω ω−= + = +

If 0( 0)x t x= = & 0( 0)x t x= =

0 1( 0)x t x A= = = & 0 2( 0) nx t x Aω= = =

00 cos sinn n

n

xx x t tω ωω

= +

Page 10: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Single DOF Systems

00 cos sinn n

n

xx x t tω ωω

= +

2 20 0

0 02 20 0

( / )( cos / sin )

( / )n

n n n

n

x xx x t x t

x x

ωω ω ω

ω

+= +

+

φ

x0

0 / nx ω

2 20 0( / )nx x ω+

But, as

[ ]10 0tan / ( / )nx xϕ ω−=

Page 11: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Forced Vibration

c = 0 , f =Fo cos ωt

Page 12: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Undamped Single DOF Systems

0 cosm x k x F tω+ =

Equation of Motion

1 2cos sinh n nx A t A tω ω= +Solution

Homogeneous Solution

cospx X tω=Particular Solution

1 2cos sin cosn nx A t A t X tω ω ω= + +General Solution

Page 13: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Undamped Single DOF Systems

0 cosm x k x F tω+ =

cospx X tω=Particular Solution

Substitute in

20cos cos cosm X t kX t F tω ω ω ω− + =

0 02 2 2

/1 ( / ) 1 ( / )

s

n

F F kXk m m k

δω ω ω ω

= = =− − −

1 2 2cos sin cos1 ( / )

sn n

n

x A t A t tδω ω ωω ω

= + +−

or

Page 14: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Undamped Single DOF Systems

As 00 2 2cos sin cos

1 1s s

n nn

xx x t t tδ δω ω ωω

= − + + −Ω −Ω

00 2

cos coscos sin1

nn n s

n

x t tx x t t ω ωω ω δω

− = + + −Ω

If ω= ωn0

0 2

cos coscos sin1

nn n s

n

x t tx x t t ω ωω ω δω

− = + + −Ω

=0

= 0

Free Response Forced Response

Page 15: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Damped Single DOFSystems

c = 0 , f =Fo cos ωt

Page 16: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Damped Single DOF Systems

0 cosm x cx k x F tω+ + =

Equation of Motion

Rearrangement of the homogeneous part:

0c kx x xm m

+ + =

Characteristic Eqn.:2 0c k

m mλ λ+ + =

Page 17: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Damped Single DOF Systems

2 22 cosn n nx x x tζω ω δ ω ω+ + =

Equation of Motion

Solution

Homogeneous Solution

cos( )px X tω φ= −Particular Solution

General Solution sin( ) cos( )nth d hx X e t X tζω ω φ ω φ−= + + −

( )sinnth h d hx X e tζω ω φ−= +

Page 18: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Damped Single DOF Systems

System Response

cos( )px X tω φ= −Particular Solution

Homogeneous Solution

sin( ) cos( )nth d hx X e t X tζω ω φ ω φ−= + + −General Solution

( )sinnth h d hx X e tζω ω φ−= +

Transient Solution Steady-State Solution0 =

Causal

Mathematical

Page 19: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Damped Single DOF Systems

cos( )px X tω φ= −Particular Solution

Substitute in

2 2 2[( )cos( ) 2 sin( )] cosn n nX t t tω ω ω φ ζω ω ω φ δ ω ω− − − − =

But cos( ) cos cos sin sint t tω φ ω φ ω φ− = +

& sin( ) sin cos cos sint t tω φ ω φ ω φ− = −

2 22 cosn n nx x x tζω ω δ ω ω+ + =

Page 20: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Damped Single DOF Systems

