Energy Shock & Alt Res (Aus-China)

24
Energy Shocks and Emerging Alternative Energy Technologies Graham M Turner CSRIO Sustainable Ecosystems, Canberra, ACT, Australia Sino-Australian Joint Research Forum, 21-23 July 2010 “Collaboration and Governance in the Asia Pacific” Abstract Since the availability of cheap and suitable energy underpins in many ways both developed and developing economies, it is crucial that national economies are prepared for potential energy shocks. Shocks may arise from physical constraints, such as a peak in national and global production rate of oil, or from institutional constraints, such as economic incentives to reduce greenhouse gas emissions. We examine potential modelled scenarios for China and Australia, to explore the extent of such shocks. The models are based on stock and flow dynamics of the physical activity throughout national economies. The ‘what if’ scenarios allow us to analyse options that aim to reduce or eliminate the impact of energy shocks through the use of alternative energy technologies and other options. When considering these alternatives, it is necessary to incorporate in the analysis the rate of change required in any transition, and potential crosssectoral sideeffects. Introduction The importance of energy to the smooth operation of global and national economies is evident in the tight correlation of energy and GDP (e.g., (Foran, 2009)). Developed and developing economies rely on a range of energy carriers, but are critically dependent on oil for transport and electricity for a host of industrial and commercial purposes. Potential disruptions in supply of these energy carriers therefore imply significant risks to economies. For example, the oilshocks of in the 1970s and 80s demonstrated some economic impact of constraints in oil supply. However, the nature of even these important events is perhaps less critical than those facing global economies in contemporary times. In the earlier oilshocks, which were triggered when US supply of oil had reached peak production, global resources were still abundant, and the shocks were more a question of establishing a suitable price for oil on the international market. By contrast in contemporary times, there are concerns from some commentators that global oil production may have peaked or be nearing that situation. Energy shocks may also occur at the ‘tailpipe’ or emissions end of the energy system. A large proportion of greenhouse gas (GHG) emissions occurs directly from the combustion of fossil fuels in the production of electricity, heat and transport 1

description

Energy Shock & Alt Res (Aus-China)

Transcript of Energy Shock & Alt Res (Aus-China)

  • Energy Shocks and Emerging Alternative Energy Technologies GrahamMTurnerCSRIOSustainableEcosystems,Canberra,ACT,Australia

    Sino-Australian Joint Research Forum, 21-23 July 2010

    Collaboration and Governance in the Asia Pacific

    Abstract Sincetheavailabilityofcheapandsuitableenergyunderpinsinmanywaysbothdevelopedanddevelopingeconomies,itiscrucialthatnationaleconomiesarepreparedforpotentialenergyshocks.Shocksmayarisefromphysicalconstraints,suchasapeakinnationalandglobalproductionrateofoil,orfrominstitutionalconstraints,suchaseconomicincentivestoreducegreenhousegasemissions.WeexaminepotentialmodelledscenariosforChinaandAustralia,toexploretheextentofsuchshocks.Themodelsarebasedonstockandflowdynamicsofthephysicalactivitythroughoutnationaleconomies.Thewhatifscenariosallowustoanalyseoptionsthataimtoreduceoreliminatetheimpactofenergyshocksthroughtheuseofalternativeenergytechnologiesandotheroptions.Whenconsideringthesealternatives,itisnecessarytoincorporateintheanalysistherateofchangerequiredinanytransition,andpotentialcrosssectoralsideeffects.

    Introduction TheimportanceofenergytothesmoothoperationofglobalandnationaleconomiesisevidentinthetightcorrelationofenergyandGDP(e.g.,(Foran,2009)).Developedanddevelopingeconomiesrelyonarangeofenergycarriers,butarecriticallydependentonoilfortransportandelectricityforahostofindustrialandcommercialpurposes.Potentialdisruptionsinsupplyoftheseenergycarriersthereforeimplysignificantriskstoeconomies.

    Forexample,theoilshocksofinthe1970sand80sdemonstratedsomeeconomicimpactofconstraintsinoilsupply.However,thenatureofeventheseimportanteventsisperhapslesscriticalthanthosefacingglobaleconomiesincontemporarytimes.Intheearlieroilshocks,whichweretriggeredwhenUSsupplyofoilhadreachedpeakproduction,globalresourceswerestillabundant,andtheshocksweremoreaquestionofestablishingasuitablepriceforoilontheinternationalmarket.Bycontrastincontemporarytimes,thereareconcernsfromsomecommentatorsthatglobaloilproductionmayhavepeakedorbenearingthatsituation.

    Energyshocksmayalsooccuratthetailpipeoremissionsendoftheenergysystem.Alargeproportionofgreenhousegas(GHG)emissionsoccursdirectlyfromthecombustionoffossilfuelsintheproductionofelectricity,heatandtransport

    1

  • services.ReductionactionstodatehavebeennegligibledespitescientificadvicefromtheIPCCandothers(e.g.,[Stern,Garnaut])advocatingearlyandlargereductionstoavoiddangerousclimatechange.AsGHGemissionsincreaseandclimatechangeimpactsworsen,thereisthepossibilitythatconcernabouttheimpactsofclimatechangemaygrowandgalvaniseactiononreducingGHGemissions.Thismayoccurquicklywithademandforrapidaction,carryingwithittheexpectationthatsubstantialchangesbemadetoelectricitygenerationandotherenergysupplysystems.

    Thispaperexaminesthesepotentiallycriticalenergyshocksandtowhatextentemergingenergytechnologiesmayhelpalleviateoravoidtheshocks.Thenextsectionoutlinesthemagnitudeoftheseenergychallengesfacingnationalandglobaleconomies.Anoverviewofalternativeenergyoptionsisprovidedinthefollowingsection,whichalsodescribesotherimpactsorrequirementsthatareassociatedwiththeseoptions,butarerarelyconsidered.Thissuggeststheneedforwidersystemanalysisofalternativeoptions,andthestocksandflowsmodellingsystemofnationaleconomiesforsuchanalysisissubsequentlydescribed.Inthefinalmainsectionofthispaper,resultsarepresentedfromthestocksandflowsanalysisthataredrawnfromacollectionofseparatestudies.Thesearecomparedwithotherrecentstudiesdealingwithtransportfuelandgreenhousegaschallenges,andasummarygivenofcriticalissuesthatwillneedtobeaddressedifenergyshocksaretobeaverted.Thepaperconcludeswithaconsiderationofthelikelihoodofavertingtransportfuelandgreenhousegasrelatedenergyshocks.

    Potential Energy Shocks Thissectionoutlinesthemagnitudeoftwopotentiallycriticalenergychallengesfacingnationalandglobaleconomies.

    Transportfuel

    Theissueofpeakoilhasbeenrecognisedbysomecommentatorsformanydecades(Deffeyes,2001),andhasitsbaseintheestimatesmadeinthe1950sbyHubbertonUSoilproduction.Peakoilreferstothesituationwhenproductionofoilreachesanupperrateandsubsequentlydeclines,andassuchitdoesnotimplyexhaustionofafinitemineralresource.However,theconcernaroundpeakoilissimplythatthesupplyratewillnotbeabletosatisfyanticipateddemandoncethepeakhasoccurred.

