END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. ·...

327
EVALUATION OF ALTERATIONS IN CARDIOVASCULAR STRUCTURE AND FUNCTION IN ENDSTAGE RENAL FAILURE BENJAMIN KANE DUNDON MBBS FRACP DOCTOR OF PHILOSOPHY DISCIPLINE OF MEDICINE SCHOOL OF MEDICINE UNIVERSITY OF ADELAIDE ADELAIDE,SOUTH AUSTRALIA AUSTRALIA Submitted in the total fulfilment of the requirements for the degree of Doctor of Philosophy March 2013

Transcript of END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. ·...

Page 1: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

EVALUATION  OF  ALTERATIONS  IN  CARDIOVASCULAR  

STRUCTURE  AND  FUNCTION  IN    

END-­STAGE  RENAL  FAILURE  

 

BENJAMIN  KANE  DUNDON  

MBBS  FRACP  

 

 

DOCTOR  OF  PHILOSOPHY  

 

DISCIPLINE  OF  MEDICINE    

SCHOOL  OF  MEDICINE  

UNIVERSITY  OF  ADELAIDE  

ADELAIDE,  SOUTH  AUSTRALIA  

AUSTRALIA  

 

 

Submitted  in  the  total  fulfilment  of  the  requirements    

for  the  degree  of  Doctor  of  Philosophy  

March  2013  

Page 2: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  ii  

 

 

 

 

 

 

 

 

To  Annabel,  without  whom  

none  of  this  would  have  been  possible.  

 

 

Page 3: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  iii  

TABLE  OF  CONTENTS  

TABLE  OF  CONTENTS ..................................................................................................... III  

FIGURE  LEGEND: .............................................................................................................. IX  

TABLE  LEGEND.............................................................................................................. XIII  

ABSTRACT........................................................................................................................XIV  

Background:............................................................................................................................................................................xiv  

Methods  /  Results:...............................................................................................................................................................xiv  

Conclusions:............................................................................................................................................................................xvi  

DECLARATION .............................................................................................................. XVII  

ACKNOWLEDGMENTS ...............................................................................................XVIII  

ABBREVIATIONS ............................................................................................................XXI  

BACKGROUND.....................................................................................................................1  

CHRONIC  KIDNEY  DISEASE................................................................................................................. 2  

Glomerular  Filtration  Rate.......................................................................................................................2  

Disease  Burden ..............................................................................................................................................6  

Financial  Burden  of  CKD ...........................................................................................................................7  

Aetiology...........................................................................................................................................................8  

Co-­Morbid  Conventional  Cardiovascular  Risk  Factors ............................................................. 10  

Diabetes  Mellitus ...................................................................................................................................................................11  

Hypertension...........................................................................................................................................................................12  

Smoking.....................................................................................................................................................................................12  

Hyperlipidaemia ....................................................................................................................................................................13  

Obesity .......................................................................................................................................................................................14  

Disease-­Specific  Cardiovascular  Risk  Factors ............................................................................... 14  

Anaemia.....................................................................................................................................................................................14  

Page 4: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  iv  

Disordered  Calcium  /  Phosphate  Metabolism..........................................................................................................16  

Uraemia .....................................................................................................................................................................................19  

CARDIOVASCULAR  SEQUELAE  OF  CKD.......................................................................................... 26  

Left  Ventricular  Disease  in  CKD .......................................................................................................... 27  

Congestive  Cardiac  Failure................................................................................................................................................32  

Atrial  Disease  in  CKD ............................................................................................................................... 36  

Valvular  Disease  in  CKD.......................................................................................................................... 38  

Endothelial  Dysfunction  in  CKD .......................................................................................................... 41  

Pathobiology  of  Endothelial  Dysfunction  in  CKD....................................................................................................42  

Assessment  of  Endothelial  Function.............................................................................................................................44  

Endothelial  Dysfunction  and  Cardiovascular  Risk  in  CKD ..................................................................................44  

Coronary  Artery  Disease  in  CKD.......................................................................................................... 46  

Coronary  Endothelial  Function.......................................................................................................................................46  

Coronary  Atherosclerosis ..................................................................................................................................................52  

Vascular  Disease  in  Chronic  Kidney  Disease.................................................................................. 56  

Arterial  Function ...................................................................................................................................................................56  

Atherosclerosis.......................................................................................................................................................................58  

Arteriosclerosis......................................................................................................................................................................59  

Vascular  Calcification ..........................................................................................................................................................60  

Non-­‐invasive  Evaluation  of  Arterial  Stiffness ...........................................................................................................62  

ARTERIO-­‐VENOUS  FISTULAE  AND  CARDIOVASCULAR  STRUCTURE  AND  FUNCTION............... 69  

Arterio-­venous  Fistula  Creation .......................................................................................................... 69  

Pulmonary  Hypertension  in  Patients  with  Arterio-­‐venous  Fistulae...............................................................71  

Arterio-­Venous  Fistula  Ligation.......................................................................................................... 72  

EFFECTS  OF  RENAL  TRANSPLANTATION  ON  CARDIOVASCULAR  STRUCTURE  AND  FUNCTION

............................................................................................................................................................. 73  

EVALUATION  OF  CARDIOVASCULAR  RISK  PRIOR  TO  RENAL  TRANSPLANTATION................... 76  

Tachycardia  Stress  Methodologies ................................................................................................................................78  

NON-­‐INVASIVE  IMAGING  OF  CARDIOVASCULAR  STRUCTURE  AND  FUNCTION  IN  CKD........... 80  

Page 5: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  v  

Trans-­‐thoracic  Echocardiography .................................................................................................................................81  

Single  Photon  Emission  Computed  Tomography....................................................................................................83  

Cardiovascular  Computed  Tomography .....................................................................................................................83  

Cardiovascular  Magnetic  Resonance  Imaging ..........................................................................................................84  

AIMS  OF  THIS  THESIS ....................................................................................................................... 88  

METHODS .......................................................................................................................... 89  

RESEARCH  ETHICS  CONSIDERATIONS............................................................................................ 90  

STUDY  1:  EVALUATION  OF  ALTERATIONS  IN  CARDIOVASCULAR  STRUCTURE  AND  FUNCTION  

FOLLOWING  ELECTIVE  ARTERIO-­‐VENOUS  FISTULA  CREATION  IN  PRE-­‐DIALYSIS  END-­‐STAGE  

RENAL  FAILURE ................................................................................................................................ 90  

Subjects .......................................................................................................................................................... 90  

Inclusion  Criteria...................................................................................................................................................................90  

Exclusion  Criteria ..................................................................................................................................................................90  

Study  Investigations ................................................................................................................................. 91  

STUDY  2:  EVALUATION  OF  ALTERATIONS  IN  CARDIOVASCULAR  STRUCTURE  AND  FUNCTION  

FOLLOWING  ELECTIVE  ARTERIO-­‐VENOUS  FISTULA  LIGATION  FOLLOWING  SUCCESSFUL,  

STABLE  RENAL  TRANSPLANTATION.............................................................................................. 92  

Subjects .......................................................................................................................................................... 92  

Inclusion  Criteria...................................................................................................................................................................92  

Exclusion  Criteria ..................................................................................................................................................................92  

Study  Investigations ................................................................................................................................. 93  

Cardiovascular  Magnetic  Resonance  Protocol  –  Studies  1  and  2......................................... 94  

Cardiac  Protocol.....................................................................................................................................................................94  

Vascular  Protocol ..................................................................................................................................................................97  

Summary  of  CMR  Investigations  for  Arterio-­‐Venous  Fistula  Studies..........................................................101  

STUDY  3:  EVALUATION  OF  THE  DIAGNOSTIC  ACCURACY  OF  DOBUTAMINE-­‐STRESS  CARDIAC  

MRI  IN  THE  DETECTION  OF  ANGIOGRAPHICALLY-­‐SIGNIFICANT  CORONARY  ARTERY  DISEASE  

PRIOR  TO  RENAL  TRANSPLANTATION .........................................................................................103  

Page 6: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  vi  

Subjects ........................................................................................................................................................103  

Inclusion  Criteria................................................................................................................................................................103  

Exclusion  Criteria ...............................................................................................................................................................103  

Study  Investigations ...............................................................................................................................104  

Dobutamine  Stress  Cardiac  MRI ..................................................................................................................................104  

Invasive  Coronary  Angiography ..................................................................................................................................105  

STUDY  4:  EVALUATION  OF  DYNAMIC  CORONARY  ENDOTHELIAL  FUNCTION  IN  END-­‐STAGE  

RENAL  FAILURE ..............................................................................................................................107  

Subjects ........................................................................................................................................................107  

Inclusion  Criteria................................................................................................................................................................107  

Exclusion  Criteria ...............................................................................................................................................................107  

Study  Investigations ...............................................................................................................................108  

Coronary  Endothelial  Function....................................................................................................................................108  

Quantitative  Coronary  Angiography..........................................................................................................................109  

Coronary  Blood  Flow  /  Microvascular  Function ..................................................................................................110  

STATISTICAL  METHODS.................................................................................................................111  

RESULTS...........................................................................................................................113  

STUDY  1:  EVALUATION  OF  ALTERATIONS  IN  CARDIOVASCULAR  STRUCTURE  AND  FUNCTION  

FOLLOWING  ELECTIVE  ARTERIO-­‐VENOUS  FISTULA  CREATION  IN  PRE-­‐DIALYSIS  END-­‐STAGE  

RENAL  FAILURE ..............................................................................................................................114  

Introduction ...............................................................................................................................................114  

Methods........................................................................................................................................................117  

Statistical  Methods ............................................................................................................................................................117  

Power  Calculation ..............................................................................................................................................................117  

Results...........................................................................................................................................................119  

Clinical  Results ....................................................................................................................................................................121  

Cardiac  Results ....................................................................................................................................................................121  

Vascular  Results: ................................................................................................................................................................125  

Discussion....................................................................................................................................................130  

Page 7: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  vii  

Conclusion...................................................................................................................................................140  

STUDY  2:  EVALUATION  OF  ALTERATIONS  IN  CARDIOVASCULAR  STRUCTURE  AND  FUNCTION  

FOLLOWING  ELECTIVE  ARTERIO-­‐VENOUS  FISTULA  LIGATION  FOLLOWING  SUCCESSFUL  

STABLE  RENAL  TRANSPLANTATION............................................................................................141  

Introduction ...............................................................................................................................................141  

Methods........................................................................................................................................................143  

Statistical  Methods ............................................................................................................................................................143  

Power  Calculation ..............................................................................................................................................................143  

Results...........................................................................................................................................................145  

Clinical  Results ....................................................................................................................................................................146  

Cardiac  Results ....................................................................................................................................................................146  

Vascular  Results: ................................................................................................................................................................150  

Discussion....................................................................................................................................................156  

Conclusion...................................................................................................................................................161  

STUDY  3:  EVALUATION  OF  THE  DIAGNOSTIC  ACCURACY  OF  DOBUTAMINE-­‐STRESS  CARDIAC  

MRI  IN  THE  DETECTION  OF  ANGIOGRAPHICALLY-­‐SIGNIFICANT  CORONARY  ARTERY  DISEASE  

PRIOR  TO  RENAL  TRANSPLANTATION .........................................................................................163  

Introduction ...............................................................................................................................................163  

Methods........................................................................................................................................................166  

Statistical  Analysis .............................................................................................................................................................166  

Results...........................................................................................................................................................167  

Discussion....................................................................................................................................................172  

Limitations ............................................................................................................................................................................180  

Conclusion...................................................................................................................................................181  

STUDY  4:  EVALUATION  OF  DYNAMIC  CORONARY  ENDOTHELIAL  FUNCTION  IN  END-­‐STAGE  

RENAL  FAILURE ..............................................................................................................................183  

Introduction ...............................................................................................................................................183  

Methods........................................................................................................................................................185  

Page 8: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  viii  

Statistical  Analysis .............................................................................................................................................................187  

Power  Calculation ..............................................................................................................................................................187  

Results...........................................................................................................................................................188  

Discussion....................................................................................................................................................191  

Limitations ............................................................................................................................................................................198  

Conclusion...................................................................................................................................................201  

CONCLUSION...................................................................................................................202  

THESIS  SUMMARY...........................................................................................................................203  

FUTURE  DIRECTIONS .....................................................................................................................206  

BIBLIOGRAPHY..............................................................................................................209  

 

Page 9: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  ix  

FIGURE  LEGEND:  

Figure  1:   Prevalence   of   ESRF   patients   in   Australia   in   2005,   with   relative  

contributions   of   dialysis   (peritoneal   and   haemodialysis)   and   transplant   renal  

replacement  therapies  (adapted  from  ANZDATA  Annual  Report,  2006).14................... 6  

Figure  2:   Prevalence   of   End-­Stage   Kidney   Disease   (ESKD)   in   relation   to   the  

Australian  population  between  1980  and  2004.15 .................................................................... 7  

Figure  3:   Trends  in  patient  age  at  commencement  of  Renal  Replacement  Therapy  

in  Australia,  1981-­2006.19.................................................................................................................... 9  

Figure  4:   Age-­specific  prevalence  of  Diabetes  diagnosis,  by  gender,  2004-­5.19......11  

Figure  5:    Active  daily  smokers,  Australian  population  aged  ≥14,  1985-­2004.26 ..13  

Figure  6:   Age-­standardised   Rates   of   Death   from   Any   Cause   (Panel   A),  

Cardiovascular  Events  (Panel  B)  and  Hospitalisation  (Panel  C)  according  to  eGFR  

among  1,120,295  ambulatory  adults.  (Reproduced  from  Go  AS,  et  al,  N  Engl  J  Med,  

2004   with   permission.   Copyright   ©   [2004]   Massachusetts   Medical   Society.   All  

rights  reserved.) .....................................................................................................................................27  

Figure  7:   Probability   of   overall   survival   (A)   and   cardiovascular   event-­free  

survival  (B)  amongst  successful  responders  to  the  LVM  reduction  intervention,  and  

non-­responders   (response  defined  by  a  >10%  change   in  LVM)  (p<0.001   for  both).  

(Reproduced  from  London  et  al,  J  Am  Soc  Nephrol,  2001,  with  permission  from  the  

American  Society  of  Nephrology). ..................................................................................................32  

Page 10: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  x  

Figure  8:   Kaplan-­Meier   survival   analysis   for   all   cause   mortality   by   NYHA  

Classification   for   1322   patients  with   ESRF.   (Reproduced   from  Postorino  M,   et   al,  

Nephrol  Dial  Transplant.,  2007,  by  permission  of  Oxford  University  Press)................35  

Figure  9:   Measurement   of   carotid-­femoral   PWV,   utilising   the   foot-­to-­foot  

method,  where  (∆t)  represents  the  change  in  time,  and  (∆L)  represents  the  distance  

between   waveform   measurement   sites.   (Reproduced   from   Laurent   S.   et   al.   Eur  

Heart  J,  2006;27:2592,  with  permission  from  Oxford  University  Press  ).......................64  

Figure  10:   Schematic   representation   of   the   method   for   determining   arterial  

distensibility   by  measuring   changes   in   arterial   lumen   cross-­sectional   area   across  

the  cardiac  cycle   (∆A  =  Maximal   change   in   lumen  area  during  cardiac  cycle;  D  =  

diameter),  as  they  relate  to  local  pulse  pressure.  (Reproduced  from  Laurent  S.  et  al.  

