EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

download EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

of 16

Transcript of EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    1/16

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    2/16

    R.Perez,K.Zweibel,T.Hoff

    Figure1:Comparingfiniteandrenewableplanetaryenergyreserves(Terawattyears).

    Totalrecoverablereservesareshownforthefiniteresources.Yearlypotentialisshown

    fortherenewables(source:Perez&Perez,2009a)

    2 6 per year2009 World energyconsumption

    16 TWy/year

    COAL

    Uranium

    900Total reserve

    90-300Total

    Petroleum

    240total

    Natural Gas

    215

    total

    WIND

    Waves1

    0.2-2

    25-70per year

    OTEC

    Biomass

    3 -11 per year

    HYDRO

    3 4 per year

    TIDES

    SOLAR10

    23,000 TWy/year

    Geothermal0.3 2 per year

    R. Perez et al.

    0.3 per year2050: 28 TWy

    finiterenewable

    EuropeandAsia.Without incentives,however,theneededrevenuestreamforsolargenerationisstill

    considerably higher than the least expensiveway to generate electricity today, i.e., viaunregulated,

    minemouth coal generation. This large apparent gridparity gap canhinder constructivedialogue

    with keydecisionmakers and constitutes apowerful argument toweakenpolitical support for solar

    incentives,especiallyduringtightbudgetarytimes.

    Inthispaper,weapproachtheapparentgridparitygapquestiononthebasisofthefullvaluedelivered

    bysolarpowergeneration. Wearguethattherealparitygap i.e.,thedifferencebetweenthisvalue

    andthecost todeploy the resource isconsiderablysmaller thantheapparentgap,andthat itmay

    well have already been bridged in several parts of theUS. This argumentation is substantiated and

    quantifiedbyfocusingonthecaseofPVdeploymentinthegreaterNewYorkCityarea.Sincethisisnot

    oneof the sunniestplaces in theUS, thispaper should serve as an applicable case toother regions

    and/orsolartechnologies.

    SolarResource

    Fundamentals

    Itisusefultofirstreviewacoupleoffundamentalfactsaboutthesolarresourcethatarerelevanttoits

    value.

    Vastpotential:Firstandforemost,thesolarenergyresourceisverylarge(Perezetal.,2009a).Figure1

    comparesthecurrentannualenergyconsumptionoftheworldto(1)theknownplanetaryreservesof

    thefinitefossilandnuclearresources,and(2)totheyearlypotentialoftherenewablealternatives.The

    volume of each

    sphere represents

    the total amount

    of energy

    recoverable from

    the finite reserves

    and the annual

    potential of

    renewable

    sources.

    While finite fossil

    and nuclear

    resourcesarevery

    large,particularly

    coal, they are not

    infiniteandwould

    lastatmosta few

    generations,

    notwithstanding

    theenvironmental

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    3/16

    R.Perez,K.Zweibel,T.Hoff

    Figure2:Cloud

    cover

    during

    aheat

    wave

    in

    the

    US

    impactthatwillresultfromtheirfullexploitation ifnowuncertaincarboncapturetechnologiesdonot

    fullymaterialize.Nuclear energymaynotbe the carbonfree silverbullet solution claimedby some:

    putting aside the environmental and proliferation unknowns and risks associatedwith this resource,

    therewouldnotbeenoughnuclearfueltotakeovertheroleoffossilfuels1.

    Therenewable

    sources

    are

    not

    all

    equivalent.

    The

    solar

    resource

    is

    more

    than

    200

    times

    larger

    than

    all

    the others combined.Wind energy could probably supply all of the planets energy requirements if

    pushed toaconsiderableportionof itsexploitablepotential.However,noneof theothersmostof

    whichare firstandsecondorderbyproductsof thesolar resource could,alone,meet thedemand.

    Biomass in particular could not replace the current fossil base: the rise in food cost that paralleled

    recentrisesinoilpricesandthedemandforbiofuelsissymptomaticofthisunderlyingreality.

    On theotherhand,exploitingonlyaverysmall fractionof theearthssolarpotentialcouldmeet the

    demandwithconsiderableroomforgrowth.Thus,leavingthecost/valueargumentationasidefornow,

    logic alone tells us, in view of available

    potentials, that the planetary energy

    futurewillbe solarbased. Solarenergy

    is the only readytomassdeployresource that is both large enough and

    acceptableenoughtocarrytheplanetfor

    thelonghaul.

    Builtin peak load reduction capability:

    For a utility company, Combined Cycle

    GasTurbines (CCGT)arean ideal source

    of variable power generation because

    theyaremodular,canbequicklyramped

    upordownandanswerthequestion:is

    poweravailable

    at

    will?

    As

    such

    CCGT

    haveahighcapacityvalue.

    Solar generators, distributed PV in

    particular, arenot available atwill2,but

    theyoftenanswerasimilarquestion:is

    power availablewhen needed? and as

    such can capture substantial effective

    capacityvalue(Perezetal.,2009b). This

    is because peak electrical demand is

    driven by commercial daytime air

    conditioning

    (A/C)

    in

    much

    of

    the

    US

    reachingamaximumduringheatwaves.

    1Ofcoursethisstatementwouldhavetoberevisitedifanacceptablebreedertechnologyornuclearfusion

    becamedeployable.Nevertheless,shortoffusionitself,evenwiththemostspeculativeuraniumreservesscenario

    andassumingdeploymentofadvancedfastreactorsandfuelrecycling

    ,thetotalfinitenuclearpotentialwould

    remainwellbelowtheoneyearsolarenergypotential(ref1)2ConcentratingSolarPower(CSP)technologyhasseveralhoursofbuiltinstorageandcouldbepartiallyavailable

    atwill.

