Energy-Savings Basics For The Maritime Industry - An Overview

164
Dr. George Gougoulidis

description

Energy-Savings Basics For The Maritime Industry - An Overview

Transcript of Energy-Savings Basics For The Maritime Industry - An Overview

Page 1: Energy-Savings Basics For The Maritime Industry - An Overview

Dr. George Gougoulidis

Page 2: Energy-Savings Basics For The Maritime Industry - An Overview

Introduction (CSR, Energy, emissions and the main drivers, Research projects)

Regulations Operational measures Tech measures Hull &superstructures Design Coatings Air lubrication

Propulsion components Renewable energy Main engines & Alternative fuels Machinery 

Future considerations

Page 3: Energy-Savings Basics For The Maritime Industry - An Overview

“A concept whereby companies integrate social and environmental concerns in their business operations and in their interaction with their stakeholders on a voluntary basis”. (original European Commission definition)

New definition: “the responsibility of enterprises for their impacts on society”. 

To fully meet their corporate social responsibility, enterprises should have in place a process to integrate social, environmental, ethical, human rights and consumer concerns into their business operations and core strategy in close collaboration with their stakeholders

Page 4: Energy-Savings Basics For The Maritime Industry - An Overview

The interest of many stakeholders has increased, leading to pressure on the maritime industry

Gain a competitive advantage Strengthen its brand, image, reputation Achieve higher sales Increase employee pride and loyalty, motivation Realize cost savings Enjoy easier access to financing / Socially responsible investing Reduce risk Avoid Unethical business practices Avoid potential negative impacts on local communities Avoid exposure of poor performance

Page 5: Energy-Savings Basics For The Maritime Industry - An Overview

Energy Savings

Cost Savings Ship Owners/Operators

Environmental Benefits Everyone

Financial Crisis

Regulations (IMO)

Page 6: Energy-Savings Basics For The Maritime Industry - An Overview

Head seas, Beaufort 6

Page 7: Energy-Savings Basics For The Maritime Industry - An Overview
Page 8: Energy-Savings Basics For The Maritime Industry - An Overview
Page 9: Energy-Savings Basics For The Maritime Industry - An Overview
Page 10: Energy-Savings Basics For The Maritime Industry - An Overview

Second IMO GHG Study 2009

Page 11: Energy-Savings Basics For The Maritime Industry - An Overview

Second IMO GHG Study 2009

Page 12: Energy-Savings Basics For The Maritime Industry - An Overview
Page 13: Energy-Savings Basics For The Maritime Industry - An Overview

EEDI = Energy Efficiency Design Index EEOI = Energy Efficiency Operational Index SEEMP = Ship Energy Efficiency Management Plan CEEMP = Company Energy Efficiency Management Plan IEEC = International Energy Efficiency Certificate KPI = Key Performance Indicator MBM = Market‐Based Measures MBI = Market‐Based Instruments

Page 14: Energy-Savings Basics For The Maritime Industry - An Overview

IMO Measures

Technical

EEDI

Operational

SEEMP/EEOI

Economic

MBM/MBI

Page 15: Energy-Savings Basics For The Maritime Industry - An Overview

The Energy Efficiency Design Index (EEDI) is a measure of ships energy efficiency

Page 16: Energy-Savings Basics For The Maritime Industry - An Overview

In force since 1 Jan 2013  Applicable to ships  over 400 GT Not applicable to ships with diesel‐electric, turbine or hybrid propulsion 

EEDI for new ships Contracted  1 Jan 2013, or Keel‐laid  1 Jul 2013, or Delivered  1 Jul 2015

Page 17: Energy-Savings Basics For The Maritime Industry - An Overview

Flag State may waive the EEDI for up to 4 years

Attained EEDI & Required EEDI for new ships new ships undergone a major conversion  new or existing ships undergone a major conversion 

Attained EEDI  Required EEDI 

Page 18: Energy-Savings Basics For The Maritime Industry - An Overview

Environmental cost = Emission of CO2  Benefit = Cargo capacity transported a certain distance

societyforBenefitcosttalEnvironmenindexdesign efficiencyenergy Attained

Page 19: Energy-Savings Basics For The Maritime Industry - An Overview
Page 20: Energy-Savings Basics For The Maritime Industry - An Overview
Page 21: Energy-Savings Basics For The Maritime Industry - An Overview

To establish a mechanism for a company and/or a ship to improve the energy efficiency of a ship's operation

Page 22: Energy-Savings Basics For The Maritime Industry - An Overview

Mandatory for all ships to have one, but not a specific form

Existing ships by first intermediate or renewal survey after 1 Jan 2013

Page 23: Energy-Savings Basics For The Maritime Industry - An Overview

Planning

Implementation

Monitoring(EEOI)