Eur  Heart  J,  2006;27:2593,  with  permission  from  Oxford  University  Press). ..............66  

Figure  11:   Representation   of   an   illustrative   central   pressure   waveform,  

demonstrating   identification   of   the   Augmentation   Pressure;   determined   as   the  

difference  between  the  second  (P1)  and  first  (P2)  systolic  pressure  peaks.  AIx  may  

then  be   calculated  by   evaluation  of   the  augmentation  pressure   in   relation   to   the  

pulse  pressure.  (Reproduced  from  Laurent  S.  et  al.  Eur  Heart  J,  2006;27:2595,  with  

permission  from  Oxford  University  Press). .................................................................................67  

Figure  12:   Representation   of   CMR   methodology   for   the   use   of   the   long   axis  

reference  images  (horizontal  long  axis  image  shown  on  left)  to  enable  acquisition  

of   sequential,   parallel   ventricular   short-­axis   images   from   the   atrio-­ventricular  

plane  to  the  ventricular  apices  (end-­diastolic  images  shown). .........................................95  

Page 11: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xi  

Figure  13:   Sagittal  oblique  image  of  the  aorta  (left)  with  pictorial  representation  

of  the  reference  levels  used  in  the  acquisition  of  cross-­sectional  aortic  images  at  the  

Ascending   Aorta   (AA),   Proximal   Descending   Aorta   (PDA)   and   Distal   Descending  

Aorta  (DDA)  (right). .............................................................................................................................98  

Figure   14:   Alterations   in   Left   Ventricular   Structure   and   Function   following  

successful  AVF  creation  in  ESRF...................................................................................................123  

Figure   15:   Alterations   in   Right   Ventricular   Structure   and   Function   following  

successful  AVF  creation  in  ESRF...................................................................................................124  

Figure   16:   Alterations   in   Left   and   Right   Atrial   Area   following   successful   AVF  

creation  in  ESRF. .................................................................................................................................125  

Figure  17:   Alterations  in  Aortic  Distensibility  following  AVF  creation  in  ESRF..126  

Figure  18:   Aortic   Distensibility   by   Aortic   Level   Prior   to   (Pre-­),   and   Following  

(Post-­)  AVF  creation  in  ESRF. ........................................................................................................127  

Figure  19:     Alterations   in   Peripheral   Endothelial   Function   following   successful  

AVF  creation  in  ESRF. .......................................................................................................................128  

Figure  20:   Alteration  in  CMR-­assessed  brachial  artery  blood-­flow,  ipsilateral  and  

contralateral  to  the  newly  created  arterio-­venous  fistula. ..............................................129  

Figure  21:   Alterations  in  Left  Ventricular  Structure  and  Function  following  AVF-­

ligation  in  the  context  of  successful,  stable  renal  transplantation. ..............................148  

Figure  22:   Alterations   in   Right   Ventricular   Structure   and   Function   following  

AVF-­ligation  in  the  context  of  successful,  stable  renal  transplantation. ....................149  

Page 12: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xii  

Figure  23:   Alterations  in  Left  and  Right  Atrial  Area  following  AVF-­ligation  in  the  

context  of  successful,  stable  renal  transplantation. ............................................................150  

Figure  24:   Alterations   in   Aortic   Distensibility   following   AVF-­ligation   in   the  

context  of  successful,  stable  renal  transplantation. ............................................................151  

Figure  25:   Aortic   Distensibility   by   Aortic   Level   Prior   to   (Pre-­),   and   Following  

(Post-­)  AVF  ligation  in  the  context  of  stable,  successful  renal  transplantation. .....152  

Figure  26:   Average  Aortic  Distensibility  in  ESRF  subjects  following  AVF-­creation  

compared  to  successful  RTx  recipients  following  AVF-­ligation......................................153  

Figure  27:     Evaluation   of   Alterations   in   Endothelial   Function   following   AVF  

ligation  in  the  context  of  stable,  successful  renal  transplantation. ..............................154  

Figure  28:   Alteration  in  CMR-­assessed  brachial  artery  blood-­flow,  ipsilateral  and  

contralateral   to   the   ligated   arterio-­venous   fistula   in   the   context   of   stable,  

successful  renal  transplantation..................................................................................................155  

Figure  29:   Comparison  of  CMR-­derived  vs.  SPECT-­derived  evaluation  of  LVEF. 171  

 

Page 13: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xiii  

TABLE  LEGEND  

Table  1:    Classification   of   Stages   of   Chronic   Kidney   Disease   according   to   the  

National  Kidney  Foundation  Kidney  Disease  Outcome  Quality   Initiative   (K/DOQI)  

Advisory  Board  Findings.1.................................................................................................................... 2  

Table  2:   Prevalence   of   echocardiographic   findings   of   abnormalities   in   left  

ventricular   structure   and   function   at   dialysis   commencement   (Reproduced   from  

Parfrey  PS,  et  al.  Nephrol  Dial  Transplant.,  1996;11:1277-­1285,  with  permission  of  

Oxford  University  Press). ....................................................................................................................28  

Table  3:   Subject  Baseline  Characteristics  –  Study  1 ........................................................120  

Table  4:   Subject  Baseline  Characteristics  –  Study  2 ........................................................145  

Table  5:   Subject  Baseline  Characteristics  –  Study  3 ........................................................167  

Table  6:   Diagnostic  performance  of  DS-­CMR  and  Stress-­Perfusion  SPECT   in   the  

detection  of  angiographically  significant  coronary  stenoses..........................................170  

Table  7:   Subject   Baseline   Characteristics   –   Study   4     ACEI   =   Angiotensin  

Converting  Enzyme  Inhibitor;  ARB  =  Angiotensin  Receptor  Blocker...........................188  

 

 

 

Page 14: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xiv  

ABSTRACT  

Background:  

Chronic  renal  dysfunction  is  associated  with  myriad  alterations  in  cardiovascular  

structure   and   function,   resulting   in   markedly   elevated   rates   of   cardiac   and  

vascular  morbidity  and  mortality.  Utilising  advances  in  cardiovascular  magnetic  

resonance  imaging  (CMR),  we  evaluated  the  cardiovascular  sequelae  of  arterio-­‐

venous  fistula  formation  in  advanced  chronic  kidney  disease,  and  the  impact  of  

elective  arterio-­‐venous  fistula  ligation  following  successful  renal  transplantation.  

Furthermore,  we  undertook  to  evaluate  the  diagnostic  accuracy  of  dobutamine-­‐

stress   CMR   in   the   detection   of   haemodynamically-­‐significant   coronary   artery  

disease  prior  to  renal  transplantation.  Finally,  we  invasively  evaluated  coronary  

endothelial   function   in   the   presence   of   advanced   renal   dysfunction,   and  

compared  this  to  subjects  with  preserved  renal  function.    

 

Methods  /  Results:  

Study   1:   CMR   was   undertaken   to   evaluate   cardiac   structure   and   function,  

brachial   artery   endothelial   function   (as   assessed   by   flow-­‐mediated   dilatation)  

and   aortic   distensibility   in   twenty-­‐four   subjects   at   baseline,   and   6-­‐months  

following,   clinically   indicated   arterio-­‐venous   fistula   creation   in   preparation   for  

the   commencement   of   haemodialysis   for   end-­‐stage   renal   failure.   Following  

arterio-­‐venous   fistula   creation,   mean   cardiac   output   increased   by   25.0%  

(p<0.0001),   with   substantial   associated   increases   in   left   and   right   ventricular  

volumes,   left   and   right   atrial   area   and   left   ventricular   mass   (12.7%   increase,  

Page 15: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xv  

p<0.0001).  Peripheral  endothelial  function  was  significantly  impaired  at  follow-­‐

up   (9.0±9%   vs.   3.0±6%,   p=0.01).   No   significant   change   in   aortic   distensibility  

was  identified.    

Study  2:  Cardiac  and  vascular   function  were  similarly  assessed  utilising  CMR  in  

eighteen   subjects  prior   to,   and  6-­‐months   following,   clinically   indicated   arterio-­‐

venous   fistula   ligation   in   the  context  of  successful,   stable  renal   transplantation.  

Following   AVF-­‐ligation,   mean   cardiac   output   fell   by   15.6%   (p=0.004),   with  

significant   attendant   decreases   in   atrial   and   ventricular   chamber   dimensions.  

Notably,   left   ventricular   mass   fell   by   9.7%   (p=0.0001)   at   follow-­‐up.   Aortic  

distensibility  was  unchanged  following  AVF-­‐ligation,  though  endothelial  function  

improved  significantly  (2.5±6.5%  vs.  8.0±5.9%,  p=0.043).    

Study  3:  Dobutamine-­‐stress  CMR  was  performed  in  twenty-­‐one  subjects  prior  to  

clinically-­‐indicated   invasive   coronary   angiography   before   potential   renal  

transplantation.   Dobutamine-­‐stress   CMR   demonstrated   100%   sensitivity   and  

93%  specificity  for  the  detection  of  angiographically  significant  coronary  disease  

(≥70%   stenosis   severity).   This   compared   favourably   to   results   for   the  

institutional-­‐standard   (SPECT:   sensitivity   67%,   specificity   38%;   p<0.0001  

compared  to  CMR).    

Study   4:   At   invasive   coronary   angiography,   endothelium-­‐dependent   and  

endothelium–independent   coronary   endothelial   and   microvascular   function  

were   evaluated   amongst   eight  pre-­‐renal   transplant   subjects  with  only  minimal  

coronary   artery   disease   (≤20%   epicardial   coronary   stenoses).   Utilising   intra-­‐

coronary   infusions  of   acetylcholine   (10-­‐7M  and  10-­‐6M),   adenosine   (48mcg)   and  

glyceryl  tri-­‐nitrate  (100mcg),  results  were  compared  to  thirteen  control  subjects  

with   minimal   coronary   artery   disease   but   comparatively   preserved   renal  

Page 16: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xvi  

function.   There   was   no   significant   difference   in   endothelium-­‐dependent   or  

endothelium–independent   coronary   endothelial   function   between   the   cohorts.  

Microvascular   function   (as   assessed   by   coronary   flow   reserve   following  

adenosine   administration)   was   markedly   impaired   in   subjects   with   advanced  

renal  impairment  compared  to  controls  (1.9±0.4  vs.  3.0±1.1,  p=0.01).    

 

Conclusions:  

Chronic   kidney   disease   is   associated   with   substantial   alterations   in  

cardiovascular  structure  and  function.  Arterio-­‐venous  fistulae,  though  necessary  

for   the  performance  of  haemodialysis,   appear   to   contribute   significantly   to   the  

high   burden   of   cardiovascular  maladaptation   present   in   this   condition.   Recent  

advances   in   CMR   and   stress-­‐CMR  may   play   a   significant   role   in   improving   the  

detection  of  sub-­‐clinical  cardiovascular  disease  in  these  high-­‐risk  patients.  

Page 17: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xvii  

DECLARATION  

This body of work contains no material which has been accepted for the award of any

other degree or diploma in any university or tertiary institution and, to the best of my

knowledge and belief, contains no material previously published or written by another

person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library,

being available for loan and photocopying.

Dr Benjamin Kane Dundon

Discipline of Medicine

School of Medicine

University of Adelaide

Adelaide

South Australia, 5000

AUSTRALIA

Page 18: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xviii  

ACKNOWLEDGMENTS  

It was with no small amount of trepidation that I initially committed to the

commencement of this PhD. Having never been exposed to meaningful research

during my under-graduate education or post-graduate clinical training, as an advanced

trainee in Cardiology the idea of removing myself from clinical medicine for three

years seemed a path both onerous and of little lasting professional value – merely a

hoop to be jumped through in order to “tick the research box”. It is with great

gratitude and humility that I commit this Thesis to the numerous colleagues who have

mentored, aided and supported me through an experience that has proven to be of

immense professional and personal value.

To Professor Stephen Worthley, never could it be said that you lack for optimism. I

am deeply indebted to you for your vision, support, mentorship and enthusiasm in

supporting my research undertakings and, more broadly, my professional career. Few

in number are the clinicians throughout medical education who truly shape with

lasting effect the future path of their trainees. I consider myself extremely fortunate to

have benefitted from your guidance and example as a clinician and a mentor.

Invaluable is a leader who, by example, engenders a pervasive culture of teamwork

and determination in the pursuit of excellence. Such has been my experience.

To Dr Matthew Worthley, for your boundless enthusiasm and limitless accessibility, I

sincerely thank you. The path from doctor to academic clinician is besieged by

obstacles, both small and large. I am extremely fortunate to have experienced in my

primary supervisor a mentor infectiously passionate in his commitment to medical

Page 19: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xix  

research and ceaselessly patient in his support of the fledgling steps of an early career

researcher. Through humour, wisdom and enthusiasm, you form the heart of our

research team. I am deeply indebted to you for all of your support.

To Professor Randall Faull and Associate Professor Kym Bannister, I am extremely

grateful for your advice and support in the conduct of my research. I remain humbled

by your commitment to the welfare of your patients and exceedingly thankful for your

willingness to mentor a lowly Cardiologist within the realms of Renal and

Transplantation Medicine. Through efficient systems and outstanding personnel, the

cooperation of the Renal Unit was instrumental to the success of my research studies.

To Mr Kim Torpey, your contribution to the AV fistula research is peerless. I

sincerely thank you for your tireless support and enthusiasm for these Projects and for

your dedication to the success of our work together. My PhD has much to be grateful

to you for your hard work, outstanding patient rapport and ever-present good cheer.

To my many colleagues within the Cardiovascular Research Centre of the Royal

Adelaide Hospital, thank you for your immeasurable support. The two years of PhD

research and training in Cardiovascular Magnetic Resonance Imaging were a busy but

fulfilling period of my Cardiology career. Without the support and assistance of the

many members of the CRC team however, the numerous tasks necessary in the

completion of a PhD would surely have proven insurmountable. To Ms Kerry

Williams, thank you for your tireless assistance in the booking and performance of the

many CMR studies undertaken for my research. I am truly grateful for all of your

hard work. To Dr Rishi Puri, thank you for your assistance in the performance of the

Page 20: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xx  

QCA measures for our invasive study. Your enthusiasm for research and your

unwavering curiosity for new discoveries enabled the completion of many productive

Projects together. To Mr Angelo Carbone, thank you for your commitment to the

team and your constant willingness to help others in the department, wherever

assistance was required. To Dr Adam Nelson, I remain truly humbled by your

capacity for productivity despite your numerous clinical, research and administrative

commitments. I look forward to watching and supporting your undoubtedly stellar

career in the years to come. Thank you for all your help.

I thank the Cardiac Society of Australia and New Zealand, the National Health and

Medical Research Council and the National Heart Foundation of Australia for their

support of my research career, and I thank the Board of the Cardiovascular Lipid

Research Grants for their support of my arterio-venous fistula ligation study. Without

such support, the undertaking of meaningful research is greatly hampered.

I would also like to thank Dr Leo Mahar, whose mentorship during my Cardiology

training I have valued above all others. I benefitted immensely from the example of

your dignity and strength of leadership within our Department and greatly value the

enormous library of highly educational (and often highly amusing) anecdotes you

shared in your commitment to my education on the path to becoming a Consultant

Physician. For your generosity and commitment to my career, I sincerely thank you.

But more than any other, I thank my wife, Annabel. For our wonderful boys James,

William and Thomas and for your love and unwavering support through all of the

challenges and hardships of this PhD, I thank you.