    ProductionofoilintheUSpeakedintheearly1970s,asforecastbyHubbert(vindicatinghisanalysisaftermuchderisionfromtheoilindustry).AlthoughfuelefficiencymeasureswereencouragedanddomesticoilfieldsexpandedintheUS,thegapbetweendomesticsupplyandgrowingdemandwaslargelysolvedbyimportingMiddleEasternoil.ThiscamewitheconomicdisruptionsasOPECmanipulatedproductionandregionalwarssubstantiallyaffectedpricesontheinternationalmarket.Sincethistime,severalothermajorfields(e.g.,UKsNorthSeaoil)havereachedpeakproductionandareindecline(Sorrelletal.,2010).Despitethisexperience,itisonlyinrecentyearsthattheissueofglobalpeakoilhasgainedcredencebeyondtheprevioussmallnumberofanalystspromulgatingtheissue;for

    2

  • example,withthereleaseoftheWorldEnergyOutlook2008(andEnergyTechnologyPerspective2008)theconservativeInternationalEnergyAgency(IEA)formallyrecognisedconstraintsinconventionaloilsupply.InAustralia,domesticoilproductionisforecastbyGeoscienceAustraliatodeclineovercomingyears,evenwithundiscoveredresourcesfactoredin(GA,2009).However,differingviewsremainaboutwhenaglobalpeakmayoccur(orifitisinprogressnow)(see(Owenetal.,2010,Sorrelletal.,2010)forrecentoverviews),andwhattheeffectswillbe(andpotentialgeopoliticalresponsessuchasthoseexaminedin(Friedrichs,2010)).

    Whatdistinguishesvariousforecastsoffutureoilproductionandpeaking(ifany)isuncertaintyabouttheultimaterecoverableresource(URR)andtowhatextentnonconventionalsourcesofoil,suchasdeepwaterresources,tarsandsandextraheavyoil,shouldbeincluded.Productionfromconventionaloilyettobediscoveredisunlikelytocontributesignificantly,onthebasisofsubstantialfallsindiscoveriessincethemajorfieldsfoundinthe1960s.Consequently,energyagenciesandlargepetrochemicalcompaniesmakeforecaststhatseeproductioncontinuingtoincrease(orpeakingbeyond2020)throughwidespreaduseofnonconventionaloilthatisassumedtobedevelopedtomeetincreasingdemand.Incontrast,independentresearchershaveforecastpeakproductiontogenerallyoccurby2020atthelatest(ifnotalreadytakingplace)(Sorrelletal.,2010).

    Demandforoilisexpectedtoincreasedueprimarilytoitsfundamentalroleinpoweringtransport.Theincreaseisbasedonexpectationsofcontinuedeconomicgrowth,increasinguseofcarsandotheroilbasedvehiclesindevelopingcountries,andpopulationgrowth.Somealleviationofdemandislikelyasotherfuelssubstituteforoilbasedheatingsystems.Evenwithoutgrowthindemand,modernanddevelopingeconomiesareclearlycriticallydependentonoilbasedtransport.Withoutadequatetransportservices,essentialcomponentsofsocietyandeconomieswouldbejeopardised,suchasmechanisedfoodproduction,freightmovement,businesstravelandevenlabouraccesstowork.

    Aconstrictioninsupplyofoilmayaffectothereconomicfunctions.Forinstance,plasticsandotherbyproductsofthepetrochemicalindustryarewidelyusedthroughouttheeconomy.Anincreasingoilpriceaffectfoodproductionbystimulatingadditionaldemandfornaturalgas,andtherebyputspressureonnitrogenfertiliserswhichusenaturalgasasafeedstock.

    Greenhousegasemissions

    Shockstoenergysystemsmayalsooccurindirectlythroughpotentialconstraintsappliedtotheemissionofgreenhousegasesinordertomitigateclimatechange.Currently,energyuseaccountsforthemajorityofGHGemissions,withthecombustionoffuelsforstationaryenergyusecontributingalargefraction,alongwithtransportuse.Therefore,anysubstantialreductioninGHGemissionswillinvolvelargechangestotheenergysystem.

    Inordertoavoidthepotentialfordangerousclimatechange,theIPCChasrecommendedarangeofreductionsofGHGemissionsthatshouldbeachievedby2050.Relativeto1990levelsofemissions,theglobaltargetreductionin2050is80

    3

  • 90%.Differentreductiontargetsaresuggestedforreductionsattributedtodevelopinganddevelopednations(e.g.,50%and90%respectively).

    Unlesslargechangesaremade,emissionsarelikelytobesubstantiallyhigherthancurrentemissions.RecentmeasurementsindicatethatglobalemissionsarecloselytrackingontheA1FlscenarioproducedintheIPCCFourthAssessment,whicheffectivelyconstitutesbusinessasusual(BAU).RelativetothisBAUsituationin2050,therecommendedemissionreductionsarethereforeevenmoresubstantial.

    Alternative Energy Options Anoverviewofalternativeenergyoptionsisprovidedinthissection,whichalsodescribesotherimpactsorrequirementsthatareassociatedwiththeseoptions,butarerarelyconsidered.

    Overviewofpotentialtransportfueltechnologies

    Arangeofalternativeenergytechnologiesandoptionsexistforprovidingtransportfuels.Arguablythemostsimilarwithcurrentpetroleumfuelsissimplytheexpansionintosocallednonconventionaloils.Theseareliquidfossilfuelsthatexistinformsorlocationsthatrequiresignificantlydifferentprocessestoextractthem.Otherfossilfuelscanbeusedfortransport,mostnotablynaturalgas;andcoalcanbeconvertedtoaliquidfuel.Severaldifferentliquidfuelscanalsobeproducedfromcropsandotherbiomass,andevenpotentiallyfromalgae.Finally,landandseatransportcanbepoweredbyelectricsystemsusingbatteriesorhydrogenfuelcellstostoretheenergy.

    Alloptionsfortransportfuels,includingconventionaloil,haveimplicationsthatneedtobeconsideredfortheirfeasibilityanddesirabilityintermsofimpactsontheenvironment,resourcesandeconomy.Inmostcases,theimplicationsmaybesubstantialandcomplex,asTable1summarises.

    Forthefuelalternativeslisted,additionalresourcesareoftenneeded,suchaswater,landandminerals.Thesemayalreadybeconstrained,sothattheadditionalimpostassociatedwithfuelproductionwouldincreasestressontheseresources.SomefueloptionsarelikelytoleadtohigherGHGemissionsperunitoffuelconsumption,thoughthiscouldbereversedinthecaseofelectricpowersystemswiththeuseofrenewableelectricitygeneration.WhenhigherGHGintensitiesarecombinedwithincreaseddemandanticipatedwitheconomicgrowth,absoluteemissionswouldincreaserapidly.Asimilarrecentreviewofalternativesisavailablein(Diesendorfetal.,2008).

    4

  • Table1.Alternativetechnologyoptionsforprovidingtransportandfuels,andsomerequirements(inputsandinfrastructure)andpotentialenvironmentalimpacts.

    Technology Description Resourceinputs Infrastructure Environmental/resourceimpacts

    Nonconventionalresources

    Petroleumproductsderivedfromdeepwaterresources;tarsands;extraheavyoil

    Higherenergyinputs;Water

    Extractionandprocessingplant

    IncreasedGHG;Waterpollution;Environmentalaccidents(e.g.,GulfofMexicoDeepwaterHorizon)

    Lowerfuelconsumptionengines

    Modalshift Railbasedfreightandpassengertransit

    Electricity(orotherconventionalfuel)

    Expandedrailnetwork GHGfromelectricitygeneration

    Naturalgas Compressedandliquefiednaturalgas

    Energyforcompression,etc.