Self‐evaluation & improvement

Page 24: Energy-Savings Basics For The Maritime Industry - An Overview

An assessment tool of the efficiency of a ship with respect to CO2 emissions

Voluntary  Defined as the ratio of mass of CO2 emitted per unit of transport work

Page 25: Energy-Savings Basics For The Maritime Industry - An Overview

MEPC recognized that technical and operational measures not sufficient to satisfactorily reduce the GHG emissions

MBMs place a price on GHG emissions and serve two main purposes:  provide an economic incentive for the maritime industry to reduce its fuel consumption offset in other sectors of growing ship emissions

Page 26: Energy-Savings Basics For The Maritime Industry - An Overview

Improved voyage planning

Weather routeing Just in time Speed optimization Optimized shaft power Optimum trim Optimum ballast Optimum propeller and 

propeller inflow considerations

Optimum use of rudder and heading control systems (autopilots)

Hull maintenance Propulsion system Propulsion system 

maintenance Waste heat recovery Improved fleet management Improved cargo handling Energy management Fuel Type

Page 27: Energy-Savings Basics For The Maritime Industry - An Overview

Improve

Technology

Exterior of ship

Hull 

Superstructure 

Propulsion components

Interior of ship

Main engines

Machinery

Operations 

Page 28: Energy-Savings Basics For The Maritime Industry - An Overview

Hull & Superstructure Design  Coatings Air lubrication

Renewable Energies Propulsion components Propeller Rudder ESDs

Main engines Derating Longer stroke Turbocharger cutout Cylinder cutout Tuning  Common rail Alternative fuel

Machinery Shaft generator Hybrid auxiliary power 

generation (fuel cells) Waste heat recovery

Page 29: Energy-Savings Basics For The Maritime Industry - An Overview

Voyage planning Slow steaming ‐ Speed optimization Weather routeing Just in time Optimized shaft power Optimum trim Optimum ballast Optimum use of rudder and heading control systems  Hull maintenance Propulsion system maintenance (engines, propellers) Training of personnel 

Page 30: Energy-Savings Basics For The Maritime Industry - An Overview

It can encompass other measures such as weather routeing, just in time, speed optimization

There are various software available for planning purposes

Pre‐voyage analysis & planning Deploy ideal vessel to each route Design best routes

Page 31: Energy-Savings Basics For The Maritime Industry - An Overview

Plan for Minimizing time: recommend optimum route to meet earliest arrival time.  Minimizing fuel consumption: recommend the optimum route and power to arrive on time with minimum fuel consumption  Minimizing cost: recommend the optimum route and power to arrive on the basis of minimum cost

En route real‐time updates Post‐voyage assessment and feedback

Page 32: Energy-Savings Basics For The Maritime Industry - An Overview

Speed optimization vs speed reduction Reducing ship speed effectively reduces fuel consumption

Propulsion power vs. speed is a third power relation 

A study conducted by IMO proved that optimal speed reduction is between 10‐20%

Cost effectiveness of 10% superior to 20%

Page 33: Energy-Savings Basics For The Maritime Industry - An Overview

Optimization should be carried out for the “off‐design” conditions

Originally excellent hull forms, optimized for design speed and draft, may show poor performance when sailing at lower speeds, especially in a partial loading condition

Optimum speed means the speed at which the fuel used per tonnemile is minimum 

It does not mean minimum speed Sailing slower than optimum speed will consume more fuel

Page 34: Energy-Savings Basics For The Maritime Industry - An Overview

Slow steaming remains controversial, especially with older engines not originally designed for the practice

However, it remains the easy solution of coping with unfavorable market conditions

Overcapacity – low freight rates ‐ slow steaming will become even slower and even more prevalent

Page 35: Energy-Savings Basics For The Maritime Industry - An Overview

Use real‐time data of the physical environment to choose the optimal route through calm areas 

Weather routeing can be applied to all ship types and trade areas

The increase of resistance caused by heavy weather depends on the current, the wind, and the wave size

The resistance in head seas can increase by as much as 50‐100% of the total ship resistance in calm weather

Page 36: Energy-Savings Basics For The Maritime Industry - An Overview

Early communication with port authorities to ensure the exact time of berth availability and plan for optimum speed to arrive just in time

Page 37: Energy-Savings Basics For The Maritime Industry - An Overview

Less turnaround time in port allows for speed reduction while underway

Applies to ships with scheduled operations, such as ferries and container vessels

Measures for improvement include: Better maneuvering capabilities of the ship Increased cargo flow by using sophisticated ship systems, such as ramps, lifting equipment

Increased cargo flow due to improved port loading/offloading systems

Page 38: Energy-Savings Basics For The Maritime Industry - An Overview

The provision of shoreside electrical power to a ship at berth while its auxiliary engines are shut down