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    4/16

    R.Perez,K.Zweibel,T.Hoff

    Thefuelofheatwaves isthesun;aheatwavecannottakeplacewithoutamassive localsolarenergy

    influx.ThebottompartofFigure2illustratesanexampleofaheatwaveinthesoutheasternUSinthe

    springof2010andthetoppartofthe figureshows thecloudcoveratthesametime:thequalitative

    agreementbetweensolaravailabilityandtheregionalheatwave isstriking.Quantitativeevidencehas

    also shown that themean availabilityof solar generationduring the largestheatwavedriven rolling

    blackoutsintheUSwasnearly90%ideal(Letendreetal.2006).Oneofthemostconvincingexamples,

    however, is the August 2003Northeast blackout that lasted several days and cost nearly $8 billionregionwide (Perez et al., 2004). The blackout was indirectly caused by high demand, fueled by a

    regionalheatwave3.As littleas500MWofdistributedPV regionwidewouldhavekeptevery single

    cascadingfailure fromfeeding intooneanotherandprecipitatingtheoutage.Theanalysisofasimilar

    subcontinentalscale blackout in the Western US a few years before that led to nearly identical

    conclusions(Perezetal.,1997).

    Inessence,thepeakloaddriver,thesunviaheatwavesandA/Cdemand,isalsothefuelpoweringsolar

    electric technologies.Becauseof thisnatural synergy, the solar technologiesdeliverhardwiredpeak

    shavingcapability for the locations/regionswith theappropriatedemandmix peak loadsdrivenby

    commercial/industrialA/C that is to say,muchofAmerica.Thiscapability remains significantup to

    30%capacity

    penetration

    (Perez

    et

    al.,

    2010),

    representing

    adeployment

    potential

    of

    nearly

    375

    GW

    in

    theUS.

    Renewable energy breeder: The mainstream (crystalline silicon PV) solar electric technology has a

    proven recordof lowdegradation (

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    5/16

    R.Perez,K.Zweibel,T.Hoff

    (2) Theutilityanditsratepayerswhopurchasetheenergyproducedbytheplant;4(3) Thesocietyat largeand itstaxpayerswhocontributeviapublicR&Dandtaxbased incentives

    andreceivebenefitsfromtheplant.

    The transaction is often perceived as onesided in favor of the investor/developerwhose return on

    investment

    e.g.,

    the

    necessary

    20

    30

    cents

    breakeven

    cash

    flow

    equivalent

    for

    distributed

    PV

    is

    forced upon the two other parties. However, these parties do receive tangible value from solar

    generation.

    Valuetotheutilityanditsratepayersaccruesfrom:

    Transmission(wholesale)energy,611/kWh:energygeneratedlocallybysolarsystemsisenergythatdoesnotneedtobepurchasedonthewholesalemarketsattheLocationalbasedMarginal

    Pricing(LMP).Perez&Hoff(2008)haveshownthatinNewYorkState,thevalueoftransmission

    energyavoidedby locallydeliveredsolarenergyrangedfrom6to11centsperkWh,withthe

    lower number applying to the wellinterconnected western NY State area, and the higher

    numberapplyingtotheelectricallycongestedNewYorkCity/LongIslandarea.Thisismorethan

    themean LMP in both cases (respectively 5 and 9 cents per kWh) because solar electricity

    naturallycoincideswithperiodsofhighLMP.

    Transmission capacity, 05 /kWh: becauseof demand/resource synergydiscussed above, PVinstallationscandelivertheequivalentofcapacity,displacingtheneedtopurchasethiscapacity

    elsewhere, e.g., via demand response (Perez&Hoff, 2008). In the above study, Perez et al.

    calculated the effective capacity creditof lowpenetration PV inmetropolitanNew York and

    showedthatPVcouldreliablydisplaceanannualdemandresponseexpenseof$60perinstalled

    solarkW,i.e.,amountingto4.5centsperproducedsolarKWh5.

    Distributionenergy(losssavings),01/kWh:distributedsolarplantscanbesitednearthe loadwithinthedistributionsystemwhetherthissystem isradialorgriddedtherefore,theycan

    displace electrical losses incurred when energy transits from power plants to loads on

    distributionnetworks(thisisinadditiontotransmissionenergylosses).Thislosssavingsvalueis

    ofcoursedependentuponthe locationandsizeofthesolarresourcerelativetothe load,and

    uponthespecsofthedistributiongridcarryingpowertothecustomer.Adetailedsitespecific

    study in theAustin Electric utilitynetwork (Hoff et al., 2006) showed that loss savingswere

    worthinaverage510%ofenergygeneration.InthecaseofNewYorkthiswouldthusamount

    to0.51centperkWh.

    Distribution capacity, 03 /kWh: As with transmission capacity, distributed PV can delivereffectivecapacityatthefeederlevelwhenthefeederloadisdrivenbyindustrialorcommercial

    A/C,hencecan reduce thewearandtearof the feedersequipmente.g., transformers as

    well as defer upgrades, particularly when the concerned distribution system experiences

    growth. As above, this distribution capacity value is highly dependent upon the feeder and

    4Sometimesthisentitymaybereplacedbyadirectcustomerasisdoneinpowerpurchaseagreements(PPAs)

    however,becausetheutilitygridisalwaysthebuffer/conduitofsolarenergygeneration,PPAornot,thebig

    picturecostvalueequationremainsthesame.51kWofPVinNewYorkStategenerateson~1,350KWh/year.Therefore$60perkWperyearamountsto4.5

    centsperkWhproduced.

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    6/16

    R.Perez,K.Zweibel,T.Hoff

    Figure3:Finiteenergycommoditypricetrends20072011

    0

    2

    4

    6

    8

    10

    12

    14

    0

    20

    40

    60

    80

    100

    120

    140

    160

    2007 2007.5 2008 2008.5 2009 2009.5 2010 2010.5 2011

    Coal($/Ton)

    Uranium($/lb)

    oil($/Barrel)

    NaturalGas($/MBTU rightaxis)

    locationofthesolarresourceandcanvaryfromnovalueuptomorethan3centspergenerated

    solarKWh(e.g.,seeShugar&Hoff,1993,Hoffetal.,1996,Wengeretal.,1996andHoff,1997).