Page 21: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xxi  

ABBREVIATIONS  

Ach   Acetylcholine  

ACS   Acute  Coronary  Syndrome  

ADMA   Asymmetrical  dimethylarginine    

AF   Atrial  Fibrillation  

AGE     Advanced  Glycosylation  End-­‐products    

AIx   Augmentation  Index  

ANP     Atrial  Natriuretic  Peptide  

ANZDATA   Australian  and  New  Zealand  Dialysis  and  Transplant  Registry    

APV   Average  Peak  Velocity  

ARVC   Arrhythmogenic  Right  Ventricular  Cardiomyopathy  

ASCOT   Anglo-­‐Scandinavian  Cardiac  Outcomes  Trial  

AVF   Arterio-­‐Venous  Fistula  

BMI   Body  Mass  Index  

BNP   Brain  Natriuretic  Peptide  

CABG   Coronary  Artery  Bypass  Graft  

CAD   Coronary  Artery  Disease  

CAFÉ   Conduit  Artery  Function  Evaluation  

CBF   Coronary  Blood  Flow  

CCF   Congestive  Cardiac  Failure  

CFR   Coronary  Flow  Reserve    

CKD   Chronic  Kidney  Disease  

CMR   Cardiovascular  Magnetic  Resonance  Imaging  

CO   Cardiac  Output  

Page 22: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xxii  

CrCL   Creatinine  Clearance    

CT   Computed  Tomography  

CV     Cardiovascular  

CVD     Cardiovascular  Disease  

DBP   Diastolic  Blood  Pressure  

eGFR   Estimated  Glomerular  Filtration  Rate  

eNOS   Endothelial  Nitric  Oxide  Synthase  

EPO   Erythropoietin  

ESKD   End  Stage  Kidney  Disease  

ESRF     End-­‐stage  Renal  Failure  

ET-­‐1   Endothelin-­‐1  

FAME   Fractional   Flow   Reserve   versus   Angiography   for   Multivessel  

Evaluation    

FFR   Fractional  Flow  Reserve  

FISP   Fast-­‐imaging  with  Steady  State  Free  Precession  

FMD   Flow-­‐mediated  Dilatation  

FOV   Field  of  View  

GFR   Glomerular  Filtration  Rate  

GTN   Glyceryl  Tri-­‐nitrate  

Hb   Haemoglobin  

HDx   Haemodialysis  

HMG-­‐CoA   Hydroxyl-­‐methylglutaryl  coenzyme-­‐A    

HR   Heart  Rate  

ICA   Invasive  Coronary  Angiography  

IHD   Ischaemic  Heart  Disease  

Page 23: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xxiii  

IMR   Index  of  Microvascular  Resistance  

IQR   Inter-­‐quartile  Range  

IVUS   Intravascular  Ultrasound  

K/DOQI   National   Kidney   Foundation   Kidney   Disease   Outcome   Quality  

Initiative  

LA   Left  Atrial  

LAD   Left  Anterior  Descending  Artery  

LDL   Low  Density  Lipoprotein  

LIFE   Losartan  Intervention  for  Endpoint  Reduction  in  Hypertension  

LV   Left  Ventricular    

LVEDP   Left  Ventricular  End-­‐Diastolic  Pressure  

LVEF   Left  Ventricular  Ejection  Fraction  

LVH   Left  Ventricular  Hypertrophy  

LVM   Left  Ventricular  Mass  

LVSV   Left  Ventricular  Stroke  Volume  

MDRD   Modification  of  Diet  in  Renal  Disease  Study  Group  

MI   Myocardial  Infarction  

MOD   Method  of  Discs  

MPI   Myocardial  Perfusion  Imaging  

NO   Nitric  Oxide  

NPV   Negative  Predictive  Value    

NSF   Nephrogenic  Systemic  Fibrosis  

NSTEMI   Non-­‐ST-­‐segment  Elevation  Myocardial  Infarction  

NYHA   New  York  Heart  Association  

oxLDL   Oxidised  Low  Density  Lipoprotein  

Page 24: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xxiv  

PAP   Pulmonary  Artery  Pressure  

PCI   Percutaneous  Coronary  Intervention  

PGI2   Prostacyclin  (Prostaglandin  I2)  

PHT   Pulmonary  Hypertension    

PP   Pulse  Pressure  

PPV   Positive  Predictive  value  

PTCA   Percutaneous  Trans-­‐luminal  Coronary  Angioplasty  

PTH   Parathyroid  Hormone  

PWV     Pulse-­‐wave  Velocity  

QALY’s   Quality-­‐Adjusted  Life  Years    

QCA   Quantitative  Coronary  Angiography  

RA   Right  Atrial  

RAAS   Renin-­‐Angiotensin-­‐Aldosterone  System  

RRT   Renal  Replacement  Therapy  

RTx   Renal  Transplantation  

RV   Right  Ventricular  

SBP   Systolic  Blood  Pressure  

SPECT   Single  Photon  Emission  Computed  Tomography    

SSFP     Steady-­‐State  Free  Precession  

STEMI   ST-­‐segment  Elevation  Myocardial  Infarction    

TIIDM   Type  II  Diabetes  mellitus  

TE   Echo  Time  

TR   Repetition  Time  

TTE   Trans-­‐thoracic  Echocardiography  

TXA2   Thromboxane  

Page 25: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  xxv  

UVB   Ultraviolet  B  

25(OH)VitD3   25-­‐hydroxyvitamin  D3    

Page 26: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  1  

 

BACKGROUND  

Page 27: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

� ��

����������� �������

������ ��� �� �� �� � ������ �� � �� �� ��� ���� ������� ������ �� ����

�� � ������� ������� ��������� �� ��� �������������� � ����������� ���� !

������"� ������ �� ������� ��� �� �#������� ��� �� $���������� ���� ���� % ��

������ ��������� ��� �� �� �� ���� � ���� ����� ���� ������� ��������� � ����

�&�����'��� �(������� ��� � ������������������ �����������)��!'��� ���� ��

�� �� � �)'��� ��� '��� � *�"(� ����������� �� %�� �� ������� ��� � ��� ��� ����

���� ������������������ ��+$,�"��

'��� � +$,� � �������

(� ≥�-.� #������ � ���� �������� %��� ��� � ��� ��� �� �%������� ��

����� ����� ��������������� "�"����� �����"�

�� /.!0-� 1����� � �� �� � ���� �������� ���� ��� � ��� ��� ��

�%������� ������� ����� ������ �� "�

� .!*-� 1�� ��� ���� �� ��� ����������"�

2� (*!�-� ' � � ���� �� ��� ����������"��

*� 3(*� 4 ��� � � � � � ���� �� �� "� ��������� � � �� �� ��� ��� ��!

���� ���� ���� �� ��)'����

�������� ������ �������� � � ������� � � ������� ������� �������� ���������� ��� ����

���������������������������������������������������������� �������!��

"�#��� $�%�!������&�������������'��

������������������������

+$,� �� �� � ����� � ��� ����� ��� � �� ����� �� � � ���� ���� ������ ������ �� ����

5�����6������� ��� �������� ������ ��"�+$,�������%������������� ������ �

� ���� � ��� � ���� ������� ����� �� � ����� � ��������� ��� � ���� � ���� �� ���

Page 28: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  3  

serum  creatinine  will   remain  within  most   laboratories’  normal  range  until  ≥50-­‐

60%  of  total  kidney  function  is  lost.2  Importantly,  GFR  is  a  measure  of  glomerular  

function,  rather  than  renal  tubular  function,  and  as  such,  many  of  the  homeostatic  

functions   of   the   kidney   may   remain   relatively   intact   despite   declining   GFR.  

Specifically,   the   tubular  mechanisms  maintaining  water   and   sodium/potassium  

homeostasis,  as  well  as  acid-­‐base  balance,  remain  robust,  even  unto  severe  renal  

dysfunction.   As   such,  many   patients   are   unaware   of   the   presence   of   significant  

renal  dysfunction  (as  assessed  by  GFR)  due  to  an  absence  of  apparent  symptoms  

or   clinical   signs   (such   as   oedema   due   to   reduced   free   water   clearance).   This  

tubular  compensation  for  glomerular  impairment/loss  gives  rise  to  the  potential  

for   the   ‘silent’   advance   of   renal   dysfunction,   in   the   absence   of   surveillance  

urinalysis  or  blood  tests  in  at-­‐risk  individuals  (e.g.  diabetic  and/or  hypertensive  

patients).  

Numerous   methods   exist   for   the   evaluation   of   GFR,   with   variable   associated  

diagnostic   accuracy   and   prognostic   value.   The   “gold   standard”   method   for  

evaluating  GFR  involves  the  administration  of  a  chemical  that  maintains  a  steady  

pharmacokinetic  profile  within   the   serum,  with  no  extra-­‐renal   excretion,   and   is  

freely   filtered   at   the   glomerulus,   but   undergoes   neither   reabsorption   nor  

secretion  within   the   renal   tubules.   A   fixed   dose   is   administered   intravenously,  

with  subsequent  urine  excretion  quantified.  Inulin  is  the  classical  agent  used  for  

this   purpose,   although   radiopharmaceuticals   are   also   routinely   used   in   clinical  

practice.    

Such  ideal  properties  for  assessing  GFR  are  distinct  from  serum  creatinine,  which  

although   freely   filtered   at   the   glomerulus,   is   known   to   undergo   active   tubular  

secretion,   with   substantial   inter-­‐   and   intra-­‐individual   variability   due   to   the  

Page 29: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  4  

saturable  nature  of  the  tubular  secretory  process.  Furthermore,  tubular  secretion  

of   creatinine   may   be   impaired   or   blocked   by   various   pharmaco-­‐therapeutic  

agents   (e.g.   trimethoprim   and   cimetidine),   and   hence   measurement   of   serum  

creatinine  in  patients  receiving  these  agents  may  provide  a  spurious  indication  of  

altered  renal  excretory  function  relative  to  previous  measurements.3    

Furthermore,  as  renal  function  declines,  there  is  a  rise  in  extra-­‐renal  degradation  

of   creatinine,4   potentially   leading   to   under-­‐estimation   of   the   decline   in   renal  

function  due  to  attenuation  of  the  rise  in  serum  creatinine  arising  from  decreased  

renal  clearance.5,6  Thus,  serum  creatinine,  and  derived  creatinine  clearance,  may  

over-­‐   or   under-­‐estimate   true  GFR,   depending   on   the   stage   of   renal   disease   and  

concomitant   therapies.   Confusingly,   these   terms   (‘creatinine   clearance’   and  

‘glomerular  filtration  rate’)  are  often  used  interchangeably  in  clinical  practice.      

Currently,   the  most   commonly   used   estimate   of   renal   excretory   function   is   the  

‘estimated   GFR’   (eGFR),   which   is   now   routinely   reported   as   a   component   of  

results   from   renal   function   serological   assays.   This  measure  was   developed   by  

the   Modification   of   Diet   in   Renal   Disease   Study   Group   [MDRD],   and   is   most  

commonly   derived   from   four   key   variables:   serum   creatinine,   age,   gender   and  

race.7    

 

For  estimation  of  eGFR  for  creatinine  values  in  µmol/L:  

eGFR  =  32,788  x  [Serum  Creatinine]-­‐1.154  x  [Age]-­‐0.203  x  [0.742  if  female]  

 

For   individuals   of   African   heritage,   results   from   the   above   equation   are   then  

multiplied  by  1.210,  due  to  the  relatively  greater  mean  muscle  mass  within  this  

racial  group.  Application  of  this  equation  to  the  Australian  Aboriginal  population  

Page 30: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  5  

remains   contentious   and   further  work   is   required   in   this   area   –   particularly   in  

light   of   the   relatively   high   prevalence   of   CKD   in   the   Australian   Indigenous  

population.8    

The  MDRD  equations  have  been  validated   in  a  variety  of  CKD  cohorts,  however  

these  formulae  (the  common  4-­‐variable  eGFR,  and  the  original  6-­‐variable  version  

which  also  includes  blood  urea  nitrogen  and  serum  albumin)  underestimate  GFR  

in  healthy  patients  with  GFR>60mL/min.9,10  As   such,   in   clinical   practice,   values  

greater  than  this  are  generally  reported  as  “eGFR  >60mL/min/1.73m2”.    

Prior  to  the  development  of  the  MDRD  eGFR,  GFR  was  more  commonly  estimated  

utilizing   the   Cockcroft-­‐Gault   formula.   First   published   in   197611,   this   equation  

estimates  an  individual’s  “creatinine  clearance”  (eCrCL),  as  a  measure  of  GFR.  

 

(140-­‐age)  x  Body  weight  x  Constant  

eCrCL  =  

                                     Serum  Creatinine  (µmol/L)  

 

Where  the  constant  is  1.23  for  men  and  1.04  for  women.  As  this  equation  utilises  

serum   creatinine,   age,   gender,   and   body   mass   (in   kilograms)   to   estimate  

creatinine  production,   as  well   as   clearance,   it   is  widely   agreed   that   the  derived  

values  provide  a  more  individualised  estimate  of  glomerular  function  than  eGFR,  

as   the   eGFR   methodology   underestimates   true   GFR   in   heavy   people,   and  

overestimates  glomerular  function  in  underweight   individuals.  The  requirement  

for   clinical   details   such   as   body  weight   inhibits   the   use   of   this   equation   in   the  

routine  reporting  of  serum  biochemistry  however.    

 

Page 31: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  6  

Disease  Burden  

Despite  substantial  advances  in  health  care  in  recent  decades,  CKD  accounts  for  a  

significant   and   growing   burden   of   morbidity   and   mortality   in   Australia.12  

Approximately   50%   of   Australians   aged   65   or   over   have   significant   renal  

impairment  and  an  increasing  number  are  progressing  to  End  Stage  Renal  Failure  

(ESRF)  requiring  renal  replacement  therapy  (RRT)(dialysis  or  transplantation).13  

(Figure  1)    

 

Figure  1:   Prevalence   of   ESRF   patients   in   Australia   in   2005,   with   relative  

contributions  of  dialysis  (peritoneal  and  haemodialysis)  and  transplant  

renal   replacement   therapies   (adapted   from   ANZDATA   Annual   Report,  

2006).14  

 

In   fact,  while   the  Australian  population  has   grown  by   approximately   40%  over  

the   last   25   years,   the   number   of   Australians   treated   with   dialysis   or   kidney  

A NOTE:

This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Page 32: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  7  

transplantation  has  grown  by  more  than  400%  over  the  same  period  (Figure  2).15  

With  the  burgeoning  epidemics  of  obesity  and  Type  II  Diabetes  Mellitus  (TIIDM),  

the   continuing   impact   of   the   glomerulonephritides   and   hypertension,   and   the  

progressive   aging   of   the   Australian   population,   it   is   anticipated   that   CKD   and  

ESRF  will  continue  to  rise  in  prevalence  for  the  foreseeable  future.15    

 

 

Figure  2:   Prevalence   of   End-­Stage   Kidney   Disease   (ESKD)   in   relation   to   the  

Australian  population  between  1980  and  2004.15  

 

Financial  Burden  of  CKD  

The  growing  prevalence  of  CKD  has  significant  attendant  costs  –  most  directly  to  

the   individual   patient   and   their   family/carers,   but   also   to   the   community.  

Australian   health   care   expenditure   on   CKD  was   $898.7  million   in   2004-­‐5,  with  

conservative  estimates  anticipating  compounded  rises  in  CKD  expenditure  of  up  

A NOTE:

This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Page 33: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  8  

to   27%   per   year   –   more   than   double   the   rate   of   growth   in   total   health   care  

expenditure.16  The  provision  of  RRT  in  the  form  of  dialysis  (both  peritoneal  and  

haemodialysis)  and  renal   transplantation  programs   is  highly  cost   intensive,  and  

accounts  for  nearly  85%  of  the  total  CKD  budget.16  Such  expenditure  is  estimated  

to  provide  Australian  RRT  patients  an  overall  benefit  of  60,000  life-­‐years  over  a  

period   of   10-­‐years   from   RRT   commencement,   or   30,000   quality-­‐adjusted   life  

years  (QALY’s).15    

Although   the   aforementioned   costs   are   substantial,   these   figures   fail   to   include  

the  additional  costs  associated  with   the  management  of   the   frequent  co-­‐morbid  

conditions  endured  by  CKD  patients,  nor  the  indirect  and  non-­‐health  sector  costs  

associated  with  the  condition.    

 

Aetiology  

In  Australia  and  New  Zealand,  population  details  of  ESKD  are  diligently  recorded  

by  the  participant  renal  medicine  units  of  the  Australia  and  New  Zealand  Dialysis  

and  Transplant  Registry  (ANZDATA).  As  a  reflection  of  the  universal  commitment  

of   local   Nephrologists   to   ANZDATA’s   raison   d’être   -­‐   to   monitor   treatment   and  

perform  analyses  to   improve  the  quality  of  care  for  people  with  kidney  failure  -­‐  

100%  of  all  Renal  Medicine  Units  in  Australia  and  New  Zealand  participate  in  the  

data  collection  process.  As  such,  ANZDATA  provides  an  enviably  comprehensive  

overview  of  CKD  and  ESKD  in  the  Australian  and  New  Zealand  context.    

The  most  contemporary  ANZDATA  Annual  Report  (2010)17  states  that  there  were  

18,243  people  receiving  RRT  in  Australia  as  at  31st  December,  2009.  This   figure  

comprises   7,902   individuals   with   a   functioning   renal   transplant   (RTx),   and  

Page 34: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  9  

10,341   individuals   undergoing   dialysis   treatment   –   either   peritoneal   or  

haemodialysis.   The   provision   of   RRT   occurred   at   a   rate   of   834   per   million  

population,  with   2,337   people   commencing   RRT   in   Australia   during   2009   –   an  

incidence   of   107   per   million   population   per   year.   The   mean   age   at   RRT  

commencement   was   reported   at   60.8   years   (median   63.6   years),   with   a   rising  

tide   of   elderly   Australians   commencing   RRT   during   the   last   three   decades.18  

(Figure  3)  

 

 

Figure  3:   Trends  in  patient  age  at  commencement  of  Renal  Replacement  Therapy  

in  Australia,  1981-­2006.19  

 

Conventional   cardiovascular   risk   factors   such   as   hypertension,   hyperlipidaemia  

and  TIIDM  are  recognized  to  be  highly  prevalent   in   the  CKD  cohort.  Of   the  new  

patients  commencing  RRT  in  2007,  diabetic  nephropathy  was  the  most  common  

A NOTE:

This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Page 35: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  10  

cause  of  ESKD,  recorded  as  the  primary  cause  in  31%.  A  further  25%  attributed  

glomerulonephritis   as   the   primary   cause   of   ESKD,   and  16%  hypertensive   renal  

disease.20  This  finding  is  a  relatively  new  phenomenon,  with  glomerulonephritis  

consistently  listed  as  the  most  common  primary  cause  of  ESKD  in  Australia  prior  

to   2005,   when   diabetic   nephropathy   became   the   most   prevalent   primary  

underlying  aetiology  for  the  first  time  (30%,  vs.  25%  glomerulonephritis).21  This  

growing   emergence   of   diabetic   nephropathy   as   the   primary   contributor   to   the  

need   for   RRT   therapies   in   Australia   is   anticipated   to   continue   to   rise   for   the  

foreseeable  future.20    

 

Co-­Morbid  Conventional  Cardiovascular  Risk  Factors  

Despite  substantial  technical  improvements  in  the  management  of  CKD  and  ESRF  

over   the   last   2-­‐3   decades,   minimal   progress   has   been   made   on   the   impact   of  

cardiovascular   disease   in   affected   patients.   As   previously   mentioned,  

conventional   CV   risk   factors   are   highly   prevalent   amongst   CKD   patients.   The  

burden   of   CVD   however,   is   disproportionate   to   the   conventional   risk   factor  

burden.22    

Notably,  the  prevalence  of  CKD  and  ESRF  increase  with  advancing  age,  peaking  in  

the   65-­‐74   year   age   group   for   ESRF.   Furthermore,   a   significant   proportion   of  

advanced   CKD   and   RRT   patients   have   pre-­‐existing   coronary   artery,   peripheral  

artery   and   cerebrovascular   disease.   Such   factors   contribute   significantly   to   the  

risk   of   future   cardiovascular   events   in   these   cohorts,   independent   of   other  

contributory  risk  factors  such  as  diabetes  and  hypertension.      