    Pipelines;Shipping;Fuelstationrefit;Enginechangeover

    ReducedGHGperunitfuelconsumption;Competitionforfiniteresource(similartooilinenergyterms)

    Coaltoliquids Oilproducedfromcoal

    Coal;Water;Energyforprocessing

    Manufacturingplant IncreasedGHG;Competitionforwaterresources

    Biofuels(e.g.,Ethanol,Methanol,Biodiesel)

    Productionofliquidfuelbasedone.g.:Cropsandstubble;Secondgenerationbiomass;Oilproducingalgae

    Land;Water;Fertilisers;Energytoharvestandprocess

    Manufacturingplant

    Competitionwithfoodsystems(&forests);Soildegradation;Competitionforwaterresources

    Compressedairpower Otherenergyusedtocompressair,whichislaterreleasedtodeveloppower

    Electricity? Minimal? GHGfromelectricitygeneration

    Electricvehicles(andhybrids)

    Batterybasedpowerforelectricmotors;Notapplicableforaircraft

    Heavymetals(Lithium?);Electricityproduction

    Transmission/distributionnetwork;Rechargingstationsorbatteryexchange

    IncreasedGHGdependingonsourceofelectricity;Wastebatteriesandtoxicchemicals

    Hydrogenfuelcells Fuelcellpowerforelectricmotors;Notapplicableforaircraft

    Naturalgas;Water;Catalysts(e.g.,xxx);Electricityforelectrolysis

    ManufacturingplantPipelines;Rechargingstations

    IncreasedGHGdependingonsourceofelectricity

    OftheoptionsandcriteriainTable1,potentiallytheleastdemandingistheuseofnaturalgas.Inthiscase,atransitiontogaswouldnecessitatethecreationofnewinfrastructure(andenginetechnology)toreplacethatforthedeliveryofoil,evenbeforeallowingforexpansionduetoeconomicgrowth.Gasasatransportfuelwouldcompetewiththatusedinelectricityproductionandheating.Whilenonconventionalresourceestimateshaveincreasedrecently,theURRisofthesameorderasthatforoil.Therefore,givenexponentialgrowthindemandthegasresourcecouldreachpeakproductioninseveraldecades.

    5

  • OverviewoftechnologiesforGHGreductioninelectricitygenerationanduse

    AsimilarsummaryofalternativetechnologyoptionsforreducingGHGemissionsassociatedwithelectricitygeneration(anduse)isprovidedinTable2.Thelistoftechnologiesisnotexhaustivebutcapturesthewiderangeinpotentialoptionsavailable.Thetechnologiesareassessedaccordingtotheirstageofdevelopmentandtherelatedissueofwhenthetechnologiescouldrealisticallybeavailableforlargescaledeployment.Itisalsoimportanttoreviewtechnologiesfortheirimpactsonorrequirementsforresourcesandinfrastructure.

    Itisevidentfromthisbriefoverviewofpotentialtechnologyoptionsthatthereareseveralalternativesthatappeartobemorereadilyavailableandcouldbedeployedrelativelyquickly.Alloptionsalsoinvolvesomeimpactonresourcesorinfrastructuredevelopment,tosomeextent.Itisnotclearfromsuchaqualitativereviewhowever,whethertheadditionalimplicationsandtimeframeswouldinhibitrapidreductionsinGHGemissionssufficienttoavoiddangerousclimatechange.

    AsimilarhighlevelassessmenthasbeenmadebyMacgill(Macgill,2008),concludingthatenergyefficiencyandgasbasedandrenewableenergyoptionsofferbetterpossibilitiesforreducingGHGemissionsrapidly.Macgillnotestheneedforscenariosimulationsthatdealwiththemanycriticalaspectsofalternativetechnologies,notjusttheultimatesizeoftheresource.

    Suchreviewspointtotheneedforsystemwideassessmentofalternativetechnologyoptions.Adescriptionofsuchanapproachisprovidedinthenextsection,andresultsfromaselectionofstudiesusingthissystemgiveninthefollowingsection.

    6

  • Table2.CharacteristicsofstationaryenergytechnologiesforreducingGHGemissions.

    Technology variations Developmentphase

    Potentialdeployment

    Resources/infrastructure

    Energyefficiency enduse;generation&distribution

    maturemature

    immediate turnoverofinefficientdevices

    Gasfueled CombinedcycleGas

    mature immediate accesstogasresources

    Nuclearenergy Fission;3rdGeneration

    maturewellresearched

    immediate uraniumresources,processing,disposalandsecurityissues

    Fusion earlyresearch manydecades massiveinfrastructure;seawaterfeedstock

    Thorium veryearlyresearch decades? unknowninfrastructurerequirements;largethoriumresourcesareavailable

    CarbonCaptureandStorage(CCS)

    Geological research,withlittledeploymentatscale

    decades pipelinetransmission;compression;securityofstorage(&relatedsizeofstorage)

    Biochar earlyresearch yearsdecades potentialsoilimplications(positive&negative?)andlimits

    Renewableelectricitygeneration

    Wind mature immediate energystorage,redundantfarmsortransmissionnetworkforvariability

    Solar(PV&Thermal)

    mature immediate accesstospecificmineralsforPVsystems

    Hydro mature immediate environmentalwaterresourceimpacts

    Biomass earlyresearch,throughtomature

    immediatedecades land,water,fertiliser(andother?)inputs

    Othertidal research yearsdecades suitablecoastalenvironments

    Geothermal Thermalenergy

    mature immediate newinfrastructure;

    Electricitygeneration

    research decades notdemonstratedatscale;electricitytransmissionnetwork

    System Modelling of Options Giventheneedforwidersystemanalysisofalternativeoptions,thestocksandflowssystemformodellingnationaleconomiesforsystemwideanalysisisdescribedinthissection.

    7

  • TheAustralianStocksandFlowsFramework(ASFF)

    TheASFFmodelisatechnologyandprocessbasedsimulationofthephysicalactivityinallsectorsofthenationaleconomy.ItisahighlydisaggregatesimulationofallphysicallysignificantstocksandflowsintheAustraliansocioeconomicsystem(Poldyetal.,2000,ForanandPoldy,2004,Turneretal.,2010a).InthecurrentversionoftheASFFthereover800multidimensionalvariables(about300thatareexogenous).Stocksarethequantitiesofphysicalitemsatapointintime,suchasland,livestock,people,buildings,etc.,andareexpressedinnumbersorSIunits.MuchofthephysicalcapitalintheAPSFF,suchasvehicles,buildingsandfactories,isvintagedaccordingtotheyeartheadditionalcapitalormachinerywasintroduced.Consequently,efficienciescanbeassociatedwithparticularvintages,andtheaginganddecommissioningofvintagedcapitalissimulated.Flowsrepresenttheratesofchangeresultingfromphysicalprocessesoveratimeperiod,suchasthe(net)additionsofagriculturalland,immigrationandbirthrates,etc.

    TheASFFsimulatesthedynamicsofmajorcapitalandresourcepools,andtheflowsassociatedwiththesestockssuchasinputsofnaturalresources,manufacturingoutput,andchangesincapitalincludingbuildings,infrastructureandmachinery(Figure1).Naturalresources(land,water,air,biomassandmineralresources)arerepresentedexplicitly,andflowsofrawmaterialsareharvestedorextractedfromthedomesticenvironment(bottomofFigure1).Materialsaregenerallyprogressivelytransformedtobecomegoodsandtoprovidethebasisforservicesforthepopulation(followingflowsupwardinFigure1).Partoftheframeworkincorporatesaphysicalinputoutputmodelforthetransformationofbasicmaterialsandenergytypes(Lennoxetal.,2005).Sometransformationsinvolvethecreationofsecondaryenergyflows(totheleftinFigure1),whichareusedthroughouttheeconomy.Allowanceisalsomadeforrecyclingofwasteflows,andforimprovementsoradditionsmadetotheenvironmentalresources(e.g.,forests).Otherwise,wastesandemissionsreturntotheenvironment.Materialsatvariousstagesoftransformationsandenergymayenterorexitthenationaleconomyasimportsorexports(totheleftandrightofFigure1respectively).Likewise,immigrationandinternationaltravellersaddtothepermanentandtemporarypopulationdynamics.Finally,thepopulationprovidesalabourforceforthevarioussectorsoftheeconomy(topofFigure1).