    Fuel pricemitigation, 35 /kWh: Solar energy production does not depend on commodities6whoseprices fluctuateonshort termscalesandwill likelyescalatesubstantiallyoverthe long

    term.Whenconsideringfigure1,itishardtoimaginehowthecostofthefinitefuelsunderlying

    thecurrent

    wholesale

    electrical

    generation

    will

    not

    be

    pressured

    up

    exponentially

    as

    the

    available pool of

    resources contracts and

    thedemandfromthenew

    economies of the world

    accelerates.Thecostofoil

    may be the most

    apparent, but all finite

    energy commodities,

    including coal, uranium

    andnatural

    gas,

    tend

    to

    followsuit,astheyareall

    subjecttothesameglobal

    energy demand

    contingencies. Even

    before the 2011 Middle

    East political disruptions,

    inastillsluggisheconomy,energycommoditypriceshadrampeduppasttheir2007levelswhen

    theworldeconomywasstronger(seefig.3).Solarenergyproductionrepresentsaverylowrisk

    investmentthatwillprobablypanoutwellbeyondastandard30yearbusinesscycle(Zweibel,

    2010). InastudyconductedforAustinEnergy,Hoffetal.quantifiedthevalueofPVgeneration

    asahedgeagainstfluctuatingnaturalgasprices(Hoffetal.,2006).Theyshowedthatthehedge

    valueofalowriskgeneratorsuchasPVcanbeassessedfromtwokeyinputs:(1)thepriceofthe

    displacedfiniteenergyoverthelifeofthePVsystemasreflectedbyfuturescontracts,and(2)a

    riskfree discount rate7for each year of system operation. Focusing on the short term gas

    futuresmarket(lessthan5years)ofrelevancetoautilitycompanysuchasAustinEnergy,and

    takingastableoutlookongaspricesbeyondthishorizon,theyquantifiedthehedgedvalueof

    PVat roughly50%of currentgeneration cost i.e.,35centsperkWh in thecontextof this

    article,assumingthatwholesaleenergycost(seeabove)isrepresentativeofgenerationcost.

    6Conventionalenergyiscurrentlyrequiredforthemanufactureofsolarsystemsbut,asarguedabove,thisinput

    willeventuallybedisplacedbecauseoftheresourcesbreedereffect.7Discountratesareusedtomeasurethepresentdecisionmakingweightoffutureexpenses/revenuesasa

    functionoftheirdistancetothepresent.Ahighdiscountrateminimizestheimpactoffutureeventssuchasfuel

    costincreases,whilealowrategivesmoreweighttotheseevents(e.g.,seeRef15).Fromaninvestorsstand

    point,thediscountraterepresentsthereturnofahypotheticalinvestmentagainstwhichtobenchmarka

    particularventure.Lowriskinvestmentsarecharacterizedbylowreturnrates(e.g.,Tbills)whilehighriskventures

    requirehighratestoattractprospectiveinvestors.

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    7/16

    R.Perez,K.Zweibel,T.Hoff

    Thereareadditionalbenefitsthataccruetothesocietyatlargeanditstaxpayers:

    Grid securityenhancement,23 /kWh:because solargeneration canbe synergisticwithpeakdemandinmuchoftheUS,theinjectionofsolarenergynearpointofusecandelivereffective

    capacity, and therefore reduce the risk of the power outages and rolling blackouts that are

    causedby

    high

    demand

    and

    resulting

    stresses

    on

    the

    transmission

    and

    distribution

    systems.

    The

    capacityvalueofPVaccruestotheratepayerasmentionedabove.However,whenthegridgoes

    down, the resultinggoodsandbusiness lossesarenot theutilitys responsibility: societypays

    theprice,via lossesofgoodsandbusiness,compounded impactson theeconomyand taxes,

    insurancepremiums,etc. ThetotalcostofallpoweroutagesfromallcausestotheUSeconomy

    hasbeenestimatedat$100billionperyear(Gellings&Yeager,2004).Makingtheconservative

    assumptionthatasmallfractionoftheseoutages,say510%,aretheofthehighdemandstress

    typethatcanbeeffectivelymitigatedbydispersedsolargenerationatacapacitypenetrationof

    20%,itisstraightforwardtocalculatethatthevalueofeachkWhgeneratedbysuchadispersed

    solarbasewouldbewortharound3centsperkWhtotheNewYorktaxpayer(seeappendix).

    Environment/health,36/kWh: It iswellestablished that theenvironmental footprintofsolargeneration (PV and CSP) is considerably smaller than that of the fossil fuel technologies

    generatingmostofourelectricity (e.g.,Fthenakisetal.,2008),displacingpollutionassociated

    withdrilling/mining,andemissions.Utilitieshave toaccount for thisenvironmental impact to

    some degree today, but this is still only largely a potential cost to them. Ratebased Solar

    Renewable Energy Credits (SRECs) markets that exist in some states as a means to meet

    RenewablePortfolioStandards(RPS)areapreliminaryembodimentofincludingexternalcosts,

    but they are largely drivenmore by politicallynegotiated processes than by a reflection of

    inherent physical realities. The intrinsic physical value of displacing pollution is very real

    however: each solar kWh displaces an otherwise dirty kWh and commensurately mitigates

    severalof

    the

    following

    factors:

    greenhouse

    gases,

    Sox/Nox

    emissions,

    mining

    degradations,

    groundwatercontamination,toxicreleasesandwastes,etc.,whichareallpresentorpostponed

    coststosociety. Severalexhaustivestudiesemanatingfromsuchdiversesourcesasthenuclear

    industry or the medical community (Devezeaux, 2000, Epstein, 2011) estimate the

    environmental/health cost of 1 kWh generated by coal at 925 cents, while a [nonshale8]

    naturalgaskWhhasanenvironmentalcostof36centsperkWh. GivenNewYorksgeneration

    mix(15%coal,29%naturalgas),and ignoringtheenvironmentalcostsassociatedwithnuclear

    andhydropower,theenvironmentalcostofaNewYorkkWh isthus2to6centsperkWh.Itis

    importanttonotehoweverthattheNewYorkgriddoesnotoperateinavacuumbutoperates

    withinand issustainedby a largergridwhosecoal footprint isconsiderably larger (more

    than45%

    coal

    in

    the

    US)

    with

    acorresponding

    cost

    of

    512

    cents

    per

    kWh.