 

Page 36: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  11  

Diabetes  Mellitus    

TIIDM  contributes  substantially  to  the  burden  of  pre-­‐ESRF  CKD  in  the  Australian  

community.12,23   It   is  well   appreciated   that   the  prevalence  of  TIIDM   in  Australia  

has  risen  steadily  over  the  last  two  decades,  rising  from  <1.5%  of  the  population  

in   1989,   to   almost   3.5%   by   2005.19   This   growing   burden   of   diabetes   is   over-­‐

represented  amongst  older  Australians,  with  a  peak  incidence  in  the  65-­‐74  years  

age   group.19   This   skewed   prevalence   ensures   a   rising   tide   of   CKD   and   ESRF  

amongst   elderly  Australians,  with   the   greatest  prevalence  of  diabetes  diagnosis  

coinciding  with  the  greatest  population  burden  of  CKD  also  (Figure  4).19  

 

 

Figure  4:   Age-­specific  prevalence  of  diabetes  diagnosis,  by  gender,  2004-­5.19  

A NOTE:

This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Page 37: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  12  

 

Hypertension  

Hypertension   is   known   to   be   a   potent   risk   factor   for   the   development   of   renal  

disease   and   may   hasten   progression   of   renal   dysfunction   in   early   CKD.24   As  

mentioned   previously,   hypertensive   renal   disease   accounted   for   16%   of   ESRF  

cases   in   Australia   in   2008,   with   rates   steadily   increasing   over   the   last   two  

decades.20   Additionally,   hypertension   is   a   common   consequence   of   advancing  

CKD  (if   it   is  not  already  present),  further  contributing  to  the  ‘pro-­‐CVD  milieu’  in  

this   condition.   Hypertension   contributes   significantly   to   the   burden   of   cardiac  

and   vascular   disease   of   CKD   and   ESRF   and   will   be   discussed   in   greater   detail  

below.      

 

Smoking  

Smoking   is   known   to  be   associated  with   an   increased   risk   of   renal   impairment  

and   proteinuria.25   Although   the   prevalence   of   smoking   in   the   Australian  

community  has   steadily   fallen   in   recent   times   (Figure  5)26,   smoking  prevalence  

amongst   individuals   commencing   RRT   has   remained   remarkably   stable   since  

2001,  but  at  a  relatively  lower  rate  (12%  of  patients  entering  RRT  during  2001-­‐

2007  vs.  19.8%  of  the  general  Australian  population  aged  ≥14  in  2007).19,20  This  

persistence  of  smoking  as  a  contributing  risk  factor  to  CVD  disease  progression  in  

a  population  already  at  markedly  elevated  risk  of   cardiovascular  morbidity  and  

mortality  remains  a  significant  challenge  to  clinicians  managing  CKD  and  ESRF.    

 

Page 38: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  13  

 

Figure  5:    Active  daily  smokers,  Australian  population  aged  ≥14,  1985-­2004.26  

 

Hyperlipidaemia  

Hyperlipidaemia  is  a  common  co-­‐morbid  condition  in  CKD  patients,  and  appears  

to  increase  in  prevalence  with  increasing  renal  dysfunction.27  Although  numerous  

studies  have  demonstrated  substantial  prognostic  benefits  with  low-­‐density  lipid  

(LDL)   lowering   utilizing   hydroxyl-­‐methylglutaryl   coenzyme-­‐A   (HMG-­‐CoA)  

reductase  inhibitors  (“statins”)  in  the  general  community  and  various  higher-­‐risk  

cohorts28-­‐33,   there   remains   no   convincing   evidence   of   prognostic   advantage   to  

these   agents   in   the  ESRF   context34,35,   despite   similar   LDL-­‐lowering   efficacy.34-­‐39  

Although  substantial  controversy  persists  regarding  the  use  of  statin   therapy   in  

ESRF   patients,   and   the   generalizability   of   the   AURORA34   study   results   in  

particular,   it   is   supposed   that   the   causal   relationship   between   LDL   and   the  

generation   of   cardiovascular   events   is   altered   in   dialysis   patients.40   It   is   well  

appreciated  that,  although  vascular  disease  is  common  in  ESRF,  only  one  quarter  

A NOTE:

This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Page 39: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  14  

of  cardiac  mortality  in  ESRF  is  attributable  to  acute  myocardial  infarction41,  while  

other   common   causes   of   death   such   as   cardiac   arrest,   arrhythmia   and   heart  

failure  could  not  be  expected  to  be  affected  by  LDL-­‐lowering.  Notably,  the  larger  

Study  of  Heart  and  Renal  Protection  (SHARP)  involving  combination  therapy  with  

ezetimibe   and   simvastatin   in   the  management   of   hyperlipidaemia   in   advanced  

CKD   recently   demonstrated   a   significant   reduction   in   major   atherosclerotic  

events.42   This   study   has   provided   greater   confidence   in   the   utility   of   lipid  

lowering  in  the  CKD  context,  although  questions  still  remain  regarding  the  patho-­‐

biology  of  atherosclerosis  in  this  condition.  

 

Obesity  

The   prevalence   of   obesity   in   Australia   has  more   than   doubled   over   the   last   20  

years43,  with  significant  corresponding  increases  in  the  prevalence  of  overweight  

Australians   during   this   period   also.   Obesity   is   a   known   risk   factor   for  

cardiovascular  disease   and   contributes   to  deleterious   vascular   remodelling   and  

hypertension.44-­‐47  Although  indices  of  malnutrition,  such  as  low  BMI,  albumin  and  

total   cholesterol,   have   previously   been   associated   with   increased   mortality   in  

ESRF48,49,   excess   visceral   adiposity   and   the   associated   metabolic   syndrome  

remain  significant  contributors  to  morbidity  and  mortality  in  CKD  and  ESRF.50    

 

Disease-­Specific  Cardiovascular  Risk  Factors  

Anaemia  

Anaemia   is   a   common   complication   of   declining   renal   function,   and   is   strongly  

predictive   of   adverse   cardiovascular   prognosis   in   CKD   and   ESRF.51,52   As   the  

Page 40: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  15  

kidneys  are  responsible  for  the  production  of  endogenous  erythropoietin  (EPO),  

progressive  destruction  of  the  renal  parenchyma  inevitably  leads  to  reduced  red  

cell   haematopoiesis,   and   resultant   anaemia   due   to   EPO   deficiency.   This  

underproduction   of   red   blood   cells   is   further   complicated   by   reduced   red   cell  

lifespan   in   advancing   CKD,   and   dilutional   anaemia   associated  with   progressive  

derangement  of  extracellular  fluid  homeostasis  as  renal  function  declines.53,54    

Numerous   observational   studies   support   the   role   of   exogenous   EPO  

supplementation   in  ESRF  for   the  management  of  anaemia  and  the  minimization  

of   deleterious   cardiovascular   remodelling   and   premature   mortality.51,55-­‐61  

Despite  this,  normalisation  of  haemoglobin  (Hb)  levels  has  failed  to  demonstrate  

convincing   improvements   in   left   ventricular   geometry,   or   overall   survival   in  

prospective   studies.62-­‐64   Furthermore,   recent   evidence   disputes   the   use   of   EPO  

supplementation   to  prevent   cardiovascular   events   in  pre-­‐dialysis  CKD65,66,  with  

evidence  actually  suggesting  an  increase   in  adverse  outcomes  if  Hb>13.5g/dL  is  

targeted.67,68   Despite   these   conflicting   findings,   EPO   administration   remains   a  

mainstay   of   international   guidelines   regarding   the   management   of   anaemia   in  

CKD.60,69  

Iron   deficiency   is   also   common   in   the   CKD   and   ESRF   populations,   contributing  

further  to  the  development  of  anaemia.  Due  to  the  not-­‐infrequent  development  of  

relative  EPO  resistance  in  the  uraemic  context70,  supra-­‐normal  ferritin  levels  are  

often  required  to  ensure  sufficient  red  cell  haematopoiesis.  Substantial  work  has  

focused  on   the  optimal  delivery  and  serum   levels  of   iron   in  CKD,  with  evidence  

strongly   supporting   the   role   of   regular   intravenous   iron   administration   in  

haemodialysis  patients  in  particular.71  Evidence  supporting  a  role  for  aggressive  

iron  supplementation  in  pre-­‐dialysis  CKD  is  less  convincing  however.71    

Page 41: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  16  

 

Disordered  Calcium  /  Phosphate  Metabolism    

Calcium   and   phosphate   homeostasis   relies   upon   a   complex,   tightly   controlled  

system   of   hormones   and   serum   ions   that   influence   calcium   and   phosphorus  

regulation   at   the   level   of   the   kidney,   intestine   and   bone.72   Derangement   of   the  

renal   contribution   to   this   complex   regulatory   system   leads   to   a   number   of  

compensatory,  but  ultimately  pathological  responses.  

 

Vitamin  D  /  Parathyroid  Hormone  

Vitamin  D   is  poorly  named,   as   its   synthesis   and  actions  more   closely   represent  

the  behaviour  of   a   hormone   than   a   true   vitamin,   as  with   sufficient   exposure   to  

sunlight,  no  dietary  supplementation  is  necessary.73  Once  bio-­‐transformed  to  its  

active  metabolite  (1,25-­‐dihydroxyvitamin  D3),  Vitamin  D  influences  homeostatic  

mechanisms   within   the   kidney,   intestines,   bone,   and   parathyroid   glands,   with  

strong   influence  over  calcium  and  phosphorus  physiology.  Vitamin  D   is   initially  

derived   from   7-­‐dehydrocholesterol   (provitamin   D3),   transformed   within   the  

epidermis   following   exposure   to   ultraviolet   B   radiation   (UVB).   Vitamin   D3  

continues  to  be  produced  for  many  hours  after  epidermal  exposure  to  UVB  (most  

commonly   from   sunlight),   and   is   then   transported   to   the   liver   by   vitamin   D-­‐

binding  protein,  where  it  is  hydroxylated  to  the  still-­‐inactive  25-­‐hydroxyvitamin  

D3   [25(OH)VitD3].   25(OH)VitD3   is   then   further   hydroxylated   by   renal   tubular  

mitochondria  to  the  active  1,25-­‐dihydroxyvitamin  D3.  This  activation  is  indirectly  

enhanced  by  hypocalcaemia,  which  triggers  increased  production  of  parathyroid  

hormone   (PTH).   PTH   acts   to   restore   serum   calcium   levels,   and   contributes   to  

Page 42: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  17  

increased   1,25-­‐dihydroxyvitamin   D3   synthesis   within   the   renal   tubular   cells,  

which   in   turn   provides   negative   feedback   to   further   PTH   production.   1,25-­‐

dihydroxyvitamin  D3  assists  PTH  in  increasing  circulating  calcium  levels  through  

the   enhancement   of   intestinal   calcium   and   phosphate   absorption,   as   well   as  

stimulation  of  increased  bone  turnover.  Excess  phosphate  is  normally  deposited  

in   bone   by   osteoblasts   (predominantly   as   hydroxyapatite),   or   excreted   by   the  

renal  tubules  under  the  influence  of  PTH.72,73    

Renal   parenchymal   destruction   leads   to   relative   1,25-­‐dihydroxyvitamin   D3  

deficiency,   reduced   gastro-­‐intestinal   calcium   absorption,   excess   PTH   secretion  

and  commonly,  compensatory  secondary  hyperparathyroidism.  This  maladaptive  

secondary  hyperparathyroidism  leads  to  progressive  depletion  of  calcium  stores  

within  the  bone  reservoir,  leading  to  a  condition  known  as  renal  osteodystrophy.      

This   derangement   of   calcium   homeostasis   is   further   complicated   by   the  

progressive   decline   in   renal   phosphate   excretion,   leading   to   a   state   of   chronic  

hyperphosphataemia  –  an   independent   risk   factor   for  vascular   calcification  and  

subsequent   arterial   stiffness.   Arterial   stiffness   leads   to   increased   cardiac   work  

and  reduced  coronary  blood  flow,  which,  particularly  in  this  renal  failure  cohort,  

may  contribute  to  excess  CV  mortality.74  

 

Phosphate  Restriction  

Vitamin  D  supplementation  has  been  routinely  undertaken  in  advancing  CKD,  to  

prevent   hypocalcaemia   and   secondary   hyperparathyroidism.   Although   the  

enhancement   of   gastrointestinal   calcium   absorption   mitigates   the   need   for  

increased  PTH  secretion  and  restricts  the  development  of  renal  osteodystrophy,  

as  previously  mentioned,  Vitamin  D  (commonly  administered  in  the  form  of  oral  

Page 43: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  18  

calcitriol)   also   leads   to   increased   gastrointestinal   phosphate   absorption,  

exacerbating  the  decline  in  renal  excretion  of  this  pro-­‐calcific  anion.    

As  the  capacity  for  phosphate  excretion  falls,  restriction  of  phosphate  absorption  

becomes   an   essential   component   of   CKD   management.   Even   following   the  

commencement   of   dialysis   in   ESRF,   the   removal   of   circulating   phosphate   often  

fails   to   adequately   compensate   for   dietary   phosphate   intake.   The   removal   of  

phosphate   during   dialysis   is   impaired   by   the   complex   interaction   kinetics   of  

intracellular  and  extracellular  phosphate  within  the  human  body,  and  by  dialysis’  

inability   to   remove   large   amounts   of   phosphate   from   the   serum   using  

conventional   dialysis   methodologies   (both   peritoneal   and   haemodialysis).75  

Historically,   control   of   hyperphosphataemia   was   achieved   through   the  

administration   of   oral   aluminium-­‐hydroxide   at   meal   times   to   bind   dietary  

phosphates   prior   to   absorption.   Although   effective,   this   led   to   progressive  

aluminium   intoxication   in   ESKD   patients,   most   notably   in   the   form   of  

osteomalacia  and  dementia.73  Calcium-­‐based  phosphate  binders  are  used  widely,  

as   they   are   inexpensive   and   effective,   increasing   gastro-­‐intestinal   phosphate  

excretion  through  the  intra-­‐luminal  formation  of  insoluble  calcium-­‐phosphate.  In  

combination  with  vitamin  D  supplementation  however,   it  became  apparent  that  

calcium-­‐based   phosphate   binders   may   contribute   to   the   excess   vascular  

calcification   of   CKD   by   inducing   a   strongly   positive   calcium   balance.76   Non-­‐

calcium-­‐based   phosphate   binders   have   now   been   developed   (e.g.   sevelamer-­‐

HCL),   with   evidence   of   reduced   risk   of   hypercalcaemia   and   cardiovascular  

calcification.77-­‐79   There   remains   uncertainty,   however,   whether   these   newer  

therapies  lead  to  improved  clinical  outcomes  in  CKD  and  ESRF  patients.80    

Page 44: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  19  

As   hyperphosphataemia   and   hyperparathyroidism   have   been   independently  

associated   with   cardiovascular   morbidity   and   mortality,   as   well   as   all-­‐cause,  

cardiovascular  and   fracture-­‐related  hospitalisation   in  ESRF  patients74,  efforts   to  

control   these   entities   remains   an   important   goal   for   renal   clinicians   and  

researchers.  