    Geographically,theASFFcoverscontinentalAustralia,includingthemarineareawithinAustraliaseconomicexclusionzone(forfishingandfuels).Withinspecificsectorsoftheframeworkdifferentgeographicresolutionsareused.ThetemporalextentoftheASFFislongterm:scenariosoverthefuturearecalculatedto2100,andthemodelrunsoverthehistoricalperiodtoreproducetheobserveddata.

    8

  • Figure1.Flowsofphysicalquantitiesinto,outof,andthroughanationaleconomy,modelledintheAustralianStocksandFlowsFramework.

    TheAsiaPacificStocksandFlowsFramework(APSFF)

    AsimilarstocksandflowsframeworkwasdevelopedtocovertheAsiaPacificregionforaUnitedNationsEnvironmentProgramstudyintotheregionsresourceuseandemissions(Turneretal.,2010b).Structurally,theAPSFFborrowsmanyofitsfeaturesfromthedetailedAustralianframework.Geographically,theAPSFFrepresentsnationsasdiscreteentities.Distinctionsarealsomadebetweenruralandurbanareas,butthesearenotexplicitlylocated.Scenariossimulationsextendto2050,andthemodelisalsorunoveranhistoricalperiodof19702009.

    TheAPSFFiscalibratedfortheperiod19702009,inannualstepsusingdatafromawiderangeofsourcese.g.,UNtradestatistics,FAOfoodandagriculturedatabase,IEAenergyproductionandconsumptiondata,andUSGSmineralresourcedatabase.Inthisapproach,theaimofcalibrationistoreproducehistoricaldataexactlyateachtimestep,inordertopreservewidelyrecognisedandavailabledata.Thisisquitedifferentfromthecalibrationofaneconometricorregressionmodelwheretheaimistofitmathematicalfunctionstodata.Calibrationtodatehasfocusedoneightmajoreconomies,representing74%oftheAsiaPacificpopulationand84%ofitseconomicactivity.

    Interactionsandfeedbacksbetweenthephysicalandeconomicsystems

    Thestocksandflowssystemsdescribedaboveareverysuitabletoexaminewhatiftypequestionssurroundingalternativetechnologyandconsumptionbehaviour.Inthissensetheyareanalogoustoflightsimulators,whereoperatorscantrydifferentstrategiesandcompareoutcomes.Thismoderequiresotherconditionsofthescenario,suchaseconomicgrowth,tobesuppliedexogenouslyasinputstothesimulations.

    9

  • Inrecentadvances,twoseparateapproacheshavebeentakentoincorporateeconomicsettingsinternallywithinthescenariosimulations.Thismeansthateconomicgrowthisendogenoustothesimulationsitisanoutcomeratherthananassumptionofthesimulation.

    Inthefirstapproach,bothproduction(primaryandsecondaryindustryoutput)andfinaldemandconsumptionareadjustedtosimultaneouslymaintainatargetunemploymentrateandatargettradebalance(relativetoGDP).Thelevelof(un)employmentisaresultofthepopulationsize,itsageprofile,theparticipationrate,labourproductivity,andthevariouseconomicactivitiesrequiringlabour.IfnootherchangeismadetotheASFFinputs,thenincreasedproductivity(labourinputperunitoutputandotherefficiencies)leadstoincreasedunemploymentduetothesimplefactthatthesameeconomicoutputcanbeachievedwithfewerworkers.Withtheproductivitygrowthassumedabove,massunemploymentoftheorderof50%occursafterseveraldecades.

    Toachieveastableunemploymentlevelandreplicatepasteconomicconditions,thebackgroundscenariosincorporatereemploymentofdisplacedlabourthroughincreasedeconomicactivity.Itwasassumedthatthetrendsinlabourparticipationratesarenotchangedfromtheirbackgroundsettings.Consequently,inthebackgroundscenarios,finaldemandconsumptionwasincreased(ordecreased)inordertolower(orraise)theunemploymentrate.Themodellingcalculationsallowforserviceworkerssupportingthephysicallyproductivesectorsoftheeconomy.

    Theotherkeymacroeconomicindicatorsimulatedistheinternationaltradebalance(relativetogrossdomesticproduct,GDP).Thenetforeigndebt(NFD)relativetoGDPhasincreasedoverrecentdecades,to52%in2006(Kryger,2009).Highratesofdebt(andsurplus)areconsideredtobecontrarytoastablenationaleconomy.Inonemeasureoftheeconomy,thenetforeigndebtiscomparedwiththenationsGDPinordertojudgewhetheraneconomyisoverstretchedtopayitsinternationaldebt.

    ThenetforeignbalanceintheASFFwasadjustedbychangestoexportsandimports,andinternationaltravel(inboundvisitors,andoutboundAustralians),andinvestment.ItispossibletoachievethesameNFDthroughdifferentcombinationsofchangestoexports,importsandinvestment;however,thisstudy(todate)hasnotexploredthissensitivity.Adjustmentstoexportsweremadebyalteringactivityinbothprimaryandsecondaryindustry,afterallowingfordomesticrequirementstobemetfromtheseindustries(whereAustralianexportsarealargefractionofAustralianproduction).Internationaltravelandinvestmentwereadjustedbythesameproportionasexports.Importswereadjustedbychangingthefractionofthedomesticdemandforgoods/commoditiesthatisobtainedfromoverseas.ThesechangesalsoalterGDP,sothataniterativefeedbackcalculationisnecessarytoachievethespecifiedNFD:GDPratio.

    Inthesecondapproach,adynamicnonequilibriumfinancialmodeloftheeconomywasused,andlinkedtothephysicalstocksandflowsmodel.Amultisectoralmodelofadynamicmonetaryeconomybasedonnonequilibriumassumptionsisusedto

    10

  • simulateeconomicgrowth(asopposedtoitbeinganinputassumptiontoCGEmodels)andtocapturetheinherentlycyclicalnatureofthisgrowth.TheeconomicmodelisbasedonMonetaryCircuitTheory(MCT)andcapturesthenonequilibriumdynamicsofthemonetaryeconomy(loans,investment,etc.),anditsinteractionwiththeproductiveeconomy(labour,consumption,etc.)(Keen,1995,Keen,2009).Thisenablesscenarioswithrealisticeconomiccyclestounderpintheresourceusetrajectoriesinthebiophysicalmodel.Suchanintegratedapproachdescribesdifferentaspectsofasingleoveralleconomicreality(i.e.materialandmonetary).

    Themonetarymodelisadynamicsimulationofthefinancialandphysicalflowsthatmustoccurinaneconomy,augmentedbysimplebehaviouralrelationships.Thisisthefirstevereconomicmodeltoworkexplicitlyintermsofmonetaryflows.Therefore,thesimulationisdrivenbythefinancialsector,whichistreatedasanaggregateprivatebankthatmaintainsbankaccountsforitselfandthetwomainclassesinsociety,firms(orcapitalists)andhouseholds(orworkers).Thefinancialsectorcreatescreditmoneybycreditingeachfirmsectorwithmoney(andsimultaneouslythedebtofeachsectorisincreasedbythesameamount).Thisenablesfirmsittoinvest,purchaseintermediateinputsfromtheothersectors,andhireworkers.Themoneysupplycanexpandinresponsetofirmsdemands,andthelevelofdebtgrowscommensuratelywiththisincreaseinthemoneysupply.

    Theuniquemonetarynatureofthemodelmeansthatthreeadditionalmonetarybehaviouralfunctionsexist:therateofloanrepayment,therateofcirculationofexistingmoney,andtherateofcreationofnewmoneyareallmodelledasnonlinearfunctionsoftherateofprofit.