    In

    the

    appendix,

    we

    showthatpricingonesinglefactorthegreenhousegasCO2deliversataminimum2cents

    persolargeneratedPVkWhinNewYorkandthatanargumentcouldbemadetoclaimamuch

    8Shalenaturalgasisbelievedtohaveahigherenvironmentalimpactthanconventionalnaturalgas,including

    greenhousegasemissions(Howarth,R.,2011).

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    8/16

    R.Perez,K.Zweibel,T.Hoff

    higher number. Therefore taking a range of 36 cents per kWh to characterize the

    environmentalvalueofeachPVgeneratedKWhiscertainlyaconservativerange.

    LongTermSocietalValue,34/kWh:Beyondthecommodityfutures5yearfuelpricemitigationhedgehorizonof relevance to autility companyandworth35/kWh (see above),a similar

    approachcanbeusedtoquantifyingthe longtermfinitefuelhedgevalueofsolargeneration,

    fromasocietal

    (i.e.,

    taxpayers)

    viewpoint

    in

    light

    of

    the

    physical

    realities

    underscored

    in

    figure

    1. Prudently,andmanywouldargueconservatively,assumingthatlongterm,finite,fuelbased

    generation costswillescalate to150% in real termsby2036, the30year insurancehedgeof

    solar generation gauged against a low risk yearly discount rate equal the Tbill yield curve

    amounts to47 centsperkWh (seeappendix).Further,arguing theuseofa lower societal

    discountrate(Toletal.,2006)wouldplacethehedgevalueofsolargenerationat712centsper

    kWh(seeappendix).Takingamiddlegroundof69centsperkWh,thelongtermsocietalvalue

    ofsolargenerationcanthusbeestimatedat34centsperkWh(i.e.,thedifferencebetweenthe

    societalhedgeandshorttermutilityhedgealreadycountedabove).

    Economic growth, 3+ /kWh: The German andOntario experiences,where fast PV growth isoccurring,showthatsolarenergysustainsmorejobsperkWhthanconventionalenergy(Louw

    etal.,2010,BanWeissetal.,2010,andseeappendix).Jobcreation impliesvaluetosociety in

    many ways, including increased tax revenues, reduced unemployment, and an increase in

    general confidence conducive to business development. Counting only tax revenue

    enhancementprovidesatangiblelowestimateofsolarenergysmultifacetedeconomicgrowth

    value. In New York this low estimate amounts to nearly 3 cents per kWh, even under the

    extremelyconservative,but thus far realistic,assumption that80%of themanufacturingjobs

    would be either outofstate or foreign (see appendix). The total economic growth value

    induced by solar deployment is not quantified as part of this article as itwould depend on

    economicmodelchoicesandassumptionsbeyondthepresentscope.Itisevidenthowever,that

    the total value would be higher than the tax revenues enhancement component presently

    quantified.

    Cost: It is important to recognize that there is also a cost associatedwith the deployment of solar

    generationon the power gridwhich accrues against theutility/ratepayers. This cost represents the

    infrastructuralandoperationalexpensethatwillbenecessarytomanagethe flowofnoncontrollable

    solarenergygenerationwhilecontinuingtoreliablymeetdemand.ArecentstudybyPerezetal.(2010)

    showedthatinmuchoftheUS,thiscostisnegligibleatlowpenetrationandremainsmanageable fora

    solarcapacitypenetrationof30%(lessthan5centsperKWhinthegreaterNewYorkareaatthathigh

    penetration level). Up to this levelofpenetration, the infrastructuralandoperationalexpensewould

    consistof

    localized

    (demand

    side)

    load

    management,

    storage

    and/or

    backup

    operations.

    At

    higher

    penetration, localizedmeasureswouldquicklybecome tooexpensiveand the infrastructureexpense

    would consist of long distance continental interconnection of solar resources, such as considered in

    projectssuchasDesertec(Talaletal.,2009).

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    9/16

    R.Perez,K.Zweibel,T.Hoff

    BottomlineTable1summarizesthecostsandvaluesaccruingto/againstthesolardeveloper,theutility/ratepayer

    andthe

    society

    at

    large

    represented

    by

    its

    tax

    payers.

    The

    combined

    value

    of

    distributed

    solar

    generationtoNewYorksrateandtaxpayers isestimatedtobe intherangeof1541centsperkWh.

    TheupperboundoftherangeappliestosolarsystemslocatedintheNewYorkmetro/LongIslandarea

    andthelowerboundappliestoveryhighsolarpenetrationforsystemsinnonsummerpeakingareasof

    upstateNewYork.Ineffect,Table1showsthatgridparityalreadyexistsinpartsofNewYork andby

    extensioninotherpartsofthecountry sincethevaluedeliveredbysolargenerationexceedsitscosts.