 

Uraemia  

As   glomerular   and   tubular   function   progressively   decline,   there   is   a   gradual  

accumulation   of   numerous   organic   by-­‐products   of  metabolism  usually   excreted  

by   the   intact   kidneys.   This   accumulation   is   associated  with   the  development   of  

the   clinical   syndrome  of   “uraemia”,   characterised  by   a   complex   constellation  of  

symptoms  and  signs,  including  fatigue,  anorexia,  nausea,  pruritis,  muscle  cramps,  

restless   legs,   reduced   mental   acuity,   peripheral   neuropathy   and   ultimately  

seizures  and  coma.81  Additionally,  uraemia  is  associated  with  the  development  of  

a   number   of   significant   physiological   derangements   that   contribute   directly   to  

the   promotion   of   CVD.   These   include   insulin   resistance,   platelet   dysfunction,  

increased  oxidative  stress  and  the  promotion  of  a  pro-­‐inflammatory  milieu.81    

 

Insulin  Resistance  

Insulin   resistance   is   defined   as   the   inadequate   blood   glucose   response   to  

physiological   levels   of   circulating   insulin.   Insulin   resistance,   and   the   associated  

metabolic  syndrome,  have  been  strongly  implicated  in  the  development  of  CVD  in  

the  general  population,  and  contribute  significantly   to   the  burden  of  premature  

mortality  in  the  Australian  community.19,82,83  Similarly,  insulin  resistance  has  also  

Page 45: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  20  

been  established  as  an  independent  predictor  of  cardiovascular  mortality  in  non-­‐

diabetic  patients  with  ESRF.84  Significantly,  uraemia  per  se  is  known  to  contribute  

to  the  development  of  insulin  resistance,  through  induction  of  tissue  insensitivity  

to   insulin.85   This   uraemia-­‐associated   insulin   insensitivity   is   known   to   correlate  

linearly   with   declining   renal   function,   and   has   been   demonstrated   to   manifest  

early   in   the  course  of  renal  dysfunction.86,87  The  resultant  compensatory  hyper-­‐

insulinaemia  has  long  been  known  to  be  associated  with  glucose  intolerance  and  

dyslipidaemia88-­‐90   –   further   potential   contributors   to   CVD   progression.  

Furthermore,  the  hyper-­‐insulinaemia  of  CKD  is  implicated  in  the  development  of  

muscle   wasting   in   advancing   CKD   and   ESRF,   potentially   contributing   to   the  

commonly   described   fatigue   and   exercise   intolerance   in   uraemia   patients.91,92  

Although  multi-­‐factorial,   this   uraemia-­‐induced   sedentariness   of   advancing   CKD  

has  also  been  implicated  in  the  ‘pro-­‐CVD  milieu’  of  this  condition.93    

 

Platelet  Dysfunction  

Uraemia   is   the   most   common   systemic   disorder   associated   with   clinically  

important   platelet   dysfunction.94   Moderate   thrombocytopaenia   is   a   common  

finding   in   uraemia,  with   the  mean   platelet   volume   of   remaining   platelets   often  

reduced  –  a  measure  inversely  proportional  to  bleeding  time.95  Although  reduced  

in   number,   thrombocytopaenia   sufficiently   severe   to   cause   bleeding   is   rare.  

Despite   this,   numerous   other   factors   are   known   to   impair   platelet   function   in  

uraemia  whether  by  impacting  platelet  granule  composition96,97,  platelet-­‐platelet  

interactions98-­‐100  or  platelet-­‐vessel   interactions.101-­‐103  Moreover,   the  presence  of  

anaemia   may   further   impair   platelet   function   in   uraemia.104-­‐106   Within   the  

circulation,   red   blood   cells   increase   platelet   vessel   wall   contact   by   displacing  

Page 46: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  21  

platelets  away  from  the  axial  flow  of  blood  towards  the  vessel  wall.95  Red  blood  

cells   further   enhance   platelet   function   through   the   release   of   ADP   and  

inactivation   of   PGI2.95,107   Additionally,   Hb   acts   as   a   scavenger   for   nitric   oxide  

(NO),   which   along  with   PGI2   is   increased   in   uraemia   and   are   known   to   inhibit  

platelet   function.95,108   Dialysis   is   associated   with   improvement   in   platelet  

function,   through   the  removal  of  a  variety  of   circulating   factors  associated  with  

platelet   functional   abnormalities.109-­‐111   Despite   this,   haemodialysis   may   be  

associated   with   an   increase   in   bleeding   risk,   due   to   inappropriate   platelet  

activation   induced   by   interaction   of   circulating   platelets   with   the   dialysis  

membrane,  as  well  as  through  the  use  of  heparin  anti-­‐coagulation  during  dialysis.  

Peritoneal   dialysis   has   been   demonstrated   to   be   more   effective   in   correcting  

uraemic   platelet   dysfunction   than   haemodialysis112,   though   this   RRT  

methodology   is   not   suitable   for   all   patients.     Finally,   platelet   function   may   be  

further  impaired  by  the  administration  of  aspirin,  a  common  therapy  in  CKD  and  

ESRF  due   to   the  high   rate  of  CV  morbidity   and  mortality   in   this   condition.   It   is  

recognised   that  aspirin  may  have  a  more  significant   impact  on  bleeding   time   in  

uraemia   than   in   non-­‐uraemic   patients,   and   may   further   be   associated   with  

increased  risk  of  gastro-­‐intestinal  ulceration  and  subsequent  bleeding.113,114  The  

management   of   the   competing   interests   of   CVD   prevention   and   bleeding  

minimisation   provide   an   ongoing   clinical   quandary   in   the  management   of   CKD  

and   ESRF   patients,   due   to   the   paradoxical   association   of   impaired   haemostasis  

and  increased  risk  of  atherothrombosis  in  uraemia.115    

 

Page 47: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  22  

Oxidative  Stress  

Oxidative  stress  is  a  widely  used  term  that  describes  the  compensatory  biological  

response   to   noxious   oxidative   stimuli   –   a   process   that   is  most   commonly   self-­‐

limiting.  In  CKD  and  a  variety  of  other  chronic  inflammatory  conditions  however,  

this   oxidative   stress   exceeds   biologically   optimal   levels,   leading   to  

disadvantageous  physiological  sequelae.    

Oxidative   processes   predominantly   occur   within   the   mitochondria,   with   the  

mitochondrial   cytochrome   oxidase   enzyme   responsible   for   90%   of   the   oxygen  

metabolised  by  human  cells.116  This  enzyme  transfers  four  electrons  to  oxygen  in  

a  direct  redox  reaction  that  creates   two  molecules  of  water   in   the  process.  This  

reaction   generally   proceeds   without   any   intervening   steps,   however   a   small  

percentage  of  this  reaction  (<5%)  proceeds  via  an  intermediate  step  that  results  

in   the   formation   of   “free   radicals”.116,117   To   counteract   the   production   of   these  

potentially   injurious   free   radicals,   numerous   antioxidant   responses   have  

developed   to   interact  with   these  by-­‐products  of  oxygen  metabolism  and  render  

them   inert  before   they   can   cause  oxidative  damage   to   cellular   components   and  

function.118    

Phagocytes  within  the  human  immune  system  specifically  utilise  reactive  oxygen  

species  in  the  host  defence  against  pathogens.  Four  enzymes  are  predominantly  

responsible   for   the   creation   of   reactive   oxidative   products:   NADPH   oxidase,  

superoxide   dismutase,   nitric   oxide   synthase   and   myeloperoxidase.116   These  

enzymes   produce   superoxide   anion,   hydrogen   peroxide,   NO   and   hypochlorous  

acid   respectively,   often   utilised   in   the   destruction   of   invading  microorganisms.  

Oxidative  stress   is  achieved  when   the  ongoing  production  of   these   free  radicals  

exceeds  the  available  anti-­‐oxidant  capacity  of  surrounding  tissue  –  leading  to  the  

Page 48: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  23  

generation   of   a   local   chronic   inflammatory   state   and   perpetuating   local   tissue  

injury.    

Uraemia   is   associated  with   an   increase   in   oxidative   stress.118,119   This   increased  

oxidative  burden  leads  to  an  increase  in  oxidative  modification  of  proteins,  lipids  

and  carbohydrates  that  progressively   increases  as  renal  function  declines,  along  

with   inactivation   of   the   ‘vascular   protective’   molecule   nitric   oxide   and  

subsequent   formation   of   peroxynitrite.116   The   effect   of   oxidative   stress   on  

dynamic  vascular  function  will  be  discussed  later  in  this  Background  section.  

 

Oxidative  Stress  in  the  Promotion  of  CVD  

Atherosclerosis   is  now  widely  regarded  as  an  immune  /   inflammatory  response  

to  endothelial  injury120,121,  and  that  this  injury  is  initiated  by  the  accumulation  of  

sub-­‐intimal   lipid.122  Native  lipoprotein  particles  (most  notably  LDL)  freely  enter  

the   intima   under   normal   circumstances,   and   are   utilised   by   vascular   cells   via  

LDL-­‐receptor   mediated   endocytosis   without   precipitating   an   immunological   or  

inflammatory  response.  These  native  LDL  particles,  thus,  are  not  phagocytosed  by  

local   macrophages   and   do   not   initiate   atherosclerotic   changes   in   the   vessel  

wall.120,122,123   Oxidative   transformation   of   lipoproteins   (LDL   in   particular),  

however,  markedly  alters   the  biological  activity  of   these  particles.  Furthermore,  

smaller,   denser   LDL   particles   are   particularly   susceptible   to   oxidative  

modification,   leading   to   the   recognition   of   this   subtype   of   LDL   as   being  

particularly   atherogenic.124,125   Following   oxidative   transformation,   the   oxidised  

LDL   (oxLDL)   particles   become   chemotactic   for   monocytes   and   T   lymphocytes,  

initiate   a   local   pro-­‐inflammatory   response,   induce   phenotypic   endothelial  

alterations  and  trigger  macrophage  differentiation.120,126  Subsequently,  these  pro-­‐

Page 49: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  24  

inflammatory   molecules   are   avidly   taken   up   by   intimal   macrophages   utilising  

scavenger   receptors,   rather   than   the   traditional   LDL-­‐receptors   present  

ubiquitously  on  the  surface  of  mammalian  cells.120,127  This  adaptive  response  to  

potentially  injurious  oxLDL  eventually  overwhelms  the  macrophage’s  capacity  for  

handling   the   intracellular   lipid,   leading   to   the   formation   of   heavily   cholesterol-­‐

laden  foam  cells  within  the  vessel  wall  –  cells  known  to  be  critical  components  of  

the   ‘fatty   streak’   and  an   initiating   step   in   the   atherosclerotic  process.   Critically,  

the   uptake   of   these   modified   LDL   particles   into   differentiated   macrophages   is  

also  believed  to  initiate  a  chronic  pro-­‐inflammatory  milieu  within  the  vessel  wall,  

perpetuating   the   creation   of   local   oxidative   molecules   and   advancing   the  

atherosclerotic  process  further.127    

Distinct   from   the  oxidative  process  precipitated  by   conventional   cardiovascular  

risk  factors  such  as  smoking  and  obesity,  and  the  hyper-­‐atherogenic  properties  of  

numerous   chronic   inflammatory   conditions   (e.g.   rheumatoid   arthritis),   ESKD  

further   contributes   to   the   promotion   of   CVD   through   the   accumulation   of  

oxidative   end-­‐products   –   most   notably   aldehyde   (carbonyl)   species.   Reactive  

aldehydes  may  be  formed  by  numerous  oxidative  reactions.128  Generally  excreted  

via   renal   clearance,   many   such   oxidative   end-­‐products   are   present   in   uraemic  

serum  (and  in  the  serum  of  haemodialysis  patients  in  particular),  at  substantially  

higher   concentrations   than   are   present   in   healthy   individuals.129,130   These  

aldehydes   are   implicated   in   the   promotion   of   advanced   glycosylation   end-­‐

products  (AGE)  –   formed  through  the   irreversible,  non-­‐enzymatic   interaction  of  

reactive  carbonyl  compounds  (i.e.  aldehydes)  and  a  variety  of  human  proteins.131  

These  AGE’s  are  known  to  be  potent  promoters  of  the  atherosclerotic  process132,  

have   been   recognised   as   contributors   to   the   oxidisation   of   LDL133,   and   are  

Page 50: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  25  

believed   to   contribute   substantially   to   the   excess   cardiovascular  morbidity   and  

mortality  of  CKD  and  ESKD.134    

 

Immune  System  Dysregulation  

After  CVD,  infectious  disease  is  the  second  most  common  cause  of  death  in  ESKD  

patients.   This   elevated   risk   of   infection   reflects   a   state   of   immune   system  

dysregulation,  further  demonstrated  through  a  higher  prevalence  of  autoimmune  

disease   and   neoplasms,   cutaneous   anergy   in   delayed-­‐type   hypersensitivity  

reactions   to   common   antigens,   and   impaired   response   to   vaccination.135   This  

state   of   immunodeficiency   predates   the   commencement   of   dialysis,   but   is  

enhanced  by  haemodialysis  in  particular  due  to  immune  cell  activation  by  serum  

contact   with   dialysis   membranes.135,136   The   underlying   causes   behind   this  

immune  system  dysregulation  have  not  yet  been  comprehensively  characterised,  

but   are   believed   to   originate   from   an   imbalance   between   pro-­‐inflammatory  

cytokines   and   their   inhibitors   in   the   context   of   the   uraemic   milieu.135   Inter-­‐

current  infections,  co-­‐morbidities,  dialysis-­‐related  triggers  and  even  renal  failure  

itself   have   been   implicated   in   the   genesis   of   the   pro-­‐inflammatory   state   of  

uraemia.  Regardless  of   the  myriad  underlying  causes,   the  chronic   inflammatory  

activation   of   CKD   is   known   to   further   promote   atherosclerotic   progression,  

endothelial   dysfunction,   haematopoietic   resistance   and   cardiac   failure   –   all  

independent  risk  factors  for  reduced  survival  in  this  clinical  context.137  

 

Page 51: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  26  

Cardiovascular  Sequelae  of  CKD  

Cardiovascular   disease   (CVD)   is   the   leading   cause   of   death   amongst   ESRF  

patients.20,138,139  Mortality  rates  amongst  ESRF  patients  are  widely  accepted  to  be  

15-­‐  to  30-­‐times  that  of  the  age-­‐matched  mortality  in  the  general  population.20,140  

Strikingly,  according  to  the  US  Renal  Data  System141  only  35%  of  haemodialysis  

patients  can  expect  to  live  for  a  five  year  period.93  Cardiovascular  mortality  rates  

are   similarly   raised   across   all   age   groups,   with   CV   mortality   amongst   the  

youngest  age  groups  (age  25  to  34  years)  particularly  excessive  –  up  to  500  times  

that  of  age-­‐matched  peers  in  the  general  community.142  

This   increased   risk   of   CVD   extends   to   less   severe   stages   of   renal   dysfunction  

also.139   Alan   Go   and   colleagues   presented   striking   data   in   the   New   England  

Journal   of   Medicine   in   2004,   demonstrating   the   rising   risk   of   CV   death   with  

advancing  renal  dysfunction.143  This  study  of  1,120,295  ambulatory  adults  within  

the   San   Francisco   Bay   area   revealed   a   dramatic   inverse   association   between  

incremental   risk   of   all-­‐cause   mortality,   risk   of   CV   events   and   risk   of   all-­‐cause  

hospitalisation  with  declining  renal  function,  as  measured  by  eGFR  (Figure  6).    

Furthermore,   it  has  been  shown   to  be  more   likely   that  patients  with  early  CKD  

will   die   of   CVD,   than   develop   ESRF.144   The   explanation   for   this   rising   risk   of  

hospitalization,  CV  events  and  mortality  with  declining  renal  function  most  likely  

finds   its  genesis   in   the  myriad  conventional  and  disease-­‐specific  CV  risk   factors  

previously   described.   In   particular,   declining   renal   function   is   associated   with  

complicated   neurohormonal   and   biochemical   derangements   that   strongly  

promote   the   development   of   hypertension,   vascular   stiffening,   endothelial  

dysfunction  and  various  cardiac  abnormalities.  Although  briefly  alluded  to  above,  

Page 52: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  27  

the   cardiac   and   vascular   manifestations   of   CKD   and   ESRF   will   be   discussed  

further  below.    