    LinkagefromtheMCTtotheAPSFFgivesthelattercyclicalpredictionsoffuturedemandratherthansmoothlygrowingdemandfrompopulationgrowth,technicalchangeandchangesinlivingstandards.Thislinkageiscommunicatedviaunemploymentlevels,usingthesamebackgroundassumptionsofgrowthinlabourproductivity.ThisapproachwasappliedtoanalysisoftheresourceuseandemissionsoftheAsiaPacificregion,asdescribedinthenextsection.

    Scenario Simulations of Options and Assumptions Inthisfinalmainsectionofthispaper,resultsarepresentedfromthestocksandflowsanalysisthataredrawnfromacollectionofseparatestudies.Theapproachofotherrecentstudiesdealingwithtransportfuelandgreenhousegaschallengesissummarisedandcomparedwiththepresentanalysis,andasummarygivenofcriticalissuesthatwillneedtobeaddressedifenergyshocksaretobeaverted.ThefirstsubsectionexaminestheissueofGHGemissionsandthepotentialintheenergysystemtoreducethese.Analysisispresentedatregional(AsiaPacific),national(China,Australia)anddowntosubnationallevels(StateofVictoria).Thesecondsubsectionlooksmorecloselyattheissueoftransportfuelandtransitionstoalleviatedependenceonoil.

    SystemsimulationsofenergyandGHGemissions

    ResultsarefirstpresentedinthissectionfromthemodellingoftheAsiaPacificregionusingthecoupledbiophysicalandeconomicmodels(Turneretal.,2010b).

    11

  • Theyshowthesimulationresultsforthescenariosover20102050,aswellasthesimulatedhistoryfrom1970.Threescenarioshavebeenconstructedtoillustratefutureresourceusepossibilitiesandtheirconsequences.Thebusinessasusualorreferencescenariorepresentsthecontinuationofcurrentpoliciesandprovidesameasureofthescaleofsomeoftheproblemsthathavebeenanticipatedtoflowfromthem.Theessentialfeatureofthebusinessasusualscenarioisthatmajorhistoricaltrendsarecontinued.

    Asecondscenarioinvolveswidespreadtechnologicalprogress,intheformofefficiencygains.Thishighefficiencyscenarioappliestophysicalprocessesusedintheextanteconomicstructure.Theamountofmaterial,energyandwaterresourcesusedperunitoutputiscontinuouslydecreasedincompoundingannualgrowth.

    Thethirdscenarioaddstothechangesintheresourceefficiencyscenariobyalsoinvokingstructuralchange.Thissysteminnovationscenarioincorporateschangestoconsumptionandlifestylehabits,urbanform,transportationmodes,energyproductionandeconomicstructure.Theseincludefoodconsumptionshifts/reversiontolowermeatdiets,andtotalfoodintakeratesthatarelowerthantheexcessivelevelsofaffluentdevelopedcountries.Thegrowthinpercapitaconsumptionofmaterialgoodsisalsocurbed.Urbanformisassumedtochangetowardgreaterdensityhousinginnewdevelopments.Wherepossible,allowanceismadeforlocalfoodproduction,resultingindecreasedfreight.Passengertransportshifts/revertsfromgrowingdependenceonthecar,towardbicycleandpublictransit.Electricitygenerationcomesincreasinglyfromrenewablesourcessuchassolarandwind,whicharephasedinasfossilfuelbasedthermalpowerstationsaredecommissionedattheendoftheirlife.

    PrimaryenergyconsumptionisshownforBusinessasUsual(BAU)andHighEfficiency(HE)andanintermediatescenarioinFigure2.TheintermediatescenarioistheoutcomeofmovingfromBAUtohighresourceefficiencywithoutmakinganyotherchange.Aconsequenceisahighandgrowinglevelofunemploymentbecauselesslabourisrequiredasthroughputofmaterialsandenergyislowered.Theefficiencyimprovements(50%lessinputsperunitoutputby2040comparedwithrecentvalues)aresufficienttokeepprimaryenergyuselower.(NotethattheBAUscenarioalsoemploysefficiencygains,achieving25%lessinputsperunitoutputby2050).

    However,withoutanyotherchangeintheunderlyingeconomicorsocialconditions,veryhighlevelsofunemploymentareanathematostablesocieties.Therefore,inboththeBAUandhighresourceefficiencyscenarios,excessivelevelsofunemploymentwereeliminatedbyincreasingconsumptionandprimaryproductionrates(usingafeedbackprocessdescribedabove).Theconsumptionandproductionratesareadjusteduntilthebiophysicalmodelachievestheunemploymentratesimulatedbythedynamiceconomicmodel.Consequently,cyclicvariationsareevidentintheresourceindicatorspresented,clearlyillustratingthelinkagebetweentheeconomicandbiophysicalmodels.

    12

  • Figure2.PrimaryenergyconsumptionfortheAsiaPacificregion,fortwoscenarios(andanintermediateone).Resultshavebeenaggregatedovercountries,activitiesandfueltypes.

    Besidethecyclicvariations,substantialincreaseinthroughputofmaterialsandenergyoccurs,evenwhenhighresourceefficiencyisemployed.Primaryenergyconsumptiondoublesoverthescenarioperiod.Thefactthatstronggrowthinresourceuseandemissionsoccursevenwithhighresourceefficiencyfollowsfromthereboundeffectcausedbyeconomicgrowthrequiredtokeepunemploymentlow.

    ThecorrespondingGHGemissions,whichincludetheeffectsoffuelcombustion,areshowninFigure3.Inbothbusinessasusualandhighefficiencyscenariostherearesubstantialincreasesinemissions,thoughthelatterscenarioachievessomestabilisationatcontemporarylevelsforabouttwodecadesbeforegrowthintheeconomicactivity(andpopulation)drivesemissionshigher.Asaresult,emissionsinbothscenariosaresubstantiallyhigherthanlevelssuggestedtoavoiddangerousclimatechange.

    13

  • Figure3.GreenhousegasemissionsfortheAsiaPacificregion,fortwoscenarios.

    Thecorrespondingscenariotrendsforindividualnationsaresomewhatdifferent,asshownforChina(generalincreaseforsomeyears,followedbyadecreaseformorethanadecade,thenasustainedincrease)Figure4.Additionally,asubstantiallydifferentalternativeispresentedintheSystemInnovationscenario.Incontrastwiththeotherscenarios,substantialemissionreductionsdooccurintheSystemInnovationscenario.Butevensosuggestedtargetsof6090%reductionrelativeto1990levelsarenotachieved.Asdescribedabove,thisscenarionotonlyemployshighresourceefficiencybutcombinesthiswithstructuralchangessuchasshiftsinmodesoftransport.Additionally,theSystemInnovationscenarioalsoseekstoavoidthereboundaffectbynotemployingdisplacedlabourintraditionaljobs.Theimportantsocialquestionconcerningtheroleoroccupationofthepopulationnototherwiseemployedisnotexploredinthisanalysis.Thereareseveraldifferentwaysthatloweremploymentmightbeabsorbedwithinsociety,suchasgeneralreductioninworkinghours.Thescaleofthechangeisillustratedinthebiophysicalmodelbytheabouta50%decreaseinlabourparticipationratesbymidcenturyfromcurrentlevels,inordertoeliminatetheexcessunemploymentlevel.

    14

  • Figure4.GreenhousegasemissionsforChina,forthreescenarios.