Page 39: Energy-Savings Basics For The Maritime Industry - An Overview

Trim has an immediate effect in resistance

For any given draft there is a trim condition that gives min resistance

Several systems in the market Collect data from the vessel's 

automation and navigation systems to optimize trim

GreenSteamOptimizer, Eniram’sDynamic Trimming Assistant, etc

Potential savings up to 4%

Page 40: Energy-Savings Basics For The Maritime Industry - An Overview

Autopilots can achieve fuel savings by reducing the distance sailed “off‐track”

Better course control through less frequent and smaller corrections will minimize losses due to rudder resistance

Page 41: Energy-Savings Basics For The Maritime Industry - An Overview

Hull Regular in‐water inspection of the condition of the hull

Monitoring of the fouling Monitoring of the coatings’ condition Cleaning of the hull when required Docking intervals planning Complete removal and application of new coatings for reduction of roughness

Propeller Use divers to polish the propeller in regular intervals while ship is  in‐service

Page 42: Energy-Savings Basics For The Maritime Industry - An Overview

New standard for hull and propeller performance under development

The development of the standard was discussed inTokyo in November 2013

Hull performance monitoring is difficult because several parameters have to be considered (draft, trim, speed, seaway, wind, etc)

Page 43: Energy-Savings Basics For The Maritime Industry - An Overview

Physical roughness

Macro

Welds 

Corrosion 

Plate waviness

Plate laps

Mechanical damage

Micro

Minor corrosion

Steel profile

Coatings condition

Biological roughness

Macro 

Animal fouling

Weed fouling

Micro 

Slime fouling

Page 44: Energy-Savings Basics For The Maritime Industry - An Overview

Increase in Resistance @ 15 kt Increase in Resistance @ 30 kt

Page 45: Energy-Savings Basics For The Maritime Industry - An Overview

In absolute terms propeller roughness is less important than hull roughness 

In terms of energy loss per unit area propeller roughness is significantly more important

Page 46: Energy-Savings Basics For The Maritime Industry - An Overview

Typical cleaning intervals should be: 6 months for propellers 2 months for hull (depends on coating type)

Page 47: Energy-Savings Basics For The Maritime Industry - An Overview

Measured with Rubert Scale Underwater cleaning can smoothen the propeller by 2 grades of the Rubert scale

Frequent propeller cleaning (every 1 or 2 months) can be easily done using a soft brush and abrasives 

Enough to keep a propeller at Rubert Grade A or B

Page 48: Energy-Savings Basics For The Maritime Industry - An Overview

Cleaning takes less time than polishing A large propeller can be polished in ~4h With regard to the frequency of propeller polishing there is a consensus of: “little and often” by experienced and specialized personnel

Cost of propeller cleaning (brush & abrasives) 15‐20% less than full polishing with grinding or polishing discs

Page 49: Energy-Savings Basics For The Maritime Industry - An Overview

Follow manufacturers’ instructions on maintenance schedule 

Condition based maintenance Maintenance is performed based on information received by the equipment and on evaluation of this information by experts

Page 50: Energy-Savings Basics For The Maritime Industry - An Overview

Persuade the personnel of the necessity of energy savings

Create a culture of fuel saving, with an incentive or bonus based on fuel savings

Alter the routine Shut down AC Plant when the weather is good and use only the blowers

Switch off lights in areas such as cabins, recreation rooms, mess rooms, etc. when not required

Page 51: Energy-Savings Basics For The Maritime Industry - An Overview

Type of resistance % of RT

High speed Low speedFriction 45 90Wave‐making 40 5Eddy  5 3Air  10 2

Page 52: Energy-Savings Basics For The Maritime Industry - An Overview

Fluid Dynamics

Aerodynamics Superstructure 

Hydrodynamics Hull / Propulsion components 

Page 53: Energy-Savings Basics For The Maritime Industry - An Overview

General  Optimize dimensions Reduce weight Minimize ballast

Fore part Optimized bow bulb No bulb Wave piercing bow Flare 

Aft part Stern end bulb Skeg Ducktail / stern flap / interceptors

Allow for large propeller

Page 54: Energy-Savings Basics For The Maritime Industry - An Overview
Page 55: Energy-Savings Basics For The Maritime Industry - An Overview

Optimize main dimensions – lines Low wave making resistance → high L/B ratio  Low friction →minimum wetted surface, B/Tratio ~ 2.25 for Cb=0.80

Maximize length to reduce resistance Optimize skeg to direct the flow evenly to the propeller

Shaft lines should be streamlined

Page 56: Energy-Savings Basics For The Maritime Industry - An Overview

Flow disturbance from hull openings (bow thrusters, sea chests) should be minimized

Reduce weight, use lightweight materials Increase deadweight scale effect Reduce ballast Use CFD, model testing, sea trials to verify design