 

 

Figure  6:   Age-­standardised   Rates   of   Death   from   Any   Cause   (Panel   A),  

Cardiovascular   Events   (Panel   B)   and   Hospitalisation   (Panel   C)  

according   to   eGFR   among   1,120,295   ambulatory   adults.   (Reproduced  

from  Go  AS,   et  al,  N  Engl   J  Med,  2004  with  permission.143  Copyright  ©  

[2004]  Massachusetts  Medical  Society.  All  rights  reserved.)    

 

Left  Ventricular  Disease  in  CKD  

The   prevalence   of   cardiac   abnormalities   in   CKD   is   substantial.   In   a   landmark  

study,   Parfrey   and   colleagues   evaluated   432   ESKD   patients  with   trans-­‐thoracic  

echocardiography  at  the  initiation  of  dialysis  therapy  and  demonstrated  that  less  

than   16%   of   patients   studied   had   normal   left   ventricular   size   and   systolic  

function.145   In   this   study,   41%   of   patients   had   concentric   left   ventricular  

hypertrophy   (LVH),   28%   LV   dilatation,   and   16%   demonstrated   systolic  

dysfunction.   Significantly,   these  abnormalities   appeared   to  be   closely   related   to  

patient  prognosis,  both  with  regards  time  from  dialysis  initiation  to  development  

of  heart  failure,  and  overall  survival  from  index  echocardiogram  (Table  2).145  

Page 53: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  28  

 

Echocardiography  

Findings  

Prevalence  of  

Finding  %  

(n)  

Time  to  

Development  

of  Heart  

Failure  

(median)  

Significance  

vs.  Patients  

with  Normal  

LV  

Overall  

Survival  

(median)  

Significance  

vs.  Patients  

with  Normal  

LV  

Normal  LV  Size  

and  Function  15.6%  (64)   n/a   -­‐   >66  months   -­‐  

LV  Dilatation   28.0%  (117)   38  months   p  =  0.002   56  months   p=NS  

Concentric  LVH   40.7%  (168)   38  months   p<0.001   48  months   p=NS  

LV  Systolic  

Impairment  15.6%  (64)   19  months   p<0.001   38  months   p<0.001  

Table  2:   Prevalence   of   echocardiographic   findings   of   abnormalities   in   left  

ventricular   structure   and   function   at   dialysis   commencement  

(Reproduced   from   Parfrey   PS,   et   al.   Nephrol   Dial   Transplant.,  

1996;11:1277-­1285,  with  permission  of  Oxford  University  Press).  

 

In   this   Study,   the   relative   risk   of   developing   heart   failure   in   patients   with   LV  

abnormalities  (independent  of  age,  gender,  diabetes  and  ischaemic  heart  disease  

[IHD])   was   3.0   (p<0.001)   for   LVH,   2.74   (p=0.002)   for   LV   dilatation,   and   3.66  

(p<0.001)  for  LV  systolic  impairment.145    

Other  authors  have  previously  demonstrated  LVH  to  be  an  independent  predictor  

of   increased   mortality   in   CKD.146   As   suggested   by   the   study   by   Go   and  

colleagues143,  the  cardiac  and  vascular  abnormalities  of  CKD  have  been  shown  to  

begin  early   in   the   course  of   the  disease.147,148  Furthermore,   the  development  of  

Page 54: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  29  

LVH   continues   to   have   prognostic   significance   in   ESRF,   with   reduced   survival  

noted   amongst   patients   developing   LVH   following   the   commencement   of  

dialysis.149   In  particular,   it   is   a   significant   finding   that   routine  dialysis  does  not  

achieve   stabilisation  of   the  progressive   increase   in   left   ventricular  mass   (LVM),  

indicating  repeated  imaging  assessments  may  be  useful  to  monitor  this  important  

correlate   of   clinical   outcomes   periodically   after   dialysis   commencement.150  

Recent  evidence  suggests  that  more  intensive  haemodialysis  programs  may  also  

play  a  role  in  ameliorating  the  progression  of  LVH  in  dialysis-­‐dependent  ESRF.151  

Left   ventricular   dilatation   and   hypertrophy   are   fundamental   cardiac   adaptive  

responses  to  increases  in  volume  and  pressure  loads.  Increased  LVM  is  frequently  

seen  in  athletes  (e.g.  cyclists,   long  distance  runners),  during  pregnancy  and  as  a  

physiological   adaptation   to   growth   from   infancy   to   adulthood.152   In   all   of   these  

cases,  the  development  of  increased  LVM  is  a  normal  physiological  compensation  

that  is  reversible  with  attenuation  of  the  situational  trigger.    

The  development  of  LVH  in  CKD  appears  to  be  multi-­‐factorial,  but  the  prevalence  

of  LVH  appears  to  be  directly  related  to  the  severity  of  renal  dysfunction.153  As  in  

the   general   population,   LV   dilatation   and   hypertrophy   are   fundamentally  

adaptive   responses   designed   to  maintain   cardiac   output   and   prevent   excessive  

increases   in  myocardial  wall   stress.154   In   particular,   increased   LVM   in   CKD  has  

previously   been   demonstrated   to   be   closely   linked   to   increased   cardiac   stroke  

work   index154   –   a   factor  of   stroke  volume  and   changes   in   left   ventricular  mean  

systolic   pressure   –   and   exacerbated   by   other   factors   such   as   age,   gender,  

anaemia,   oxidative   stress,   renin-­‐angiotensin-­‐aldosterone   system   (RAAS)  

activation.154    

Page 55: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  30  

In   CKD   however,   LVH   is   not   simply   a   factor   of   cardiomyocyte   hypertrophy  

compensating   for   increased   physiological   demand.   Hypertensive   and,   in  

particular,  uraemic  LVH   is   further   characterised  by   significant   expansion  of   the  

supporting  extracellular  architecture  of  interstitial  fibrous  tissue.155  This  increase  

in  extracellular  matrix  leads  to  a  progressive  increase  in  the  relative  proportion  

of   interstitial   myocardial   fibrosis   to   cardiac   myocytes,   causing   progressive  

ventricular  stiffening  and  resultant  abnormalities  of  diastolic  filling.  Additionally,  

in   experimental   models,   this   fibrotic   process   has   been   coupled   to   a   decline   in  

vascular   capillary   density,   increasing   the   distance   required   for   O2   diffusion   to  

contracting   myocytes.156   Thus,   even   in   the   absence   of   obstructive   epicardial  

coronary  artery  disease,  LVH  may  be  associated  with  a  relative  cellular  ischaemia  

that   may   contribute   further   to   ventricular   diastolic   and   systolic   impairment.  

Significantly,   this   substantially   altered  myocardial   architecture,   in   combination  

with   perpetuating   neurohormonal   and   vascular   triggers,   ensures   that   the  

capacity  for  meaningful  regression  of  uraemic  LVH  is  markedly  reduced.  

Given  LVH  has  been  determined   to  be  probably   the  most  powerful   indicator  of  

mortality   and   CV   events   in   patients   with   advanced   CKD157,   numerous   studies  

have  evaluated  the  capacity  for  LVH  regression  utilising  aggressive  management  

of   associated   triggers   –  most   notably   anaemia   and   hypertension.63,158-­‐161   These  

studies  have  demonstrated  mixed  results.  Although  the  development  of  anaemia  

has  been  strongly  associated  with   findings  of  LVH   in  epidemiological   studies  of  

CKD   patients162,   anaemia   correction   alone   appears   not   to   lead   to   significant  

reductions   in   LVM.63,158,159   Such   findings   suggest   that   the   relationship   between  

anaemia  and  development  of  LVH  is  likely  not  directly  causal.158    

Page 56: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  31  

Significantly   however,   in   2001,   Gérard   London’s   prolific   research   group  

published  a  landmark  Study  in  the  Journal  of  the  American  Society  of  Nephrology  

evaluating  whether   a   concerted   interventional   study   specifically   targeting   LVM  

reduction   through   dialysis   optimisation   and   tight   control   of   Hb   and   blood  

pressure   could   impact   on   patient   survival   amongst   153   haemodialysis  

patients.160   Blood   pressure,   trans-­‐thoracic   echocardiography   and   aortic   pulse  

wave   velocity  were   performed   at   baseline   and   then   again   at   follow-­‐up   (54±37  

months).   The   intervention   led   to   significant   reductions   in   systolic   and  diastolic  

blood   pressure   (DBP)   and   cardiac   output   across   the   cohort,   and   a   significant  

associated   reduction   in   overall   LVM   of   approximately   10%   (290±80g   vs.  

264±86g,   p<0.01).160   This   striking   demonstration   of   LVM   regression   through  

targeted   therapeutic   optimisation   was   particularly   significant,   as   Cox  

proportional   hazard   analyses   demonstrated   a   strong,   independent   association  

between   LVM   reduction   and   overall   survival   (after   correction   for   age,   gender,  

diabetes,  history  of  CVD,  and  “all  non-­‐specific  CV  risk  factors”)(Figure  7).160  This  

study  demonstrated  that  a  10%  change  in  LVM  was  associated  with  a  relative  risk  

of   0.78   (0.63-­‐0.92,   p=0.0012)   for   all   cause   mortality,   and   0.72   (0.51-­‐0.90,  

p=0.0016)   for   CV   event-­‐free   survival   across   the   cohort.   This   relative   risk  

reduction  was  particularly  notable  amongst  subjects  with  no  prior  history  of  CVD  

(RR   0.69   [0.52-­‐0.83,   p=0.0182]   for   all   cause   mortality,   and   0.52   [0.23-­‐0.75,  

p=0.0204]  for  CV  event-­‐free  survival).160          

 

Page 57: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  32  

 

Figure  7:   Probability  of  overall  survival  (A)  and  cardiovascular  event-­free  survival  

(B)   amongst   successful   responders   to   the   LVM   reduction   intervention,  

and   non-­responders   (response   defined   by   a   >10%   change   in   LVM)  

(p<0.001   for  both).   (Reproduced   from  London  et  al,   J  Am  Soc  Nephrol,  

2001,  with  permission  from  the  American  Society  of  Nephrology).    

 

Although   oft-­‐debated,   this   Study’s   results   demonstrate   the   potential   for  

improvement   in   patient   prognosis   in   ESRF   associated   with   therapeutic   efforts  

that  reduce  LVM,  and  reflects  the  known  association  of  worsened  prognosis  with  

increases  in  LVM.  These  findings  mirror  Studies  in  the  general  population163-­‐165,  

but   are   particularly   pertinent   in   the   high-­‐risk   CKD   context.   Such   observations  

form  an  important  basis  for  the  Research  Studies  outlined  herein.  

 

Congestive  Cardiac  Failure  

Congestive   cardiac   failure   (CCF)   is   known   to   be   portentous   of   increased  

morbidity  and  mortality  in  the  general  population.166,167  Renal  function  however,  

A NOTE:

This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Page 58: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  33  

is  a  potent  risk  factor  for  death  and  hospitalisation  amongst  patients  with  clinical  

features   of   heart   failure.168   In   CKD,   and   in   ESRF   in   particular,   salt   and   water  

retention   due   to   failing   renal   excretory   capacity   or   insufficient   dialysis   is   often  

indistinguishable  from  ‘true’  heart  failure  due  to  cardiac  dysfunction.  Myocardial  

hypertrophy   and   fibrosis   contributes   substantially   to   diastolic   left   ventricular  

impairment,  and  are  important  contributors  to  the  development  of  heart   failure  

in   CKD.150   Furthermore,   excess   volume   loading,   myocardial   ischaemia   and  

uraemic  cardiomyopathy  are  important  predisposing  factors  in  the  development  

of  left  ventricular  dilatation  and  systolic  myocardial  dysfunction.169  Additionally,  

arterio-­‐venous   fistulae   (AVF)   created   for   the   purpose   of   haemodialysis   place   a  

substantial   increased   volume   load   on   the   left   ventricle   in   ESRF,   necessitating  

corresponding  increases  in  baseline  cardiac  output  to  compensate.170  In  the  stiff,  

hypertrophied   ventricle,   or   the   dilated   ventricle   with   regional   systolic  

impairment,  physiological  reserve  is  rapidly  overwhelmed  by  further  increases  in  

cardiac  demand,  or  acute  insult  to  the  ventricular  myocardium.    

Dialysis   enables   the   periodic   removal   of   excess   extracellular   fluid,   and   the  

maintenance   of   an   ideal,   ‘dry-­‐weight’,   theoretically   preventing   fluid   overload  

contributing   to   CCF   in   ESRF.   Despite   this,   within   6-­‐months   of   commencing  

dialysis,   approximately   one-­‐third   of   patients   will   exhibit   clinical   features   of  

CCF.171  A  further  7%  of  dialysis  patients  will  develop  CCF  each  year,  promoted  by  

systolic   impairment,   anaemia,   hypertension,   hypoalbuminaemia   and   advancing  

age.172  Thus,  although  dialysis  may  provide  an  effective  method  for  the  periodic  

removal   of   excess   fluid   and   solutes   in   ESRF,   advancing   CKD   creates   a   “perfect  

storm”  for  the  development  of  CCF.  It  is  therefore  clear  that  a  substantial  burden  

Page 59: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  34  

of  the  myocardial  injury  predisposing  to  the  development  of  CCF  is  present  prior  

to  dialysis  commencement.    

Heart  failure  is  a  common  cause  of  death  in  CKD  and  ESRF,  and  is  an  independent  

risk   factor   for  mortality   in  affected  patients.173  Dialysis  patients  hospitalised  for  

heart  failure,  features  of  fluid  overload  or  pulmonary  oedema  have  an  abysmal  5-­‐

year  survival  rate  –  12.5%,  20.2%  and  21.3%  respectively.174  Even  lesser  forms  of  

CCF  may  have  a  dramatic   impact  on  survival.  Regardless  of  aetiology,  New  York  

Heart  Association  (NYHA)  classification  of  exertional  dyspnoea  severity  has  been  

proven   to   be   a   potent   measure   of   survival   in   ESRF   (Figure   8).175   Cardiac  

morphological   features  may   further   influence   prognosis   in   this   condition,   with  

increases   in   LVM,   LV   dilatation   and   echocardiographic   evidence   of   LV   systolic  

impairment   adding   incremental   risk   prior   to,   and   following,   the   clinical  

manifestation   of   CCF.173   Therefore,   the   focus   of   preventative   care   in   CKD   and  

ESRF   has   moved   to   the   prevention   of   LVH   and   LV   dilatation   development.  

Therapeutic  options  in  this  regard  remain  limited,  however.    

 

Page 60: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  35  

 

Figure  8:   Kaplan-­Meier   survival   analysis   for   all   cause   mortality   by   NYHA  

Classification  for  1322  patients  with  ESRF.  (Reproduced  from  Postorino  

M,   et   al,   Nephrol   Dial   Transplant.,   2007,   by   permission   of   Oxford  

University  Press).    

 

It  has  been  proposed   that   intermittent  3x/week  haemodialysis  may  complicate,  

rather  than  assist  in,  the  management  of  ESRF  patients  with  CCF.  Haemodialysis-­‐

induced   myocardial   dysfunction   has   recently   received   attention   as   an   under-­‐

appreciated   clinical   phenomenon   that   may   have   longer-­‐term   implications   for  

cardiac  function.176  Specifically,  haemodialysis  has  been  associated  with  an  acute  

reduction   in   global   and   regional   myocardial   blood   flow   utilising   positron  

emission  tomography  (PET)177  and  repetitive  haemodialysis-­‐induced  myocardial  

stunning   may   contribute   to   the   development   of   longer   term   regional   left  

ventricular  dysfunction,  regardless  of  epicardial  coronary  artery  patency.178    

Page 61: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  36  

Peritoneal   dialysis,   rather   than   haemodialysis,   has   been   proposed   as   a   more  

effective   means   of   managing   ESRF   patients   with   CCF,   allowing   ‘continuous’  

ambulatory   dialysis   that   may   more   evenly   manage   fluid   retention   and   the  

associated   neuro-­‐hormonal   activation   in   ESRF   patients   with   impaired   cardiac  

function.179   The   potential   disadvantage   of   this   periodic   cardiac   overload   of  

haemodialysis  has  been  further  supported  by  the  finding  that  clinical  features  of  

inter-­‐dialysis  session  fluid  retention  are  associated  with  a  markedly  elevated  risk  

of  all-­‐cause  and  cardiovascular  death  in  affected  patients.180      

CCF   poses   a   difficult   management   dilemma   in   the   care   of   CKD   patients,   with  

prevention   through   aggressive   risk   reduction   appearing   to   offer   the   greatest  

potential   for   therapeutic   success.     Further   studies   to   identify   contributors   to  

cardiac  dysfunction   in  CKD  and  potential  disease-­‐specific   therapeutic  options   in  

this  cohort  are  urgently  needed.    