    Thisobservationjustifiestheexistenceof(orrequestsfor)incentivesasameanstotransfervaluefrom

    thosewhobenefittothosewhoinvest.TABLE1

    Conservativeestimate:Itisimportanttostressthatthisresultwasarrivedatwhiletakingaconservative

    floorestimate forthedeterminationofmostbenefits,andthatasolidcasecouldbemade forhigher

    numbersparticularlyintermsofenvironment,fuelhedgeandbusinessdevelopmentvalue. Inaddition,

    several other likely benefits were not accounted for because deemed either too indirect or too

    controversial. Someoftheseunaccountedvalueaddersareworthabriefqualitativemention:

    Developer/Investor

    Distributed solar*systemCost 2030 /kWh

    TransmissionEnergyValue 6 to11/kWh

    TransmissionCapacityValue 0 to5/kWh

    DistributionEnergyValue 0 to1/kWh

    DistributionCapacityValue 0 to3/kWh

    FuelPriceMitigation 3 to5/kWh

    SolarPenetrationCost 0 to5/kWh

    GridSecurity

    Enhancement

    Value 2

    to

    3/kWh

    Environment/healthValue 3 to6/kWh

    LongtermSocietalValue 3 to4/kWh

    EconomicGrowthValue

    TOTALCOST/VALUE 2030 /kWh

    *Centralizedsolarhasachievdacostof1520centsperkWhtoday.Howeverlessoftheabovevalueitemswould apply.The

    distributionvalueitemswouldnotapply.Transmission capacity,andgridsecurityitemswouldgenerallybetowardsthebottomof

    theaboveranges,whilepenetration costwouldbetowardsthetopoftherangesbecauseoftheburdenplacedontransmission

    andthepossibleneedfornewtransmissionlines nevertheless,avalueof1430centsperkWhcouldbeclaimed.

    Utility/Ratepayer Society/Taxpayer

    15to41/kWh

    3+/kWh

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    10/16

    R.Perez,K.Zweibel,T.Hoff

    No value was claimed beyond 30 year life cycle operation for solar systems, although thelikelihoodofmuchlongerquasifreeoperationishigh(Zweibel,2010)

    Thepositive impacton internationaltensionsand the reductionofmilitaryexpense tosecureever more limited sources of energy and increasing environmental disruptions was not

    quantified.

    The factdispersedsolargenerationcreates thebasis forastrategicallymore securegridthanthecurrenthubandspokepowergrid inanageofgrowingterrorismandglobaldisruptions

    concernswasnotquantified.

    Economicgrowthimpactwasnotquantifiedbeyondtaxrevenueenhancement. The question of government subsidies awarded to current finite energy sources (i.e.,

    displaceabletaxpayersexpense)wasnotaddressed.

    Taxpayervs.ratepayer:Unlikeconventionalelectricitygeneration,thevalueofsolarenergyaccruesto

    twoparties.Thismayexplainwhytheperceptionofvalueisnotasevidentastheabovenumberswould

    suggest. In particular, public utility commissions are focused on defending the interests of utility

    ratepayers,and

    ifonly

    the

    utility/ratepayers

    value

    is

    considered,

    the

    case

    for

    solar

    is

    marginal

    at

    best

    (425centsofvalueperkWh).However,focusingontheratepayersinterestaloneignoresthefactthat

    ratepayersandthetaxpayersareoneandthesame.Supportingonetotheexclusionoftheotherends

    uppenalizingthewholeperson.

    TangibleValue:Anotherreasonwhyperceptionofvalueisnotevidentisbecausethosewhopayforthe

    coststhatsolarwoulddisplaceareoftennotawareofthesecosts.Fortheratepayers items(energy&

    capacity),thetradeoff isobvious,butnotsofortheother items.However,costsare incurred inmany

    indirect,diffuse,butneverthelessveryreal ways e.g., insurancepremiums,highertaxestomitigate

    impacts, deferred costs (environment, future replacements of short term infrastructures, energy

    increases),and

    missed

    economic

    growth

    opportunities.

    Stablevalue:Oneof the characteristicsof thesolar resource is itsubiquityand stability: it ispresent

    everywhereanddoesnotvarymuchfromoneyeartothenextalthoughshorttermvariability(clouds,

    weather,seasons)oftentendtoovershadowthisperception (Hoff&Perez,2011).Similarly,thevalue

    deliveredbysolargeneratorsisverystableandpredictable.

    The two primary factors that do determine value per kWh produced are (1) location and (2) solar

    penetration9. Location is important because the value delivered by solar generation in terms of

    transmissionanddistributionenergyandcapacity,aswellasblackoutprotectionislocationdependent:

    a system inwinterpeaking ruralupstateNewYorkwilldeliver lessvalue thana system inagrowing

    commercialsector

    of

    Long

    island.

    Penetration

    is

    important,

    because

    some

    of

    the

    benefits,

    in

    particular

    the capacity benefits, tend to erodewith penetration; and the cost to locallymitigate this erosion

    increases(see,Perezetal.,2010).

    9Technologyandsolarsystemspecs(e.g.,arraygeometry)arealsorelevant:highestvalueinNYCwouldbefor

    systemsdeliveringnearmaximumoutput at4PMi.e.,fixedtilt,orientedSW.

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    11/16

    R.Perez,K.Zweibel,T.Hoff

    Therefore, ifonewere todesignaneffectivesystem toprovidesolargenerationwiththe fairvalue it

    deservesfromrate/taxpayers,itwouldhavetobeastableandpredictablesystemthataccountsforthe

    locationandpenetrationfactors. AuctionbasedSRECScouldbeengineeredtomeetthesecriteria,but

    asmartvaluebasedFITthatisstableandtunablebydesign,appearstobeamorelogicalmatch10.