    Inseparate,earliermodelling,thedematerialisationpotentialoftheAustralianeconomy(SchandlandTurner,2009,HatfieldDoddsetal.,2008)wassimulatedusingtheAustralianStocksandFlowsFramework.Inthis,theASFFwasusedtomodellargescalechangestomaterialandemissionintensivesectors,includingconstructionandhousing,electricitygeneration,andtransportandmobility.Averageenergyuseintensityofallhousingwashalved(assumingretrofitandadoptionofsimplesolarpassivetechnology),newdwellingswereoflighterconstructionandthetrendsforincreasingfloorareareversed;electricitygenerationwastransformedby2050toamixofwind,solarandgasasagingcoalbasedpowerplantsweredecommissioned;andcommutingbycarwasreducedfrom85%to60%,withcommutingdistancesreduced30%toreflectimprovedurbandesign,andmodalshareoflongdistancetravelswitchedfromairtobus.

    Theseandotherchangesmanagedtostabiliseaggregateenergyconsumptionandgreenhousegasemissionsforabouttwodecades(seeFigure5).Subsequentlythough,overalleconomicgrowthoffsettheenvironmentalgainsandledtoemissionshigherthancontemporarylevels,albeitsome30%lowerthanifnotransformationshadbeenattempted.TheAustraliandematerialisationscenarioandthesysteminnovationscenariofortheAsiaPacificsharedasimilarmechanismfordealingwithgrowingunemploymentthatresultsfromongoingefficiencygains,wherebydisplacedlabourwasassumedtobeengagedinserviceactivitiesthatdonotresultinphysicalactivityintheeconomy.

    15

  • Figure5.Comparisonofgreenhousegasemissions(fromfuelcombustion)forAustraliaunderBAUandDematerialisationscenarios.Emissionsareindexed(100at2010).

    Inathirdstudy,thepotentialforreducingGHGemissionswasalsoexaminedfortheelectricitygenerationsectorintheStateofVictoria(WestandTurner,2010).Thisidentifiedtheimportanceofconsideringthetimingorrateatwhichchangemayberequired,particularlywhenassociatedwithlonglivedinfrastructure.Analysisoftheturnoverofpowerplantunderdifferentelectricityconsumptiongrowthratesindicatesthatplantintroducedafter20112018mustbecapableofnearzeroGHGemissionsin2050ifproposedreductiontargets(intherange6090%of1990levels)aretobeachieved.Itisnecessarytohaveinplaceintheneartermplanttechnologythatispreparedforcarboncapture,eventhoughitmaynotbeemployedinitially,becauseasignificantfractionofoldplantmaybeoperatingin2050.

    Systemsimulationsoftransportfueltransitions

    FromtheAsiaPacificsimulationsandscenariosdescribedabove,dependencyonoilcanalsobeillustrated.Figure6showsthestronggrowthinChineseoilconsumptionthatcouldbeexpectedunderBAU.Rapidlyimplementingfuelconsumptionefficiencycouldstabiliseconsumptionforabouttwodecades.However,onlysysteminnovationresultsinlowerratesofoilconsumption.Whetherthisissufficienttoavoidtensionswithpotentialratesofdeclineinsupply(assumingearlierrealisationofpeakoil)hasnotbeeninvestigated.

    16

  • Figure6.TotalconsumptionofoilinChina,forthreescenarios.

    ThesituationforAustraliawasexaminedseparatelyusingtheASFFandspecificscenariosettingsdevelopedforreviewoftransportfueloptions.Thebackgroundscenarioincorporateskeypopulationandeconomicconditions;insummary:36millionin2050;5%unemployment;andnetforeigndebt:GDPratioof~52%.Averagefuelconsumptionefficiencyoftheprivatevehiclefleetisassumedtoincreaseoveracoupleofdecadestoequalgoodhybridperformance.However,sinceoverallpercapitaconsumptionratesgrowinordertomaintainunemploymentatasteadylevel,carownershipandtraveldistancesincrease.

    Thisresultsinincreasingtotalrequiredoilvolume(fordomesticconsumptionandexport)asshowninFigure7.Thegapbetweendomesticproductionandthisdemandgrowsrapidlyoverthecoming12decades.ProductionistakenfromGeoscienceAustraliaforecasts(at50%probability).Consequently,Australiawouldsoonbe100%reliantonimportedoil,assumingitisavailableateconomicallyfeasiblepricesontheinternationalmarket.Thisisnotnecessarilythecase,asrecenteconomicmodellinghasindicated(Graham,2008,Grahametal.,2008).Theeconomicmodellingincorporatedsomeelementsofbiophysicalassessment,suchaslandusechangeforbiofuels,butnototheraspectse.g.,waterresourceimplicationsofthechangedlanduses,orconstraintsintheultimategasresource.

    17

  • Figure7.ComparisonbetweenAustraliandomesticproductionofoil(andcondensate),andthetotalofdomesticconsumptionandexport,forabusinessasusualtypescenario.Thegapbetweenthetwocurvesisimpliedimportofoil.

    Thereforethereisanimportantroleforsubsequentscenarioanalysistoinvestigatethepotentialfortransitiontootherfuelswithinthesystemwidebiophysicalcapabilityoftheeconomy.Fromthereviewaboveofpotentialtransportalternatives,asuitableoptionforearlysubstitutionistheuseofnaturalgas.ThishasbeenpartiallysimulatedintheASFF,andshowsthatAustraliandomestictransportrequirementscouldbemetforseveraldecadesfromdomesticproductionofnaturalgas(Figure8).Thesimulationincludestherecent34foldincreaseineconomicallydemonstratedresourcesofgas(CuevasCubriaetal.,2010).Exportsareassumedtoincreaseinproportionwiththedomesticdemandforgas.

    Productionofdomesticgascanmeettheexportanddomesticconsumptionwithstrongincreasesinvolume,untilabout2040.Atthistime,arapidfallinproductionoccurs.Therearelikelytobeuncertaintiesaroundthistimingpotentialfurtherdiscoveriescouldextendthepeakyear,althoughextractionratesmayslowsomewhatasthefieldsdeplete(thisislessprevalentingasresources,thaninoilfields)andadvancethepeakyear.Nevertheless,continualgrowthindemandwouldreducetherangeinwhichpeakingoccurs.Consequently,inAustraliadomesticgascouldplayaroleasatransitionfuelforsomethreedecades,beforeanothertransportfuelsystemisrequired(orfuelsimported).Theoiltogassimulationhasnotinvestigatedthedetailsofinfrastructureturnoverrequired,suchasnewrefuellingoutlets,pipelinesandcompressionfacilities.

    18

  • Figure8.ComparisonofAustraliandomesticproductionofandexportofgasresources,inascenariothatassumesatransitionfromoiltogasastransportfuel.Domesticconsumptionisthe

    gapbetweenthetwocurves.

    CurrentresearchusingtheASFFtoinvestigatefoodsupplysecurityisexaminingtheimpactofbiofuelproductioninAustralia.Simulationstodateindicatethatfirstgenerationbiofueloptions(e.g.,convertingcropssuchaswheatandcanolatoethanolandbiodiesel(Stucley,2010))couldsubstituteforabout10%offuturedomesticoilrequirements(whichiscomparablewithotherestimates(Deborah,2007)),andinvertAustraliastradepositiontothatofnetimporterbefore2040.

    Otherstudies

    Inrecentyearstherehavebeenincreasingnumbersofstudiesintonationalandglobalenergysystems,examiningthepotentialtoreducedGHGemissionsandachieveenergysecurity.AsummaryofthesestudiesisgiveninTable3.Thoughitisbeyondthescopeofthispapertocomprehensivelyreviewthese,abriefcomparisonwiththeanalysispresentedabovefollows.

    19

  • Table3.CharacteristicsofrecentstudiesintopotentialreductionsofGHGemissionsandachievingtransportfuelsecurity.