Page 57: Energy-Savings Basics For The Maritime Industry - An Overview

SEAHORSE 35 B.DELTA DELTAMARIN

Page 58: Energy-Savings Basics For The Maritime Industry - An Overview

The Environship, of NVC 401 LNG design, is the Eidsvaag Pioner

Rolls‐Royce Bergen B‐Series lean burn gas engines

Rolls‐Royce Promaspropulsion

Optimized bow and hullform shape

Vertical bow ‐maintain speed even in rough seas

Page 59: Energy-Savings Basics For The Maritime Industry - An Overview

By using alternative materials By reducing ballast By optimizing design

Page 60: Energy-Savings Basics For The Maritime Industry - An Overview

Material  Density (kg/m3) Yield strength (Mpa)

Steel 7850 235‐390

Aluminum  5083 2650  215

Aluminum  5383 2660 220

Aluminum  5059 (Alustar) 2640 270

Titanium 6Al‐4V (Grade 5) 4430 880

Page 61: Energy-Savings Basics For The Maritime Industry - An Overview
Page 62: Energy-Savings Basics For The Maritime Industry - An Overview

SEA GIANTL = 458.5 M

EMMA MÆRSKL = 398 M

Page 63: Energy-Savings Basics For The Maritime Industry - An Overview

Benchijigua ExpressL=124mAluminum

Visby ClassL=73mCFRP sandwich

Sierra I & II classMax Safe depth=700mCrush depth=915mL=111mTitanium

Page 64: Energy-Savings Basics For The Maritime Industry - An Overview
Page 65: Energy-Savings Basics For The Maritime Industry - An Overview

Developed by University of Michigan It allows water to flow into "trunks" inside the ship's hull, and then to pass out through outlets at the stern

It works by reducing the buoyancy instead of increasing the displacement weight

Page 66: Energy-Savings Basics For The Maritime Industry - An Overview
Page 67: Energy-Savings Basics For The Maritime Industry - An Overview

The first NOBS are being built at Ningbo East Shipyard, China

2×6,500 DWT and 2×4,500 DWT NOBS Bunker Tankers

Designed by XED after 3 years of research

Page 68: Energy-Savings Basics For The Maritime Industry - An Overview

Developed by Namura Shipbuilding and Shipbuilding Research Center of Japan, approved by ClassNK

300,000 dwtVLCC that requires 65% less ballast water to operate safely (30,000 tn)

Based on the NOBS concept that required no ballast water at all

Non‐Ballast Water Ship (NOBS) employed an extremely wide hull, limiting its practical use 

MIBS is of standard breadth but employs a flatter bottom than a conventional VLCC and a more angular lower hull

Page 69: Energy-Savings Basics For The Maritime Industry - An Overview
Page 70: Energy-Savings Basics For The Maritime Industry - An Overview

Bow bulbs are common practice in ship design, both for commercial and naval ships

The maturing of the bulbous bow theory and design has resulted in several bulbous bow designs which reduce resistance by 10% or more

Page 71: Energy-Savings Basics For The Maritime Industry - An Overview

Reduction of wave making resistance (through the reductionof bow pressure wave, due to the interaction with thepressure field created by the bulb)

Promoting of uniformity of the flow velocity around the hull(which means reduction of the drag due to turbulent flow andeddy-making resistance)

Reduction of wave breaking resistance at the bow Reduction of pitching motion Increase in frictional resistance

Page 72: Energy-Savings Basics For The Maritime Industry - An Overview

A Stern Flap is an extension of the hull bottom surface aft of the transom

Stern flaps modify the pressure field under the hull afterbody, causing the flow to slow down 

Decreased flow velocity → increase in pressure → reduced resistance due to reduced after‐body suction force

Wave heights in the near field stern wave system and far field wave energy are reduced

Page 73: Energy-Savings Basics For The Maritime Industry - An Overview

Additional secondary effects due to lengthening of the hull, and to improved propeller performance

Reduced propulsive power, propeller loading, cavitation, vibration, noise

Mature and proven technology tested since 1989 173 stern flaps installed on US Navy and Coast Guard ships

Cumulated fuel savings $ 665 million 1989‐2011

Page 74: Energy-Savings Basics For The Maritime Industry - An Overview

USS PORT ROYAL CG73 USSARTHURW. RADFORD DD 968

Page 75: Energy-Savings Basics For The Maritime Industry - An Overview
Page 76: Energy-Savings Basics For The Maritime Industry - An Overview
Page 77: Energy-Savings Basics For The Maritime Industry - An Overview
Page 78: Energy-Savings Basics For The Maritime Industry - An Overview

In the absence of a hull fouling control system, a vessel in service, can accumulate up to 150 kg/m²of fouling within 6 months 

Total resistance caused by fouling, may increase by 25‐ 50% throughout the lifetime of a ship 

The main cost associated with fouling is the increased fuel consumption due to increased frictional drag

The cost related to hull cleaning and painting is much lower than fuel cost

Page 79: Energy-Savings Basics For The Maritime Industry - An Overview

AF coatings

Biocidal

CDP

SPC

Hybrid

Non‐biocidal

Foul Release

STC

Page 80: Energy-Savings Basics For The Maritime Industry - An Overview

Rosin is used for biocide releasing by hydration Thick leached layers → increased roughness(~75μm).