    Veryhighpenetrationsolar?Someof thebenefits identified in thisarticleapply roughlyup to30% solarpenetration.Thisalready

    representsa375GWhighvalue solardeploymentopportunity for theUS avery largeprospective

    marketwithalargenationalpayoff;butwhathappensbeyondthatpoint?Atveryhighpenetration,the

    issues facing solarwouldbecome similar towindgenerations issues,albeitwithamuch smallerand

    more [aesthetically] acceptable footprint.Many of the value itemsmentioned abovewould remain

    (longterm,wholesale energy, fuel price hedge, environment)while otherswould not (regional and

    localized capacity). The solutions envisaged today, including large scale storage and

    continental/international interconnectionstomitigate/eliminateweather,seasonsanddailyvariability,

    arecurrently

    on

    the

    drawing

    board

    (e.g.,

    Perez,

    2011,

    Lorec,

    2010,

    Talal

    et

    al.,

    2009).

    FinalWord:TheValueofSolarIt is clear that somepossibly largevalueof solarenergy ismissedby traditionalanalysis.Mostofus

    recognize this in our perception of solar as more sustainable than traditional energy sources. The

    purposeofthisarticle istobeginthequantificationofthisvaluesothatwecanbettercometoterms

    with the difficult investments we may make in solar despite its apparent grid parity gap with

    conventionalenergy.Societygainsbacktheextrawepayforsolar.Itgains itback inahealthier,more

    sustainableworld,economically,environmentally,andintermsofenergysecurity.

    AcknowledgementsManythankstoMarcPerez,forconstructivereviewsandforcontributingbackgroundreferences. Many

    thanks to Thomas Thompson and Gay Canough for their feedback, and pushing us to produce this

    document.

    Reference1. BanWeissG.etal.,SolarEnergyJobCreationinCalifornia,UniversityofCaliforniaatBerkeley2. Chianese, D, A. Realini, N. Cereghetti, S. Rezzonico, E. Bura, G. Friesen, (2003), Analysis of

    WeatheredcSiModules,LEEETISO,UniversityofAppliedSciencesofSouthernSwitzerland,Manno.

    3. Devezeaux J.G., (2000): Environmental Impacts of ElectricityGeneration. 25thUranium InstituteAnnualSymposium.London,UK(September,2000).

    10ItisimportanttostatethatwearetalkinghereaboutavaluebasedFIT,wheretheFITistheinstrumentto

    transfervaluefromthosewhobenefittothosewhoinvest.ThisisunlikeFITimplementationsinotherpartsofthe

    world,notablyinSpain,whereFITswereprimarilydesignedtoprovideaboosttosolarbusinessdevelopment.

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    12/16

    R.Perez,K.Zweibel,T.Hoff

    4. Epstein,P.(2011):Fullcostaccountingforthelifecycleofcoal.AnnalsoftheNewYorkAcademyofSciences.February,2011.

    5. Fthenakis,V.,Kim,H.C.,Alsema,E.,EmissionsfromPhotovoltaicLifeCycles.EnvironmentalScienceandTechnology,2008.42(6):p.21682174

    6. Gellings,C.W.,andK.Yeager,(2004):Transformingtheelectric infrastructure.PhysicsToday,Dec.2004.

    7. Hoff,T.,H.Wenger,andB.Farmer(1996):DistributedGeneration:AnAlternativetoElectricUtilityInvestmentsinSystemCapacity.EnergyPolicyVolume24,Issue2,pp.137147.

    8. Hoff, T. (1997): Identifying Distributed Generation and Demand Side Management InvestmentOpportunities.TheEnergyJournal17(4):89105.Hoff,T.E.(1997).

    9. HoffT.,R.Perez,G.Braun,M.Kuhn,andB.Norris,(2006):TheValueofDistributedPhotovoltaicstoAustinEnergyandtheCityofAustin.FinalReporttoAustinEnergy(SL04300013)

    10.Howarth,R., (2011):PreliminaryAssessmentof theGreenhouseGas Emissions fromNaturalGasObtainedbyHydraulicFracturing.CornellUniversity,Dept.ofEcologyandEvolutionaryBiology.

    11. IPCC Intergovernmental Panel on Climate Change, (2007): Summary for Policymakers. ClimateChange

    2007

    Mitigation

    of

    Climate

    Change,

    IPCC

    26th

    Session.

    12.Letendre S. and R. Perez, (2006): Understanding the Benefits of Dispersed GridConnectedPhotovoltaics: From Avoiding theNextMajorOutage to TamingWholesale PowerMarkets. The

    ElectricityJournal,19,6,6472

    13.Lorec,P.,UnionfortheMediterranean:TowardsaMediterraneanSolarPlan.RpubliqueFranaise MinistredeL'Ecologiedel'Energie,duDveloppementDurableetdelaMer,2010

    14.Louw, B., J.E.Worren and T.Wohlgemut, (2010): Economic Impacts of Solar Energy inOntario.CLearSkyAdvisorsReport(www.clearskyadvisors.com)

    15.E.g.,Nordhaus,,William(2008)."AQuestionofBalance WeighingtheOptionsonGlobalWarmingPolicies".YaleUniversityPress.

    16.Perez,M,(2011):FacilitatingWidespreadSolarResourceutilization:GlobalSolutionsforovercomingtheintermittencyBarrier(akaContinentalScaleSolar).ColumbiaUniversityPhDProposal

    17.Perez,R.,R.Seals,H.Wenger,T.HoffandC.Herig, (1997):PVasaLongTermSolution toPowerOutages. Case Study: The Great 1996 WSCC Power Outage. Proc. ASES Annual Conference,

    Washington,DC,

    18.PerezR.,B.Collins,R.Margolis,T.Hoff,C.HerigJ.WilliamsandS.Letendre,(2005)SolutiontotheSummer Blackouts How dispersed solar power generating systems can help prevent the next

    majoroutage.SolarToday19,4,July/August2005Issue,pp.3235

    19.PerezR. andT.Hoff, (2008):Energy andCapacityValuationofPhotovoltaicPowerGeneration inNewYork.PublishedbytheNewYorkSolarEnergyIndustryAssociationandtheSolarAlliance

    20.Perez,R.andM.Perez,(2009a):Afundamentallookatenergyreservesfortheplanet.TheIEASHCSolarUpdate,Volume50,pp.23,April2009