    Proposal Approach Technologies/sectorsconsidered

    Potentiallimitations

    Reference

    ZeroCarbonAustralia2020StationaryEnergyPlan

    Detailedsupplydemandgridmodelling;Separateadhocanalysis

    Wind;SolarThermal;Biomass;Electrifiedtransportation

    Employmentofnonelectricitysectorseffectivelyheldconstant

    (anon,2010b)(BeyondZeroEmissions)

    ZeroCarbonBritain2030

    Separatetechnologyassessments?

    tobereviewed Noreboundeffectconsidered

    (KempandWexler,2010)

    IEAEnergyTechnologyPerspective

    Separatetechnologyassessments?;Scenarios

    Fossilfuels;Nuclear;Renewables;Transmission;Buildings;Transport;Efficiency;CCS

    tobereviewed (Taylor,2010)

    LowCarbonGrowthPlanforAustralia

    Economicscostbenefit(costcurves)

    Fossilfuels;Renewables;Buildings;Transport;Efficiency;CCS;Agriculture;Forestry

    Nophysicalassessmentoftechnologicaloptions;Noreboundeffectconsidered

    (anon,2010a)(ClimateWorks)

    TheEconomicsofClimateChangeTheSternReview

    EconomicsIntegratedAssessmentModelling;Scenarios

    tobereviewed AssumesahigherrateofGHGemissionsin2050;Nophysicalassessmentoftechnologicaloptions;

    (Stern,2006)

    TheGarnautClimateChangeReview

    Economicmodelling tobereviewed tobereviewed (Garnaut,2008)

    Fuelsfocus ARoadmapforAlternativeFuelsinAustralia

    Separatebiophysicalanalysis

    Efficiency;fossilfuels;biofuels;electrical;fuelcells

    Nophysicalassessmentoftechnologicaloptions;Noreboundeffectconsidered

    (Diesendorfetal.,2008)

    PowerfulChoicesTransitiontoabiofueleconomyinAustralia

    Embeddedenergyanalysis,withmacroeconomicfactorsincluded;Scenarios

    Biofuels Controlsreboundeffectusingafuturesfund;Nophysicalassessmentoftechnologicaloptionsbeyondenergyimplications

    (Foran,2009)

    FuelforThoughtTheroleoftransportfuels:challengesandopportunities

    Paritalequilibriumeconomicmodelling,withsectoralbiophysicalmodelling

    Fossilfuels;Electricity;Biofuels

    Limitedphysicalassessmentoftechnologicaloptions;Noreboundeffectconsidered?

    (Graham,2008,Grahametal.,2008)

    Fromthereviewofotherstudiesandproposals,itappearsthatthetechnicallikelihoodforimplementingalternativeenergyoptionsisnotakeyissue.TheseanalysesfindthatitispossibletoachievelargereductionsinGHGemissionsortoestablishalternativetransportfuelsystems.Theoptionsexploredaregenerallydeemedtechnicallyfeasible,andoftenillustratedbygraphsshowingparallel

    20

  • wedgesoftechnologicalchangeoverthecominghalfcenturyenablingthedesiredchange.

    However,ingeneralthereareseveralkeyaspectsthatarenotwelladdressedorrecognisedinthesestudies,including:

    rateofchangeo aboutthesameaspastgrowthrates,butintheoppositedirection;o manysimultaneouschangesrequired;o strandedassetsarelikely;

    physicalimplicationso crosssectorimpactspotentiallyincreaseenvironmentalpressures;o impactoflowernetenergygains;

    socioeconomicconditionso employmentandreboundignored;o financialinvestmentandservicingdebt;o institutionalarrangementsandgovernance.

    Whilethechangesproposedappearfeasiblewithinthecontextofthetechnologiesandsectorsanalsysed,thesizeorrateofchangeisdramaticallydifferenttowhathasbeenexperiencedinthepast.Insomecases,thisislikelytorequiretheearlyretirementofpowerplantandotherinfrastructure,despitetheeconomicincentiveofownerstoobtainrevenuesforlonger.Infrastructureinertiaiscompoundedbythegeneralproposalfromthesestudiesformultiplenewtechnologiestobeimplementedvirtuallysimultaneously,insomecontrastwithpreviousexperienceandthegeneralobjectiveofseekingsimplicityandmarketdominance.Otherelementsoftechnologicaloptimismareevidentinestimatesofthereadinessofnewtechnologiestobedeployed.Incontrast,evenwithmaturetechnologies,some1020yearsarelikelytoberequiredtoenabledevelopmentofinfrastructureandsystems.Thisallsuggestsaradicaltransformationisneededinthewayeconomiesoperateandsocietyisengaged,andonascalethatwouldarguablymatchaworldwarfooting.

    Sincethefocusofthesestudieshasbeenonenergy,otherenvironmentalandresourceimplicationstendtobeneglected.Whileitisnotuncommontoseelandarearecognised,otherresourcessuchaswater,fertilisersandscarceminerals,foodcompetition,forestryandbiodiversityarenotsystematicallyconsideredintheseotherstudies.Additionally,afullsystemassessmentwouldincorporatenetenergyintheanalysis,toallowforthehigheruseofenergythatisrequiredtoproducealternativeformsofenergy(bothfortransportandelectricity)(Heinberg,2009).Netenergyforoilwasoriginallyveryhighwhenoilwasfirstextracted,buthasdroppedasfieldshavebeendepletedormoredifficultoilaccessed.Mostotherenergysourceshaveevenlowernetenergy,andthereareconjecturesthatmoderneconomiesarepredicatedonthefreeenergygiftofoilandcoal.Inparticular,itisnotclearifthesestudieshaveconsideredtheoverallenergythatisrequiredtoputthenewtechnologiesinplace.Further,ifenergyandoilalternativesaretobeimplementedthenthesechangesmustoccurbeforethesupplyofoilisseriouslyconstrained,otherwisetheremaynotbethetransportservices(andthewiderangeofeconomicfunctions)thatareneededtofacilitatethechange.

    21

  • Anothercommonaspectmissingfromotherstudiesordealtwithpoorlyarethesocioeconomicconditionstypicallyrequiredinmoderneconomies.Importantly,employmentandthereboundeffectdonotfigurehighly,ifatall.Typically,aslabourisdisplacedbytechnologicalprogress,higherconsumptionandeconomicgrowthprovidesanopportunitytoreemploythedisplacedlabour.Thisresultsinfurtherresourceuseandemissions,thatoffset(orevensurpass)theanticipatedgainsfromthetechnologicalprogress.

    Whileeconomicanalysestypicallyindicatethelevelofinvestmentrequiredintheproposalsandscenariosputforward,theissueofbeingabletoraisethefinancialinvestmentrequiredisnotraised(theIEAsETPisanotableexception).Withinvestmentequivalenttotrillionsofdollars,andtheeffectsoftheglobalfinancialcrisisstillunresolved,thereisconcernthatthelarge,numerousandchallengingprojectswillnotbeabletofindsufficientfinancialsupport.

    Conclusions ThispaperhasfocusedontransportfuelsecurityandimplicationsofGHGemissionreductionsastwokeyshockspotentiallyfacingnationalandglobalenergysystems.Aplethoraofalternativetechnologyoptionsareoftenputforwardfordealingwithoravertingtheseshocks.Systemwidebiophysicalanalysisusingstocksandflowsframeworksimulationssuggeststhattechnologicalalternativesaremorelimitedinsystemicsensethangenerallyanticipated.Thisappearstocontrastsomewhatwitharangeofotherstudies,whichgenerallyproposeamultitudeoftechnologicalactions.Thelikelihoodofenergyshocksbeingavertedbythesetechnologicalactionsmustincorporatearealisticassessmentofthemanyfactorsthatareinvolved,notleast:

    thesubstantialrateofchangeandmultiplicityofactionsrequired,comparedwithinertiaassociatedwithinfrastructureandinstitutions;

    thetransferofenvironmentalimpactsandotherresourceconstraintsduetocrosssectoraldependencies;

    theimpostofincreasingenergyinputsunderlyingeachunitofenergydelivered;

    theunemploymentimplicationsofmovingtoeconomicsystemswithdrasticallyreducedthroughputofcommodities;and

    thesubstantialfinancialinvestmentthatwouldberequiredineconomiesalreadyladenwithdebt.