ωt( )2 cosn X tω ω φ−φ

2 sin( )n X tζω ω ω φ−( )2 cosn tδω ω

( )2 cosX tω ω φ− −

Damping

Spring

Inertia

Excitation

2 2 2 2 2/ ( ) (2 )n n nX δω ω ω ζω ω= − + 12 2

2tan n

n

ζω ωφω ω

− = −

&

Page 21: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

SummaryNo Case Basic Governing Equations1 Undamped- Free

Vibration2 Undamped-Forced

Vibrationa Resonance

b Beat Phenomenon

3 Damped-Forced Vibration

* Steady-state Response

2 20 0( / ) sin( )n nx x x tω ω ϕ= + +

00 2

cos coscos sin1

nn n s

n

x t tx x t t ω ωω ω δω

− = + + −Ω

0 / sin .sin2

F mx t tε ωεω

=

00

1cos sin [ sin ]2n n n s n n

n

xx x t t t tω ω ω ω δ ω ωω=

= + +

sin( ) cos( )nth d hx X e t X tζω ω φ ω φ−= + + −

2 2 2/ 1/ (1 ) (2 )sX δ ζ= −Ω + Ω 12

2tan1ζφ − Ω = −Ω

&

& [ ]10 0tan / ( / )nx xϕ ω−=

Page 22: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Complete Response of Damped Single DOF Systems

where 2 2 2 2 2/ ( ) (2 )n n nX δω ω ω ζω ω= − +

12 2

2tan n

n

ζω ωφω ω

− = −

&

Page 23: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Complete Response of Damped Single DOF Systems

Also, Xo and ϕ0 are determined from the initial conditions as follows:0 0&x x

Page 24: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Frequency Response of SDOF Systems

Page 25: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Analysis Approaches

System’s Eqn. of Motion

Perform Laplace Transform

Determine Time Response by Inverse Laplace Transform

Determine Frequency Response by

Replacing s=iω

Page 26: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Transfer Function

, ,m k c( )f t ( )x t

Input OutputSystem

( )x tk

c

m ( )f t

Page 27: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Transfer Function

( )x tk

c

m ( )f t

m x cx k x f+ + = Equation of Motion

( )2 ( ) ( )m s cs k X s F s+ + =Laplace Transformation

( )2

( ) 1( )

X sF s m s cs k

=+ +Transfer Function

Page 28: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Frequency Response Function

( )x tk

c

m ( )f t

( )2

( ) 1( )

X sF s m s cs k

=+ +

Transfer Function

( )2

( ) 1( )

XF k m i cωω ω ω

=− +

Frequency Response Function

Replace s = iω

Page 29: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Stability of SDOF Systems

Page 30: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

O

θ

m

L

kKinetic Energy

2 212

T mL θ=

Potential Energy

( ) ( )

( )

2

2 2

1 1212

U k L mgL cos

kL mgL

θ θ

θ

= − −

= −

Equation of Motion

( )2 2 0mL kL mgLθ θ+ − =

System Stability

Page 31: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

Equation of Motion 0k gm L

θ θ + − =

System Stability

Characteristic Equation 2 0k gm L

λ + − =

2 0g kL m

λ − + =

or

2

11 0kgmL

λ

+ = −

( )2

2 211 0m

λ ω+ =

2 2m p

k g,m l

ω ω= =where

Page 32: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

System StabilityRoots of Characteristic Equation for different when 2 20pω =2

( )2

2 211 0m

λ ω+ =

MATLAB>> n=1;>> d=[1 0 -20];>> rlocus(n,d)

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

0.160.340.50.64

0.76

0.86

0.94

0.985

0.160.340.50.64

0.76

0.86

0.94

0.985

1

2

3

4

5

6

1

2

3

4

5

6

Real Axis (seconds-1

)

Imag

inar

y A

xis

(sec

onds

-1) System: sys

Gain: 20

Pole: 0

Damping: -1

Overshoot (%): 0

Frequency (rad/s): 0 xx

Page 33: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

System StabilityRoots of Characteristic Equation for different when 2 20pω =

2mω

( )2

2 211 0

1m

λ λ ω+ =

+ −

MATLAB>> n=1;>> d=[1 1 -20];>> rlocus(n,d)

-6 -4 -2 0 2 4 6

-5

-4

-3

-2

-1

0

1

2

3

4

5

0.955

0.81

0.20.40.560.7

0.81

0.9

0.955

0.988

0.20.40.560.7

0.9

0.988

123456

Real Axis (seconds-1

)

Imag

inar

y A

xis

(sec

onds

-1) System: sys

Gain: 20

Pole: 0.0242

Damping: -1

Overshoot (%): 0

Frequency (rad/s): 0.0242 xx

Page 34: Engineering Vibrations Chapter 2

University of Maryland B. Balachandran & E. Magrab

END