    21.PerezR.,M.Taylor,T.HoffandJ.PRoss,(2009b):RedefiningPVCapacity.PublicUtilitiesFortnightly,February2009,pp.4450

    22.Perez,R.,T.HoffandM.Perez,(2010):QuantifyingtheCostofHighPVPenetration.Proc.ofASESNationalConference,Phoenix,AZ

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    13/16

    R.Perez,K.Zweibel,T.Hoff

    23.Perez R. & T. Hoff (2011): solar resource variability, myths and facts, Solar Today (upcoming,Summer2011)

    24.Peters,N.,(2010):PromotingSolarJobsAPolicyFrameworkforCreatingSolarJobsinNewjersey25.Shugar,D., andT.Hoff (1993):Gridsupportphotovoltaics:Evaluationof criteria andmethods to

    assess empirically the local and system benefits to electric utilities. Progress in Photovoltaics:

    Researchand

    Applications,

    Volume

    1,

    Issue

    3,

    pp.

    233250.

    26.Talal,H.B.,etal., (2009)CleanPowerfromDeserts:TheDESERTECConcept forEnergy,WaterandClimate Security,G. Knies, Editor. TanakaN., (2010): The Clean Energy Contribution,G20 Seoul

    Summit:SharedGrowthBeyondCrisis.

    27.TolR.S.J.,J.Guo,C.J.Hepburn,andD.Anthoff(2006):DiscountingandtheSocialCostofCarbon:aCloserLookatUncertainty,EnvironmentalScience&Policy,9,205216,207

    28.Wenger,H.,T.Hoff,and J.Pepper (1996):PhotovoltaicEconomicsandMarkets:TheSacramentoMunicipalUtilityDistrictasaCaseStudy.Report. www.cleanpower.com

    29.Zweibel,K,2010,ShouldsolarPVbedeployedsoonerbecauseoflongoperatinglifeatpredictable,lowcost?Energypolicy,38,75197530.

    APPENDIXGridsecurityenhancement: 20%USpenetrationwouldrepresentroughly250GWofsolargeneratingcapacity.UsingaNewYorkrepresentativeproduction levelof1,350kWhperKWperyear, the solar

    productionwouldthusamountto375billionkWh/year,worth$510billionsinoutagepreventionvalue

    underthe

    conservative

    assumption

    selected

    here,

    amounting

    to

    23cents

    per

    kWh.

    EstimatingsolarCO2mitigationvalue:ThevalueofsolargenerationtowardsCO2displacementmaybegaugedusingseveraldifferentapproaches.

    (1) Bystartingfromthecarbontax/capandtradepenalty levelsthatarebeingenvisagedtoday at$3040/tonofCO2(e.g.,Nordhaus,2008). GiventheenergygenerationmixinastatelikeNewYork,

    each locallydisplacedkWh (i.e., solargenerated)would remove500600gramsofCO2,and thus

    wouldbeworthnearly2cents.

    (2) Bystarting from the figureof1.5%ofworldGDPperyearadvancedby the IPCCastheminimumnecessarytopreventarunawayclimatechange(IPCC,2007).1.5%ofGDPrepresents$900billions.

    GlobalCO2emissionsare~30billionstons.Displacing2/3rdsoftheseemissionstobringusbacktoa

    1960s level, and again, and takingNew Yorks current generationmix as an emission reference

    amountstoavalueof3centsforeachkWhdisplacedbysolargeneration.

    (3) Alsobystarting from the1.5%GDP figure,but recognizing thatsolutions todisplacegreenhousegasesneed tobeprimedandencouragedbefore theycanbeeffectiveand reach theirmitigation

    objectives. Ifweassume,veryconservatively, that solarenergy representsonly10%of theglobal

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    14/16

    R.Perez,K.Zweibel,T.Hoff

    warmingsolution11andshouldthusbefullyencouragedtothetuneof0.15%GDP,thengiventhe

    current installed solarcapacityof2030GWand thecurrent installation rateapproaching20GW

    annuallyworldwide, encouraging the development of solarwould amount to distributing ~ 150

    centsperkWhtoeachexistingandnewsolarsystem.Thisvaluewouldthendecreasegraduallyover

    the years as the installed solar capacity grows, ultimately reaching a value commensuratewith

    points(1)

    and

    (2).

    Longtermfossilfuelpricemitigation/societalvalue:ThelongtermfuelpricemitigationvalueofasolarkWh isthepresentvalueofthedifferencebetweenwhatonewouldhavetopayforenergyescalating

    over the lifeof the solar systemandwhatonewouldhave topay ifenergycost remained constant.

    Undertheassumptionsofthisarticle150% increaseoffiniteenergy in25yearsandapresentvalue

    assessedusingayearlylowriskdiscountrateequaltotheTBillyieldcurve,thisdifferenceisabout60%.

    Hence,takingthesolarcoincidentwholesalegenerationcostof611centsasgaugeofcurrentenergy

    productioncost,thelongtermmitigationvalueofasolarkWhis4to7centsperkWh.Interestingly,this

    estimateiscommensuratewiththeInternationalEnergyAgencyscontentionthataCO2taxworth$175

    perton

    should

    be

    necessary

    to

    encourage

    the

    development

    of

    renewables

    and

    displace

    fossil

    fuel

    depletion (Tanaka,2010)whilemitigating theirdepletionandkeeping their long termpricesnear the

    presentrange. BasedontheNewYorksgenerationmix,$175pertonamountsto910centsperkWh.