High VOC (55‐60%) Rosin is brittle and can cause cracking and detachment

Film integrity is generally poor Suitable for use in lower fouling areas or short dry‐docking intervals 

3 years

Page 81: Energy-Savings Basics For The Maritime Industry - An Overview

Chemical dissolution is controlled by hydrolysis

Thin leached layers (~10‐15 μm). Controlled biocide release which allows a constant rate of leaching over time

Smoother surface Fair mechanical properties – can be damaged Cleaning and re‐coating easy 5 years

Page 82: Energy-Savings Basics For The Maritime Industry - An Overview

Biocide releasing mechanism is a combination of hydrolysis & hydration

Combine SPC acrylic polymer with a certain amount of Rosin

Moderate leached layer thickness (~25‐30 μm) Performance and price between the CPD and SPC

High VOC 3‐5 years (vertical sides ~3 years, flats ~ 5 years)

Page 83: Energy-Savings Basics For The Maritime Industry - An Overview

Do not contain biocide  Low surface energy, non‐stick (silicon based) materials are used

Low roughness ~70μm Effective only above a certain speed Not very efficient on slow ships  Shear force needed to detach the marine organisms 

Soft coating ‐ easily damaged

Page 84: Energy-Savings Basics For The Maritime Industry - An Overview
Page 85: Energy-Savings Basics For The Maritime Industry - An Overview
Page 86: Energy-Savings Basics For The Maritime Industry - An Overview

Hard, inert, non‐toxic coatings Epoxies, polyesters or vinyl esters ‐ some are reinforced with glass flakes ‐ variations include ceramic‐epoxy

Designed for frequent in‐water treatment Their surface improves with routine cleaning Provide protection against corrosion Extremely durable

Page 87: Energy-Savings Basics For The Maritime Industry - An Overview

Cost

Performance 

CDP

Hybrid

SPC

FRC

Page 88: Energy-Savings Basics For The Maritime Industry - An Overview

Blowers inject air under the vessel hull Reduces the friction and drag created by the vessel moving 

through the water Energy is required to power the blowers, offsetting savings 

to some extent 

Page 89: Energy-Savings Basics For The Maritime Industry - An Overview

Class NK partnered with Mitsubishi (MHI), Nippon Yusen Kaisha (NYK)

More efficient in low speed, wide and flat bottom vessels

When deep draft, more energy needed to supply the required air

Ideal for heavy‐lift ships, module carriers

Page 90: Energy-Savings Basics For The Maritime Industry - An Overview

Installed in 2011 on module carrier Yamatai, followed by Yamato

Installed in 2012 on the ferry Naminoue (slender hull) and the coal carrier Soyo

To be installed on 2 cruise ships to be built for AIDA Cruises and 3 bulk carriers of ADM

Page 91: Energy-Savings Basics For The Maritime Industry - An Overview

Air layer thickness

Power decrease

Power of blower

Net energy savings

t = 3 mm 5% 2% 3%

t = 5 mm 14% 4% 10%

t = 7 mm 20% 7% 13%

Page 92: Energy-Savings Basics For The Maritime Industry - An Overview
Page 93: Energy-Savings Basics For The Maritime Industry - An Overview

• Semi Spherical Shape (SSS) bow• Reduction in wind resistance = 50%

Nissan PCTC

Page 94: Energy-Savings Basics For The Maritime Industry - An Overview
Page 95: Energy-Savings Basics For The Maritime Industry - An Overview
Page 96: Energy-Savings Basics For The Maritime Industry - An Overview

Based on the Magnus Effect = a spinning object creates a whirlpool of rotating air or liquid about itself. 

On one side of the cylinder the flow is assisted by the induced flow of the cylinder. On this side the velocity is increased. 

On the other side, the free stream flow is opposed by the induced flow of the cylinder and the velocity is decreased.

Change of the velocity field →change of the pressure field → lift

Page 97: Energy-Savings Basics For The Maritime Industry - An Overview

Developed by Anton Flettner in 1924

Official presentation of Rotor Ship in Hamburg in 1925

Renamed Baden‐Baden and made a successful voyage to New York in 1926

Page 98: Energy-Savings Basics For The Maritime Industry - An Overview
Page 99: Energy-Savings Basics For The Maritime Industry - An Overview

Earth’s average solar irradiance on the surface is approximately 342 W/m2 

On average, 30% of this radiation will be reflected back to space due mainly to clouds

The amount of energy captured depends on efficiency and positioning 

Current solar cells’ efficiency is about 13%

Page 100: Energy-Savings Basics For The Maritime Industry - An Overview
Page 101: Energy-Savings Basics For The Maritime Industry - An Overview