 

Atrial  Disease  in  CKD  

Atrial   fibrillation  (AF)   is   the  most  common  sustained  arrhythmia   in   the  general  

population  and  is  known  to  be  associated  with  an  increased  risk  of  morbidity  and  

mortality.181   Recent   studies   have   confirmed   AF   as   a   significant   negative  

prognostic   factor   in   ESRF.182-­‐184   The   prevalence   of   AF   is   increased   in   ESRF  

compared   to   the   general   community,   and   contributes   disproportionately   to  

morbidity   and   mortality   in   affected   patients.183,185   Although   haemodialysis   in  

particular   is   a   known   risk   factor   for   the   development   of   AF182,186,   it   remains  

unclear  whether  declining  renal   function  contributes   independently   to   this  risk,  

or   whether   the   high   prevalence   of   AF   risk   factors   (e.g.   advancing   age,  

Page 62: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  37  

hypertension,   CCF,   LVH,   coronary   artery   disease   and   valvular   heart   disease)  

amongst  CKD  patients  is  responsible  for  the  high  prevalence  of  this  condition  in  

CKD.    

It  is  increasingly  appreciated  that  AF  initiation  and  perpetuation  relies  upon  the  

interaction   of   arrhythmia   triggers   and   supporting   atrial   substrate.187,188  

Specifically,   ectopic   electrical   activity   within   the   pulmonary   veins   commonly  

provides   the   initial   trigger,   with   left   (and   right)   atrial   structural   and   electrical  

remodelling  providing  the  necessary  substrate  for  longer-­‐term  persistence  of  the  

arrhythmia.185,188    

Left   atrial   (LA)   volume   is   commonly   increased   in   ESRF,   in   comparison   to   the  

general   community.189   Factors   such   as   hypertension,  myocardial   ischaemia   and  

anaemia   contribute   substantially   to   the   development   of   LVH   and   diastolic   LV  

impairment   in   CKD   patients,   resulting   in   a   chronic   increase   in   left   ventricular  

end-­‐diastolic  pressure  (LVEDP).  This  increased  LVEDP  leads  to  chronic  LA  stretch  

and  compensatory  LA  (and  often  pulmonary  vein)  dilatation.190-­‐192  Additionally,  

LA   dilatation   is   accompanied   by   the   development   of   patchy   interstitial   fibrosis  

within   the   LA   myocardium,   delaying   local   conduction   velocities   and   providing  

rich  substrate  for  the  perpetuation  of  multiple  re-­‐entrant  circuits  and  subsequent  

AF.187,188,193    

CKD  is  known  to  be  associated  with  an  increase  in  cardiac  volume  and  pressure  

load,   contributing   to   atrial,   as   well   as   ventricular,   sequelae.   It   is   unsurprising  

therefore  that  LA  and  right  atrial  (RA)  dilatation  are  common  findings  in  CKD  and  

ESRF.189   LA   dilatation,   in   particular,   has   been   associated   with   increased  

serological   evidence   of   inflammation,   and   greater   burden   of   atherosclerosis   at  

coronary  angiography.194   Importantly,  atrial  dilatation  has  been   identified  as  an  

Page 63: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  38  

independent  risk  factor  for  the  development  of  AF  in  ESRF  and  may  contribute  to  

the  poor  CV  prognosis   of   patients  with  CKD.183,195  Recent   evidence   confirms  an  

association  between  LA  dilatation  and  increased  mortality  in  ESRF  patients  with  

LVH.196   Certainly,   there   is   evidence   supporting   the   prognostic   benefits   of   LVH  

regression  in  the  general  community197  and  such  regression  has  been  associated  

with  reductions   in  risks  relating   to  AF.198  As  mentioned,   it  appears   that  at   least  

partial  regression  of  LVH  can  be  achieved  in  ESRF  with  aggressive  targeting  of  the  

relevant   risk   factors,   such   as   HT,   anaemia   and   markers   of   calcium/phosphate  

balance.199   It   remains   to   be   seen   whether   the   deleterious   health   outcomes  

associated   with   atrial   dilatation   can   be   reversed   in   CKD   and   ESRF,   however  

regression   of   LVH   and   the   associated   chronic   elevation   of   LVEDP  may   play   an  

important  role  in  this  relationship.    

 

Valvular  Disease  in  CKD  

Valvular  calcification  is  common  in  CKD.200  Valvular  sclerosis  and  calcification  of  

the   aortic   valve   (in   particular)   is   common   in   the   general   population   with  

advancing  age,  affecting  20-­‐30%  of  the  population  over  the  age  of  65  years,  with  

clinically  significant  aortic  stenosis  in  2%.201-­‐203  In  ESRF,  aortic  valve  calcification  

occurs  in  28-­‐55%  of  patients,  but  occurs  10-­‐20  years  earlier  than  in  the  general  

population.204-­‐206   Mitral   annular   and   valvular   calcification   is   also   common   in  

CKD207,208   and  has  been   linked   to   the  presence  of   coronary   atherosclerosis   and  

reduced   survival   in   affected   patients209,210,   although   not   all   studies   of   this  

association   have   been   confirmatory.211   In   comparison   to   aortic   valvular  

calcification   however,   mitral   calcification   is   less   commonly   associated   with  

Page 64: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  39  

clinically   relevant   valvular  dysfunction   requiring   surgical   correction.204,206,212,213  

Mitral  regurgitation  (rather  than  mitral  stenosis)  is  the  more  common  outcome  of  

mitral   valvular   and   para-­‐valvular   calcification,   with   mitral   incompetence  

contributing   further   to   left   ventricular   volume   loading,   and   advancing   the  

development  of  CCF  in  this  population.206,212    

Although  patient  age  remains  a  strong  risk  factor  for  the  development  of  valvular  

calcification   in   advancing   CKD213,214,   progression   to   clinically   significant   aortic  

stenosis  occurs  more  rapidly  in  ESRF,  potentially  evolving  from  mild,  subclinical  

disease   to   haemodynamically   compromising   valvular   dysfunction  within   only   a  

few   years.206,214,215   In   fact,   it   has   been   demonstrated   that   the   mean   annual  

decrease  in  aortic  valve  area  amongst  ESRF  patients  with  calcific  aortic  stenosis  is  

more  than  four-­‐fold  greater  than  observed  in  non-­‐uraemic  patients  (0.23cm2/yr  

vs.  0.05cm2/yr).200,214    

Prevention  remains  the  mainstay  of  therapy.  Although  advancing  age  is  a  potent  

contributor  to  valvular  calcification  in  CKD,  hypertension,  vitamin  D3  levels  and  

calcium  /  phosphate  product  are  modifiable  risk  factors  for  this  condition.204,214-­‐

216  Recent  evidence  supports  the  use  of  aggressive  phosphate  restriction  and  the  

use   of   the   binding   agents   such   as   sevelamer   in   the   attenuation   of   valvular  

calcification   in   ESRF.78,217   Furthermore,   although   often   difficult   to   control,   the  

high-­‐output   state   of   renal   failure   is   believed   to   contribute   substantially   to  

valvular  deterioration,  due   to  high   trans-­‐valvular   flow  rates,   and   the  associated  

promotion  of  injury-­‐related  valvular  inflammation  and  calcification.200,218  

Following  the  development  of  severe  calcific  aortic  stenosis,  conservative  medical  

management  is  associated  with  high  mortality  rates.  Due  to  the  rapid  progression  

of  aortic  stenosis  in  this  condition,  more  frequent  echocardiographic  evaluation  is  

Page 65: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  40  

warranted   in   ESRF   patients   than   is   usual   in   the   general   population.  

Haemodialysis   may   also   be   problematic   in   this   condition,   particularly   where  

significant  fluid  removal  is  necessary,  as  the  combination  of  aortic  stenosis  and  a  

non-­‐compliant,  hypertrophied  LV  may  precipitate  an  acute   reduction   in   cardiac  

output   with   aggressive   ultrafiltration.200   Prompt   and   aggressive   treatment   of  

arrhythmias   such   as   AF,   is   also   recommended   to   maintain   cardiac   output,  

particularly   in   the   context   of   compensatory   LVH   and   associated   diastolic  

dysfunction   necessitating   preservation   of   the   atrial   contribution   to   LV   filling.  

Additionally,   ESRF   patients   with   valvular   disease   are   at   an   increased   risk   for  

endocarditis,   and   appropriate   prophylactic   measures   should   be   considered  

where  clinically  appropriate.200          

Surgical  aortic  valve  replacement  is  associated  with  higher  procedural  and  post-­‐

procedural   mortality   in   ESRF   than   in   the   general   population,   but   is   similarly  

associated   with   improvement   in   overall   survival   in   symptomatic   stenotic  

disease.206,219,220   Mitral   valve   replacement   is   less   common   than   aortic   valve  

surgery   in   ESRF221,222,   and   some   groups   promote   mitral   valvular   repair   in  

congestive   uraemic   cardiomyopathy,   despite   the   known   risks   of   accelerated  

calcification   and   delayed   repair   failure   in   ESRF.223   Surgical   practice   guidelines  

have   historically   preferred   the   use   of   mechanical   prosthetic   valves   over   bio-­‐

prostheses   in   ESRF,   due   to   the   greater   presumed   risk   of   bio-­‐prosthetic  

calcification   and   recurrent   valvular   dysfunction   with   biological   xenografts.224  

Retrospective   research   in   this   area   disputes   this   contention   however,   and  

promotes   the   use   of   bio-­‐prostheses   in   ESRF,   due   to   the   reduced   risk   of  

haemorrhage   from   anticoagulation,   and   the   similar  medium-­‐term   post-­‐surgical  

prognosis.221,222,225,226   In   the   absence   of   prospective   studies,   and   with   large  

Page 66: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  41  

observational   studies   demonstrating   high   mortality   rates   for   ESRF   patients  

following   valve   replacement   regardless   of   prosthesis   type,   current   guidelines  

suggest  bioprosthetic  valves  may  be  appropriate  in  many  patients.227  

Progressive   valvular   calcification   and   dysfunction   are   highly   prevalent   in   CKD  

and   ESRF   and   represent   a   unique   challenge   to   physicians   treating   affected  

patients.   In   the   context   of   an   aging  Australian   population,   and   the   provision   of  

dialysis  to  increasingly  elderly  patients,  valvular  calcification  and  dysfunction  will  

inevitably  become  more  common  in  the  management  of  Australian  CKD  patients.  

 

Endothelial  Dysfunction  in  CKD  

It  is  widely  acknowledged  that  endothelial  dysfunction  is  an  important  initiating  

factor   in   the   development   of   atherosclerosis.228   Endothelial   dysfunction  

represents   a   failure   of   the  balance  between   endothelial   injury   and   the   capacity  

for   repair   and   involves   the   fundamental   alteration   of   vaso-­‐protective  

mechanisms   into   pro-­‐atherosclerotic   tendencies,   with   the   hallmark   change   of  

impaired   NO   bioavailability.   Dysfunctional   endothelium   is   characterised   by   a  

reduction  in  vaso-­‐dilatory  molecules  (most  notably  NO),  and  an  increase  in  vaso-­‐

constrictive  factors.229  This  imbalance  is  largely  quantified  by  dynamic  changes  in  

conduit   vessel   size,   mediated   by   these   endothelium-­‐derived   vasoactive  

molecules,  described  as   ‘endothelium-­‐dependent’  vasodilatation.230  Additionally,  

dysfunctional  endothelium  becomes  pro-­‐coagulant  (promoting  clinically  relevant  

athero-­‐thrombotic   events)   and   pro-­‐inflammatory   (releasing   cytokines   that   are  

chemo-­‐attractant   for   chronic   inflammatory   cells).231   As   previously   mentioned,  

the  development  of  this  local  pro-­‐inflammatory  milieu  leads  to  local  tissue  injury,  

Page 67: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  42  

fibrotic   /   calcific   repair   and   the   development   of   atherosclerotic   plaques.   Thus,  

endothelial   dysfunction   provides   a   unique   marker   of   the   systemic   tendency  

towards  the  development  of  future,  clinically  significant  CV  events.232    

 

Pathobiology  of  Endothelial  Dysfunction  in  CKD  

Numerous   vasodilatory   and   anti-­‐aggregatory   factors   are   released   by   the   intact  

endothelium.   The   principal   smooth   muscle   cell   relaxing   factors   are   NO,  

prostacyclin  (PGI2)  and  endothelial  derived  hyperpolarising  factor  (EDHF)  which  

also  exert  anti-­‐aggregatory  effects  on   local  platelets.233  Endothelin-­‐1  (ET-­‐1)  and  

thromboxane   (TXA2)   are   prominent   examples   of   endothelial-­‐derived   vaso-­‐

constrictive   factors   that   have   been   implicated   in   diseases   of   the   vascular  

endothelium.234   In   the   evaluation   of   endothelial   function,   substantial   work   has  

focussed   on  NO   as   a   critical   factor,   due   to   the   experimental   capacity   for  NO   to  

protect   against   atherosclerosis,   and   for  NO   inhibition   to   promote   experimental  

atheroma   formation.235   Clinically,   endothelial   dysfunction   is   almost   universally  

characterised  by  reduced  NO  bioavailability,  and  NO  bioavailability   is  known  to  

be  reduced  in  CKD.235    

NO  is  formed  in  vivo  by  transformation  of  the  amino  acid  L-­‐arginine  through  the  

action   of   endothelial   NO-­‐synthase   (eNOS).   Once   produced,  NO   is   susceptible   to  

further   transformation   by   local   oxygen   free   radicals   in   situations   of   high  

oxidative  stress  (such  as  CKD),  with  resultant  loss  of  its  vaso-­‐protective  activity.  

Specifically,  superoxide  anion  (O2-­‐)  scavenges  NO,  yielding  peroxynitrite  (ONOO-­‐),  

which  may  be  further  transformed  to  form  nitrate  and  the  highly  reactive  OH•  -­‐  a  

potent  contributor  to  local  tissue  injury.233,236,237    

Page 68: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  43  

In  addition  to   increased  NO  degradation,  NO  activity  may  be  further  affected  by  

reduced   production   in   CKD.238,239   eNOS   may   be   inhibited   by   a   variety   of  

circulating   factors,  many  of  which  accumulate  with  declining  renal   function  and  

have   been   proposed   as   pathogenic   in   CKD.     Principal   among   the   factors  

implicated   in   the   endothelial   dysfunction   of   uraemia   is   asymmetrical  

dimethylarginine   (ADMA)   –   a   member   of   a   family   of   guanidine   compounds  

known   to   be   present   in   uraemic   serum   in   sufficient   concentrations   to   inhibit  

eNOS.240   The   relationship   between   ADMA   and   the   promotion   of   endothelial  

dysfunction   and   CVD   in   CKD  has   been   extensively   investigated   since   the   initial  

proposal  of  causation  in  1992.241,242  ADMA  has  been  associated  with  impairment  

in   measures   of   endothelial   function243,   and   has   been   found   to   be   a   strong  

predictor   of   CV   events   and   death   in   patients   with   early   CKD,   ESRF   and   in   the  

general   population.241,244,245   Furthermore,   as   a   small,   water-­‐soluble   molecule,  

ADMA  is  freely  removed  with  dialysis246,  and  acute  reduction  in  ADMA  following  

dialysis  have  been  associated  with  acute  improvements  in  endothelial  function247,  

although  these  findings  are  contentious.248-­‐251    

Thus,   the   combined   effects   of   increased   oxidative   stress   within   the   pro-­‐

inflammatory  milieu  of  CKD,  and  the  endothelium-­‐toxic  effects  of  uraemic  serum,  

contribute   to   the   inhibition   of   endothelial   vaso-­‐protective   properties   and   the  

promotion   of   the   clinical   phenotype   of   endothelial   dysfunction   of   CKD.   This  

phenotype   is   believed   to   be   predominantly   responsible   for   the   promotion   of  

atherosclerosis   in   advancing   CKD241,252   –   a   process   known   to   be   profoundly  

accelerated  in  this  condition.253  

 

Page 69: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  44  

Assessment  of  Endothelial  Function  

In   the   research   and   clinical   settings,   endothelial   function   may   be   measured  

utilising   a   variety   of   different  methodologies,   and   in   a   variety   of   vascular  beds.  