    It is important to remark that alternative and less conservative approaches can be considered and

    defended to determine the value of the low risk/long life solar investment to society. In particular,

    comparingthedifferencebetweensolarsavingsassessedwithabusinessasusualdiscountrateanda

    societal discount rate provides ameasure of the long term societys benefit that is not taken into

    account using shortterm oriented business as usual approaches. Evenwhen using a verymodest

    businessasusualdiscountrateof7%,thepresentvalueofconventionalgenerationappearsreasonable:

    futureoperatingcostsincreasebutdonotmattermuchbecausetheyarediscountedat7%theweight

    ofexpense/revenue

    30

    years

    into

    the

    future

    in

    terms

    of

    present

    decision

    making

    is

    discounted

    by

    nearly

    85%(at10%discountrate,theweightwouldbediscountedbyover95%).However,thispracticeheavily

    penalizes future generations. It also penalizes solar: Solar power plants are upfrontloaded with

    relativelyhigh installationcosts,and thequasi freeenergy theywillproduce for the long term isnot

    valued as it should, since it is heavily discounted. Nevertheless, the intergenerational, longterm

    societalvalueofpresentday solar installation isvery real.Asa remedy to thisdichotomy, societal

    discount rates are sometimes used by governments to justify investments which are deemed

    appropriate forthe longtermwellbeingofthesociety (Toletal.,2006)solargenerationclearlyfits

    thisdefinition.Comparinga2%societaldiscount rateanda7%businessasusual rateandcalculating

    thevalueof solaras thepresentdifferenceof the twoalternatives, the societalhedgevalueof solar

    energygeneration

    would

    be

    712

    cents

    per

    kWh.

    Taxrevenueenhancement:TheGermanexperienceindicatesthateachMWofPVinstalledimplies1015modulemanufacturingjobs,815installationjobsand0.3maintenancejobs,asconfirmedbyrecent

    numbers fromOntario (Louw et al., 2010, Peters, 2010). Solarjobs representmore than ten times

    11GiventhepotentialsshowninFigure1,itisprobablymuchhigherthanthat.Ahigherpercentagewouldyielda

    highersolarvalue.

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    15/16

    R.Perez,K.Zweibel,T.Hoff

    conventionalenergyjobsperunitofenergyproducedi.e.,tennewsolarjobswouldonlydisplaceone

    conventionalenergyjob.

    Althoughthesenumbersmaybeskewedbythefactthatastillexpensiveandnascentsolar industry is

    overlyjobintensive,aquickrealitycheckrevealsthattherelativehigherpriceofthesolartechnology

    todayalso

    implies

    ahigher

    job

    density:

    the

    necessary

    20

    30

    c/kWh

    solar

    revenue

    stream

    underlying

    discussions inthisarticlecorrespondstoaturnkeycostof$4millionpersolarMW. InthecaseofPV,

    this cost can be assumed to divide evenly between technology (modules/inverters) and system

    installation(construction,structures)representing$2MperMWforeach.Conservativelyassumingthat

    50%oftechnologyand75%ofinstallationcostsaredirectlytraceabletosolarrelatedjobsandassuming

    a job+overhead rate of $100K/year, this simple reality check yields 10 manufacturing and 15

    constructionrelatedjobs.Demonstratingthatthesolarjobdensityofthesolarresource ishigherthan

    that of conventional energy is also straightforward to ascertain from first principles: comparing a

    $4/Watt turnkey solar system producing 1,500 kWh/KW/year to a $1/Watt turnkey CCGT producing

    5,000kWh/kW/year,andassuming that thejobdensityper turnkeydollar is the same inbothcases,

    yields13

    times

    more

    jobs

    for

    the

    solar

    option

    per

    kWh

    generated.

    Astheturnkeycostofsolarsystemsexpectedlygoesdown,thejobdensitywillofcoursebereduced,

    but,moreimportantly,sowillthenecessarybreakevenrevenuestream.

    Fornow,giventhepremiseofthispaper arequiredsolarenergyrevenuestreamof2030centsper

    solarkWh letuscalculatethevaluethatsocietyreceivesunderthisassumption.

    Thefollowingassumptionsareusedforthiscalculation:

    EachnewsolarMWresultsin17newjobs.Thereare2newmanufacturingjobs(it isassumedthat

    80%

    of

    the

    manufacturing

    jobs

    are

    foreign

    and

    do

    not

    generate

    any

    federal

    or

    state

    tax

    revenue)andthereare15newinstallationjobs.

    Solarsystemsarereplacedafter30years,sotheamountofjobscorrespondingtoeachinstalledMW isthepresentvalueofa30yearjobreplacementstream.Withadiscountrateof7%,17

    jobstimesanannualizedfactorof0.08translatesto1.36jobsperMWperyear.

    Systemmaintenancerelatedjobsamountto0.3jobsperMW12(Germanexperience) ThetotalamountofsustainedjobsperMWisthereforeequalto1.66. Assumingthattensolarjobsdisplaceoneconventionalenergyjob,thenetsustainablenewjobs

    persolarMWarethereforeequalto1.49(90%of1.66).

    Thesalaryforeachsolarjobis$70K/year. Current federal and New York tax rates for an employee making $70,000 per year pays a

    combinedeffectiveincometaxrateof23%.

    1MWofPVgenerates1,500,000kWhperyear.

    12ThiscorrespondstoaveryreasonableO&Mrateof0.5%undertheassumptionsofthisstudy.

  • 8/14/2019 EnergyPolicy SolarPowerintheUS Perez Zweibel Hoff

    16/16

    R.Perez,K.Zweibel,T.Hoff

    Finally, direct job creation translates to the additional creation of indirect jobs. It isconservativelyassumedthattheindirectmultiplierequals1.7(i.e.everysolarjobhasanindirect

    effectintheeconomyofcreatinganadditional0.7jobs).13

    Puttingthepiecestogether,thetaxbenefitfromjobcreationequalsabout3centsperkWh.

    13Indirectbasemultipliersareusedtoestimatethelocaljobsnotrelatedtotheconsideredjobsource(heresolar

    energy)butcreatedindirectlybythenewrevenuesemanatingfromthenew[solar]jobs.