Tanker, 270 m long and 50 m wide One main engine rated at 18,000 kW, and auxiliary power 1,000 kW

Tanker’s deck area completely covered by solar cells

Page 102: Energy-Savings Basics For The Maritime Industry - An Overview

First vessel car carrier Auriga Leader Followed by Emerald Ace Part of the electricity is generated via solar panels Hybrid electric power supply system 768‐panel 160kW solar generation system Lithium‐ion storage battery system  Storage capacity 2.2MWh Used while in port Needs 3 days underway to charge

Page 103: Energy-Savings Basics For The Maritime Industry - An Overview

Length: 199.9 m,  Beam: 32.26 m

Page 104: Energy-Savings Basics For The Maritime Industry - An Overview

Aft body flow devices Devices before the propeller Devices at the propeller Devices behind the propeller Combinations of systems

Page 105: Energy-Savings Basics For The Maritime Industry - An Overview

Their purpose is to reduce losses in the ship’s wake‐axial losses (black) rotational losses in the slipstream (blue) hub vortex losses (green) tip vortex losses (red)

Page 106: Energy-Savings Basics For The Maritime Industry - An Overview

Marine Propellers and Propulsion ‐ John Carlton

Page 107: Energy-Savings Basics For The Maritime Industry - An Overview

Vortex generator fins/Safer fins

Mewis duct SchneekluthWake 

Equalizing Duct ‐W.E.D. L‐J duct DSME pre‐swirl stator PBCF Post Stator by Samsung 

Heavy Industries Vane wheels

Rudder bulb HHI thrust fin Twisted rudder

CRP Contra rotating propeller Tip Rake TR propellers 

(Kappel) Ducted propellers Non‐hub vortex NHV 

Nakashima propellers 

PROMASENERGOPAC

Page 108: Energy-Savings Basics For The Maritime Industry - An Overview
Page 109: Energy-Savings Basics For The Maritime Industry - An Overview
Page 110: Energy-Savings Basics For The Maritime Industry - An Overview

Tip Rake Propellers Kappel Propellers CLT (Contracted and Loaded Tip) Propellers TVF (Tip Vortex Free) Propellers Propellers with end plates

Page 111: Energy-Savings Basics For The Maritime Industry - An Overview

Tip rake suppresses the formation of tip vortices

TR propellers minimize the flow over the tip

Improve the efficiency 3%‐6%

Reduced noise ‐ suitable for submarine applications

Page 112: Energy-Savings Basics For The Maritime Industry - An Overview
Page 113: Energy-Savings Basics For The Maritime Industry - An Overview

No communication between pressure and suction side due to end plates

No formation of tip vortices 

Generation of thrust along the entire blade 

Improve efficiency 6% ‐ 8%

Page 114: Energy-Savings Basics For The Maritime Industry - An Overview
Page 115: Energy-Savings Basics For The Maritime Industry - An Overview

Nozzles are airfoil shaped rings placed around the propeller 

An accelerating duct produces positive thrust and increases the efficiency of heavily‐loaded propellers (up to 20%)

A decelerating duct produces a negative thrust and reduces cavitation & noise

The application of a nozzle increases the thrust at relatively low ship speed

Page 116: Energy-Savings Basics For The Maritime Industry - An Overview

Increased efficiency ~ 6% The after propeller is usually smaller in diameter (cavitation) but higher pitch

Used extensively in torpedoes Increased shafting complexity, maintenance, cost

Page 117: Energy-Savings Basics For The Maritime Industry - An Overview

Podded contra-rotating propeller (CRP) propulsion

Page 118: Energy-Savings Basics For The Maritime Industry - An Overview

Conventional rudders are placed behind the propeller with a symmetrical cross section about the vertical rudder center plane

This arrangement does not consider the fact that the propeller induces a rotational flow that impinges the rudder surface

This results in areas of low pressure on the blade that induce cavitation and cause erosion

Page 119: Energy-Savings Basics For The Maritime Industry - An Overview
Page 120: Energy-Savings Basics For The Maritime Industry - An Overview
Page 121: Energy-Savings Basics For The Maritime Industry - An Overview

Savings 3‐6% for single screwSavings 2‐5% for twin screw

Page 122: Energy-Savings Basics For The Maritime Industry - An Overview

Savings 2‐9%

Page 123: Energy-Savings Basics For The Maritime Industry - An Overview

Variable exhaust valve timing Permanent cylinder cut out improved engine efficiency for slow speed operation 10‐14%

Page 124: Energy-Savings Basics For The Maritime Industry - An Overview

Optimizes cylinder pressure distribution 1‐2% Delta tuning (Wärtsilä) for reduced fuel consumption in the load range that is most commonly used

Tuned for lower consumption at part load  Wärtsilä Intelligent Combustion Control ensures optimal firing pressures ‐ fuel reduction 2.5 g/kwh