    Systembasedanalysisundertakentodatewiththesefactorsincorporatedpointstowardtheunlikelyoutcomethatenergyshockswillbeaverted.

    Acknowledgements Theauthorwouldliketoacknowledgetheresearchofcolleaguesuntakeninprojectsthatthispaperdrawson.Inparticular,A/ProfSteveKeenoftheUniversityofWesternSydney(forhisMCTmodelling),andDrsFranziPoldyandHeinzSchandl(APSFFdatacalibrationandprojectmanagement)arethanked.ThisworkwassupportedbyCSIROsClimateAdaptationFlagship,andtheUNEnvironmentProgram.

    22

  • References ANON2010a.LowCarbonGrowthPlanforAustralia.Clayton,Victoria:ClimateWorks

    Australia.ANON2010b.ZeroCarbonAustralia2020StationaryEnergyPlan.Melbourne:

    BeyondZeroEmissions.CUEVASCUBRIA,C.,SCHULTZ,A.,PETCHEY,R.,MALIYSENA,A.&SANDU,S.2010.

    EnergyinAustralia2010.Canberra:DepartmentofResource,EnergyandTourism.

    DEBORAH,O.C.(ed.)2007.BiofuelsinAustraliaissuesandprospects,Canberra:RuralIndustriesResearchandDevelopmentCorporation(RIRDC).

    DEFFEYES,K.S.2001.Hubbert'sPeak:TheImpendingWorldOilShortage,Princeton,PrincetonUniversityPress.

    DIESENDORF,M.,LAMB,D.,MATHEWS,J.&PEARMAN,G.2008.ARoadmapforAlternativeFuelsinAustralia:EndingourDependenceonOil.JamisonGroup.

    FORAN,B.2009.PowerfulChoices:transitiontoabiofueleconomyinAustralia.:Land&WaterAustralia.

    FORAN,B.&POLDY,F.2004.Modellingphysicalrealitiesatthewholeeconomyscale.In:VANDENBERGH,J.C.J.M.&JANSSEN,M.A.(eds.)EconomicsofIndustrialEcology:Materials,StructuralChange,andSpatialScales.Cambridge,MA:MITPress.

    FRIEDRICHS,J.2010.Globalenergycrunch:Howdifferentpartsoftheworldwouldreacttoapeakoilscenario.EnergyPolicy,InPress,CorrectedProof.

    GA2009.OilandGasResourcesofAustralia2006.CanberraGeoscienceAustralia.GARNAUT,R.2008.TheGarnautClimateChangeReview.GRAHAM,P.2008.FuelforThoughtTheroleoftransportfuels:challengesand

    opportunities.FutureFuelForum.GRAHAM,P.,REEDMAN,L.&POLDY,F.2008.Modellingofthefutureoftransport

    fuelsinAustraliaAreporttotheFutureFuelsForum.HATFIELDDODDS,S.,TURNER,G.M.,SCHANDL,H.&DOSS,T.2008.Growingthe

    GreenCollarEconomy:Skillsandlabourchallengesinreducingourgreenhouseemissionsandnationalenvironmentalfootprint.Canberra:ReporttotheDusseldorpSkillsForum.

    HEINBERG,R.2009.SearchingforaMiracle:"NetEnergy"LimitsandtheFateofIndustrialSociety.InternationalForumonGlobalizationandthePostCarbonInstitute.

    KEEN,S.1995.Financeandeconomicbreakdown:modelingMinsky's"financialinstabilityhypothesis".JournalofPostKeynesianEconomics,17,607635.

    KEEN,S.2009.BailingouttheTitanicwithaThimble.EconomicAnalysis&Policy,39,325.

    KEMP,M.&WEXLER,J.(eds.)2010.ZeroCarbonBritain2030Anewenergystrategy:CentreforAlternativeTechnology.

    KRYGER,T.2009.Australia'sForeignDebtdataandtrends.ResearchPaper.Canberra:DepartmentoftheParliamentaryLibrary.

    23

  • LENNOX,J.A.,TURNER,G.,HOFFMAN,R.B.&MCINNIS,B.C.2005.ModellingAustralianbasicindustriesintheAustralianStocksandFlowsFramework.JournalofIndustrialEcology,8,101120.

    MACGILL,I.2008.AssessingAustralia'sSustainableEnergyTechnologyOptions:KeyIssues,Uncertainties,PrioritiesandPotentialChoices.AsiaPacificJournalofEnvironmentalLaw,11,85100.

    OWEN,N.A.,INDERWILDI,O.R.&KING,D.A.2010.ThestatusofconventionalworldoilreservesHypeorcauseforconcern?EnergyPolicy,InPress,CorrectedProof.

    POLDY,F.,FORAN,B.&CONROY,J.2000.FutureOptionsto2050:AustralianStocksandFlowsFramework;ReporttoDepartmentofImmigrationandMulticulturalAffairs;00/04.Canberra:CSIROSustainableEcosystems(previouslyWildlifeandEcology),ResourceFuturesProgram,NationalFutures.

    SCHANDL,H.&TURNER,G.M.2009.TheDematerializationPotentialoftheAustralianEconomy.JournalofIndustrialEcology,13,863880.

    SORRELL,S.,MILLER,R.,BENTLEY,R.&SPEIRS,J.2010.Oilfutures:Acomparisonofglobalsupplyforecasts.EnergyPolicy,InPress,CorrectedProof.

    STERN,N.2006.TheEconomicsofClimateChangeTheSternReview.Cambridge:HMTreasury,Britain.

    STUCLEY,C.2010.OverviewofBioenergyinAustralia.RuralIndustriesResearchandDevelopmentCorporation(RIRDC).

    TAYLOR,P.2010.EnergyTechnologyPerspectives2010Scenariosandstrategiesto2050.EnergyTechnologyPolicyDivision,InternationalEnergyAgency.

    TURNER,G.M.,HOFFMAN,R.B.,MCINNIS,B.C.,POLDY,F.&FORAN,B.2010a.TheAustralianStocksandFlowsFrameworkatoolforstrategicbiophysicalassessmentofanationaleconomy.EnvironmentModellingandSoftware,submitted.

    TURNER,G.M.,KEEN,S.&POLDY,F.2010b.IntegratedBiophysicalandEconomicModellingoftheAsiaPacificNations.In:SCHANDL,H.(ed.)ResourceEfficiency:EconomicsandOutlookforAsiaandthePacific(UnitedNationsEnvironmentProgram).Canberra:CSIROPublishing.

    WEST,J.&TURNER,G.M.2010.Modellingtheelectricitygenerationsystemandenvironmentalimplicationsinanintegratedlongtermplanningframework.EnvironmentalModelling&Software,draft.

    24

    Energy Shocks and Emerging Alternative Energy TechnologiesSino-Australian Joint Research Forum, 21-23 July 2010Collaboration and Governance in the Asia PacificAbstractIntroductionPotential Energy ShocksTransport fuelGreenhouse gas emissions

    Alternative Energy OptionsOverview of potential transport fuel technologiesOverview of technologies for GHG reduction in electricity generation and use

    System Modelling of OptionsThe Australian Stocks and Flows Framework (ASFF)The Asia-Pacific Stocks and Flows Framework (APSFF)Interactions and feedbacks between the physical and economic systems

    Scenario Simulations of Options and AssumptionsSystem simulations of energy and GHG emissionsSystem simulations of transport fuel transitionsOther studies

    ConclusionsAcknowledgementsReferences