Page 125: Energy-Savings Basics For The Maritime Industry - An Overview
Page 126: Energy-Savings Basics For The Maritime Industry - An Overview

Longer stroke engines (MAN G‐type) → low rpm → large propeller → high efficiency 

S80 engine 78 rpm →G80 engine 68 rpm 

Potential savings 4‐7% MAN reports having almost 200 G‐type engines on order (spring 2013)

Page 127: Energy-Savings Basics For The Maritime Industry - An Overview

Cut out of a turbocharger for improved engine efficiency at part & low loads 

Potential savings 2‐4%

Page 128: Energy-Savings Basics For The Maritime Industry - An Overview

Consists of a high‐pressure fuel rail feeding individual solenoid/piezoelectric valves 

Common Rail controls combustion so it can be optimized at every load

Page 129: Energy-Savings Basics For The Maritime Industry - An Overview

Recovers energy from exhaust gas

Converts thermal energy to electricity for reduced gensetconsumption 

Savings up to 12%

Page 130: Energy-Savings Basics For The Maritime Industry - An Overview

76% of the marine fuel used is Heavy Fuel Oil (HFO) which has high sulphur content

The options to comply with the SOxregulations are: Operate on low‐sulphur fuel oil (MDO,MGO,ULSD) Operate on HFO with an exhaust gas treatment system Operate on alternative fuels: LNG ‐ Biodiesel

Page 131: Energy-Savings Basics For The Maritime Industry - An Overview

Lloyd’s Register

Page 132: Energy-Savings Basics For The Maritime Industry - An Overview

Composed mainly of methane, containing small quantities of ethane, propane and butane

To maximize storage capacities, natural gas is usually refrigerated to change its state to a liquid (Liquefied Natural Gas ‐ LNG)

Page 133: Energy-Savings Basics For The Maritime Industry - An Overview

Elimination of SOx Low NOx and particulate emissions Savings from not having to separate and heat HFO

LNG can be used to cool the ship’s HVAC to save AC‐compressor power

Lack of infrastructure and supply chain network  Gas providers and bunker suppliers unwilling to invest in infrastructure since there is no sufficient demand – there is no demand since there is no infrastructure

Page 134: Energy-Savings Basics For The Maritime Industry - An Overview

Extremely low temperatures → hazards of cold burns on crew and brittleness on structures

BLEVE due to high expansion ratio ~600:1 (a small volume of liquid can yield a large amount of gas)

High flammability

Page 135: Energy-Savings Basics For The Maritime Industry - An Overview
Page 136: Energy-Savings Basics For The Maritime Industry - An Overview

Wärtsilä 34DF  50DF

MAN Diesel & Turbo  32/40DF (400 kW/cylinder)  51/60DF (975 kW/cylinder)

Page 137: Energy-Savings Basics For The Maritime Industry - An Overview

Otto cycle engines MAN Diesel & Turbo 51/60G

Wärtsilä 34SG & 50SG 

Page 138: Energy-Savings Basics For The Maritime Industry - An Overview

Based on vegetable oils (camelina, corn etc.) and animal fat (tallow)

Significantly reduced SOx emissions Lower particle emissions NOx emissions depend on the fuel type Engines may need modifications 

Page 139: Energy-Savings Basics For The Maritime Industry - An Overview

Lower thermal value ‐ 5% less output for a 4‐stroke engine 

Lower energy content means larger fuel tanks 

Biofuel production has not moved to full‐scale

More expensive

Current refers to 2012

Page 140: Energy-Savings Basics For The Maritime Industry - An Overview

Conflict between the biofuel and the food industry

The challenge is to find sustainable feedstocks at a reasonable cost

Additional land to grow crops for biofuels is needed

Page 141: Energy-Savings Basics For The Maritime Industry - An Overview

Built in 2006 Sunk in 2010 Part of the project was to break the world record for circumnavigating the globe using only renewable fuels 

The boat's engines were powered completely by biodiesel

Page 142: Energy-Savings Basics For The Maritime Industry - An Overview

In the short term, LNG is relatively easy to adopt thanks to standards and technical knowledge, despite the challenges of building LNG infrastructure

Wind and solar energy are appropriate auxiliary power sources

In the medium and long term, biofuels and synthetic fuels have promise

In the even longer term, hydrogen is seen as an option

Page 143: Energy-Savings Basics For The Maritime Industry - An Overview

Shaft generators driven by the main engines Reduce the need to run auxiliary gen sets Electrical system requires fixed voltage & frequency meaning that engine speed has to be constant

Page 144: Energy-Savings Basics For The Maritime Industry - An Overview

Two solutions: Power take off (PTO) system with frequency control ensuring constant frequency Hybrid system conditioning the power from shaft generator so that the supply to the switchboard remains constant at any engine speed

Shaft generator may be used as a motor providing power to the propeller

Page 145: Energy-Savings Basics For The Maritime Industry - An Overview

Benefit from efficient electric drive for cruise speeds & cost effective mechanical drive for higher speeds

The electric drive allows the Main Diesel Generators (MDG) to provide power for the ship’s electrical load and the propulsion motors 

These motors operate as alternators when running on the Main Diesel Engines (MDE) at higher speeds

The result is fewer prime movers, fewer engine running hours and also fuel economy

Page 146: Energy-Savings Basics For The Maritime Industry - An Overview
Page 147: Energy-Savings Basics For The Maritime Industry - An Overview
Page 148: Energy-Savings Basics For The Maritime Industry - An Overview

Pentamaran concept zero‐emission car carrier

WalleniusWilhelmsenLogistics developed the vessel for Toyota for Expo 2005 in Japan 

Propulsion by fuel cells, sun, wind and waves

Length = 250 m Beam = 50 m Draught = 9 m Max speed = 20 kt Vehicle capacity = 10,000 cars

Page 149: Energy-Savings Basics For The Maritime Industry - An Overview
Page 150: Energy-Savings Basics For The Maritime Industry - An Overview
Page 151: Energy-Savings Basics For The Maritime Industry - An Overview

Designed by Eco Marine Power  Aquarius MRE System  Includes solar panels, energy 

storage modules, a computer control system and an advanced rigid sail design

Additionally, advanced electrical propulsion system, optimized hull design and waste heat recovery technologies

Possible fuel savings of 40% 

Page 152: Energy-Savings Basics For The Maritime Industry - An Overview

Cruise ship concept developed by STX Europe 

Reduced  Power consumption by 50%  CO2 emissions by 50%  SO2 by 100%  NOx by 90% Ash by 100%

Powered by 4 dual fuel LNG diesel electric gen‐sets

Equipped with an innovative sail system by STX France

Page 153: Energy-Savings Basics For The Maritime Industry - An Overview

Fuel consumption 60%Emissions 80%

Page 154: Energy-Savings Basics For The Maritime Industry - An Overview

Lloyd’s Register – Fairplay

As of Jan 2012: 104,305 ships

Page 155: Energy-Savings Basics For The Maritime Industry - An Overview

UNCTAD ‐ Fairplay

Page 156: Energy-Savings Basics For The Maritime Industry - An Overview
Page 157: Energy-Savings Basics For The Maritime Industry - An Overview

Although the size of the orderbooks is reduced, the number of ships is anticipated to increase in the midterm

Overcapacity is likely to continue for the foreseeable future and beyond 2020

Page 158: Energy-Savings Basics For The Maritime Industry - An Overview

Fuel and operating costs ↑ since 1990, with the exception of a sharp dip in 2009, which was quickly reversed

In order to maintain the shipping industry’s total emissions in levels similar to todays’, more efficient ships have to be built

In the near future, ship efficiency is expected to improve due to: Increasing regulatory pressures on the industry Increasing cost of bunker fuel

Page 159: Energy-Savings Basics For The Maritime Industry - An Overview

How do we define them?  Eco‐nomic ~ Eco‐logical  Not a revolutionary technology Ambiguous Marketing trick of shipyards to increase their orderbooks???

Shipyard quality makes a difference in operating performance

Page 160: Energy-Savings Basics For The Maritime Industry - An Overview

Analyzed 1298 bulkers of 55‐70,000 tn (dwt) built from 1965 to 2013

Fuel consumption in the last 20 years was pretty flat and on paper at least, many of the modern ships are less efficient than older ones

The big technological improvement of 1975‐88 will be difficult to repeat because the technology has been squeezed so hard over the last 25 years

The big fuel savings come from slower speed which can equally be applied to old and new ships

Page 161: Energy-Savings Basics For The Maritime Industry - An Overview

New eco‐ships consume 28 tn/day compared to 32‐35 tn/day for the old ships yielding an improvement of 15‐20 %

New ships carry a lot of capital costs New ships are unattractive on return on capital over the long term

Page 162: Energy-Savings Basics For The Maritime Industry - An Overview

The market for eco‐ships is immature  Charterers reluctant to pay a premium for eco‐tonnage – not persuaded that fuel efficiencies can be delivered as promised

The advantages of eco‐ships are hindered by slow steaming in a down market

Eco‐ships are able to meet tight schedules without the fear of bunker costs

Eco‐ships’ advantage will depend on whether fuel prices remain high

Page 163: Energy-Savings Basics For The Maritime Industry - An Overview

Can we actually 

measure the performance?

Plethora of ESDs and strategies

Savings claims of 1‐10%

Combination of ESDs. 

Counteract against each 

other?

Ecoship: Need or 

necessity?

To retrofit ESDs or to scrap?

Page 164: Energy-Savings Basics For The Maritime Industry - An Overview

Manage  Measure Know  Understand  Improve