Numerous   circulating   biomarkers   have   been   associated   with   endothelial  

dysfunction,  both  in  the  general  community  and  in  CKD.254-­‐256  Evaluation  of  flow-­‐

mediated   arterial   dilatation   (FMD)   is   the  most   commonly   utilised   approach   for  

the   evaluation   of   regional   endothelial   function.   This   method   relies   upon   the  

normal   endothelial   cell   response   to   increased   mechanical   shear-­‐stress   –   the  

release   of   endothelium-­‐derived   factors   responsible   for   vascular   smooth  muscle  

cell   relaxation   and   subsequent   vaso-­‐dilatation.254   Utilising   this   principle,   a  

standardised   method   for   evaluating   conduit   artery   dilatation   in   response   to  

increased   flow   was   developed.257   Evaluating   the   calibre   of   the   brachial   artery  

(most  commonly),  FMD   is  measured   in  response   to  an   increase   in  arterial   flow,  

typically  induced  by  a  period  of  distal  circulatory  bed  ischaemia  (e.g.  forearm).254  

Ultrasound  methodologies  are  most  commonly  used,  but  suffer  from  the  potential  

for  investigator-­‐initiated  inaccuracies  –  particularly  in  inexperienced  hands.254,258  

Newer   imaging   methodologies,   such   as   computed   tomography   (CT)   and  

cardiovascular   magnetic   resonance   imaging   (CMR),   are   increasingly   being  

utilised   to   enhance   diagnostic   accuracy   and   reproducibility,   and   potentially  

contribute  additional  functionality  in  this  field  (see  below).259,260  

 

Endothelial  Dysfunction  and  Cardiovascular  Risk  in  CKD  

FMD  is  mediated,  in  part,  by  the  release  of  NO  from  endothelial  cells  –  a  response  

that   is   reduced   in   patients   with   CV   risk   factors   or   clinically   significant  

Page 70: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  45  

atherosclerosis   (peripheral,   cerebral   and   coronary).254,257,261   Evaluation   of  

endothelial  dysfunction  in  the  forearm  (i.e.  peripheral)  is  used  as  a  surrogate  for  

endothelial   function   in   clinically   relevant   arterial   systems   such   as   the   coronary  

circulation   and   hence   has   been   used   to   provide   a   non-­‐invasive   method   for  

predicting   the  presence  of   coronary  artery  atherosclerosis,  and   future  coronary  

events   in   at-­‐risk   patients.262-­‐266   Additionally,   improvements   in   peripheral  

endothelial   function   have   been   associated   with   therapeutic   interventions   that  

improve  cardiovascular  risk.263,264    

Almost  all  traditional  and  unconventional  risk  factors  for  atherosclerosis  and  CV  

morbidity   and   mortality   have   been   found   to   be   associated   with   endothelial  

dysfunction.230   The   mechanisms   by   which   smoking,   hypertension,   diabetes  

mellitus  and  hypercholesterolaemia  contribute  to  the  development  of  endothelial  

dysfunction   are   complex   and   heterogenous.267   CKD   provides   a   particularly  

complex   precipitant   for   endothelial   dysfunction,   resulting   from   multiple  

circulating  factors  injurious  to  the  endothelium  and  promotional  of  the  necessary  

pro-­‐inflammatory   setting   for   endothelial   dysfunction   and   accelerated  

atherosclerosis.256   Endothelial   dysfunction   has   been   identified   in   pre-­‐dialysis  

CKD  patients,  haemodialysis  and  peritoneal  dialysis  patients  and  following  renal  

transplantation   and   has   similarly   been   implicated   in   the   promotion   of  

cardiovascular   structural   and   functional   alterations   promoting   CVD.268  Notably,  

impairment   in   forearm   endothelial   function   has   been   shown   to   be   associated  

with  an  increase  in  all-­‐cause  mortality  in  ESRF.265    

 

Page 71: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  46  

Coronary  Artery  Disease  in  CKD  

Coronary   artery  disease   (CAD)   is   a   leading   cause  of  morbidity   and  mortality   in  

CKD  patients.20,141  As  with  the  systemic  circulation,  the  coronary  arteries  may  be  

affected   by   a   wide   range   of   pathological   processes,   including   endothelial  

dysfunction,   intimal   /   medial   calcification,   atherosclerosis,   and   athero-­‐

thrombosis   precipitating   acute   coronary   syndrome   (ACS).   Disease   within   the  

coronary  arteries,  however,  plays  a  significantly  greater  role  in  CV  morbidity  and  

mortality,  and  hence  evaluating  and  understanding  the  patho-­‐physiology  of  CAD  

is   of   critical   importance   in   attempts   to   ameliorate   the   risks   of   CVD   in   CKD  

patients.    

 

Coronary  Endothelial  Function  

The   coronary   endothelium   is   responsible   for   the   maintenance   of   blood   flow  

within   the  coronary  circulation,  and   the  regulation  of   inflammation,   thrombosis  

and  platelet  activation  in  this  territory.254  Imbalance  between  local  vaso-­‐dilatory,  

anti-­‐inflammatory   substances   (such   as   NO)   and   vaso-­‐constrictive,   pro-­‐

inflammatory  mediators  (such  as  ET-­‐1)  provides  the  basis  for  the  development  of  

coronary   endothelial   dysfunction   and   clinically   significant   CAD.   Significantly,  

coronary   endothelial   dysfunction   has   been   demonstrated   to   be   predictive   of  

increased  risk  for  subsequent  cardiac  events,  even  in  the  presence  of  only  minor  

coronary  atherosclerosis.262,269    

As  previously  mentioned,  peripheral  measures  of  endothelial  function  (i.e.  FMD)  

have   been   associated   with   invasively   assessed   coronary   endothelial   function,  

although  the  absolute  correlation  was  found  to  be  modest.270  Peripheral  arterial  

Page 72: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  47  

applanation   tonometry   has   also   been   utilised   to   estimate   coronary   vasomotor  

function,   though   such   indirect  measures   remain   surrogates   for   actual   coronary  

endothelial  function.254    

“Gold   standard”   evaluation  of   coronary   artery   endothelial   function   involves   the  

introduction  of  a  Doppler-­‐based  coronary  flow  wire  into  the  coronary  circulation,  

and  evaluating  coronary  flow  and  diameter  characteristics  in  response  to  a  range  

of  stimuli  –  both  direct  pharmacological  agents  and  remote  (e.g.  cold  pressor271)  

stimuli.   Classically,   acetylcholine   (Ach)   is   introduced   into   the   coronary   artery  

utilising   an   intra-­‐coronary   infusion   catheter   during   invasive   coronary  

angiography  (ICA).  The  coronary  flow  wire  is  repositioned  within  the  proximal  to  

mid-­‐portion   of   the   coronary   artery   avoiding   nearby   bifurcations,   until   a   stable  

Doppler   signal   is   achieved.  Coronary  artery  diameter   (by  quantitative   coronary  

angiography   [QCA],   or  more   recently   by   intravascular   ultrasound   [IVUS]272),   is  

assessed  5mm  distal  to  the  tip  of  the  coronary  flow  wire.  Alterations  in  coronary  

blood   flow  (CBF)  and  coronary  vascular   resistance  are  observed   in   response   to  

infusion  of  previously  validated  doses  of  intra-­‐coronary  Ach.273,274    

The  response  to  Ach  provides  a  marker  for  the  local  availability  of  NO,  and  hence  

can   evaluate   both   macrovascular   and   microvascular   coronary   endothelium-­‐

dependent  vasodilator  function.254  In  the  presence  of  dysfunctional  endothelium,  

the   normal   vaso-­‐dilatory   stimulus   of   Ach   can   become   vaso-­‐constrictive,   with  

subsequent   changes   in  macrovascular   and  microvascular   function  measured  by  

changes   in   coronary   luminal   diameter   and   CBF   respectively.   Endotheliium-­‐

independent   microvascular   coronary   vasomotor   function   is   also   assessed  

utilising   the   administration   of   intracoronary   adenosine   boluses   (18-­‐48µg)   to  

Page 73: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  48  

achieve   maximal   hyperaemia,   with   endothelium-­‐independent   macrovascular  

function  measured  in  response  to  intra-­‐coronary  glyceryl-­‐trinitrate  (GTN).254    

Coronary   blood   flow   is   calculated   from   the   widely   used   formula:275  

 

[π   x   0.125   x   (Coronary   Diameter)2   x   (Coronary   Blood   Flow   APV)]   x   60    

 

where   Diameter   is   measured   in   cm,   Average   Peak   Velocity   (APV)   of   coronary  

blood  flow  is  measured  in  cm/sec  and  CBF  is  measured  in  mL/min.  .  

A  normal  response  is  considered  to  have  occurred  if  endothelial-­‐dependent  CBF  

increases  by  more  than  50%  in  response  to  Ach,  and  the  coronary   flow  reserve  

(CFR)   –   the   ratio   of   maximal   to   baseline   CBF   -­‐   is   greater   than   2.5   following  

adenosine.276  

Remarkably   little  work   has   focussed   on   the   evaluation   of   coronary   endothelial  

function  in  CKD.  Although  the  invasive  nature  of  the  procedure  has  inherent  risks,  

it   is   likely   that   the  potential  nephrotoxicity  of   angiographic   contrast   agents  has  

impeded  assessment  of  pre-­‐dialysis  patients  in  particular.  It  is  widely  presumed  

that  the  extensive  literature  demonstrating  peripheral  endothelial  dysfunction  in  

CKD   and   ESRF   applies   similarly   to   the   coronary   circulation.   A   single   study  

evaluating   non-­‐endothelium-­‐dependent   coronary   endothelial   function   amongst  

diabetic   patients   (a   cohort   known   to   have   a   high   prevalence   of   coronary  

endothelial   dysfunction)   with   ESRF   but   angiographically   normal   coronary  

arteries   was   published   in   the   American   Heart   Journal   in   2004.277   This   study  

compared   invasive  coronary  endothelial   function   indices   in  11  diabetic  patients  

with  preserved  renal  function  (serum  creatinine  <  1.0mg/dL  [88µmol/L])  and  no  

evidence  of  microvascular  complications  (i.e.  retinopathy  or  neuropathy),  with  21  

Page 74: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  49  

patients   with   ESRF   from   diabetic   nephropathy.   A   control   group   of   32   subjects  

without  diabetes  or   renal   impairment  was  also  evaluated.  CFR  was   found   to  be  

impaired  (defined  in  this  Study  as  CFR<2.0)  in  9%  of  normal  subjects  and  18%  of  

diabetic,   non-­‐ESRF   patients,   compared   to   57%   of   patients   in   the   diabetic  

nephropathy   cohort   (p<0.001).   Interestingly,   APV   increased   in   all   cohorts   in  

response   to  maximal   hyperaemia   (with   intravenous   adenosine   140µg/kg/min),  

and  peak  APV  was  not  significantly  different  between  the  3  groups.277  The  reason  

for  the  reduced  CFR  amongst  the  ESRF  cohort  (1.6±0.5  vs.  2.7±0.7  for  non-­‐ESRF  

diabetics  vs.  2.8±0.8  for  normal  controls,  p<0.001  for  ESRF  vs.  other  cohorts)  was  

an  elevated  basal  APV  in  67%  of  abnormal  CFR  cases.277  That  is,  ESRF  appeared  

to  be  associated  with  an  elevation  in  basal  coronary  blood  flow  velocity,  resulting  

in   a   blunted   response   to   hyperaemic   stimulus   (adenosine),   rather   than   the  

presence   (solely)   of   microvascular   disease   which   might   be   expected   to   cause  

blunting  of  the  hyperaemic  response,  rather  than  elevation  of  baseline  APV.    

This  finding  has  recently  been  affirmed  non-­‐invasively  utilising  PET.278  Published  

in   2009,   this   Study   evaluated   basal   and   hyperaemic   (post-­‐dipyridamole)  

myocardial   perfusion   in   twenty-­‐two   patients   with   moderate   to   severe   CKD  

(divided  into  three  cohorts  according  to  eGFR),  and  compared  these  results  to  ten  

healthy  control  subjects  with  preserved  renal  function.  Although  this  Study  found  

preserved   CFR   amongst   the   CKD   patients   (as   distinct   from   the   previously  

discussed  invasive  study),  basal  myocardial  blood  flow  was  significantly  elevated  

amongst   the   CKD   patients   vs.   controls   (p<0.001),   with   a   negative   correlation  

between   eGFR   and   myocardial   blood   flow   seen   (Spearman   correlation  

coefficient=0.63,   p=0.0001).278   An   ultrasound-­‐based   FMD   protocol   was   also  

undertaken   in   this   Study,   with   FMD   (%   change   in   brachial   artery   diameter)  

Page 75: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  50  

significantly   reduced   amongst   the   CKD   cohorts   compared   to   controls   (p<0.03).  

The   authors   conclude   that   “coronary   and   peripheral   vascular   function   are  

disturbed   by   different   mechanisms   in   patients   with   CKD”,   although   direct  

comparison  of  the  two  methodologies  utilised  in  this  Study  is  questionable.  FMD  

is  a  measure  of  endothelium-­‐dependent  vasodilatation  in  response  to  an  increase  

in  endothelial  shear-­‐stress  (flow)  resulting  from  induction  of  distal  vascular  bed  

ischaemia.257,279  This  evaluation  of  large-­‐vessel  endothelial-­‐dependent  function  in  

the   brachial   artery   is   distinct   from   the   evaluation   of   coronary   endothelium-­‐

independent,   microvascular   function   evaluated   following   the   administration   of  

dipyridamole   in  this  study.  Although  previous  studies  have  demonstrated  a   link  

between   peripheral   microvascular   function   (as   assessed   by   ‘gold-­‐standard’  

venous   occlusion   plethysmography)   and   peripheral   arterial   FMD   responses280,  

the  two  are  not  equivalent  and  comparison  of  coronary  microvascular  responses  

to   dipyridamole   with   FMD   as   a   surrogate   marker   of   peripheral   microvascular  

function  might  perhaps  be  considered  disingenuous.281    

A   further   Study   evaluated   invasive   CFR   amongst   124   patients   with  

GFR<60mL/min/1.73m2,   compared   to   482   control   subjects   with  

GFR>60mL/min/1.73m2,   finding   reduced  GFR   to  be  predictive   of   impaired  CFR  

by   univariate,   but   not   multivariate,   analysis.282   Although   the   mean   CFR   was  

reduced  in  subjects  with  mildly  impaired  renal  function  (compared  to  controls),  

only  increasing  age,  female  gender,  rising  BMI  and  co-­‐existent  hypertension  were  

significantly   associated  with   impairment   of   CFR   by  multivariate   analysis.282   No  

comment  was  made  on  differences  in  basal  APV  values  between  the  two  cohorts.  

Although   the   non-­‐invasive   Study,   in   particular,   has   limitations,   these   three  

studies   highlight   abnormalities   in   coronary   microvascular   homeostasis   in  

Page 76: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  51  

patients   with   declining   renal   function.   Although   uraemia   per   se   may   directly  

influence   microvascular   function,   coexistent   factors   such   as   diabetes   mellitus,  

hypertension  and  LVH  may  play  a  significant  role  in  the  genesis  of  elevated  basal  

CBF,   and   impairment   in   hyperaemic   reserve   in   CKD   patients.   The   metabolic  

syndrome  and  hypertension  (±  associated  myocardial  diastolic  dysfunction)  have  

been  implicated  in  the  genesis  of  CFR  impairment  in  the  general  population.283-­‐288  

Numerous  studies  identifying  impairment  in  coronary  microvascular  function  in  

LVH  have  also  been  published289-­‐296,  however  only  a   few  have  demonstrated  an  

increase  in  basal  CBF.291,293  Furthermore,  LVM  alone  may  not  be  responsible  for  

this   impairment   in   CFR   on   a   background   of   increased   basal   CBF,   as   previously  

demonstrated  by  the  differing  CFR  between  athletes  with  compensatory  LVH,  and  

hypertensive  patients  with  secondary  LVH.292    

Numerous   other   factors   associated   with   CKD   have   also   been   associated   with  

coronary  microvascular  dysfunction.  Mitral  annular  and  aortic  valve  calcification  

–  common  findings   in  CKD  -­‐  have  also  been  associated  with   findings  of  reduced  

CFR   in   the   general   population.297,298   Furthermore,   systemic   inflammation   in  

patients   with   systemic   lupus   erythematosis   and   rheumatoid   arthritis   has  

previously  been   identified  as   a  potential   contributor   to   coronary  microvascular  

dysfunction299,  and  this  may  have  implications  for  the  microvascular  dysfunction  

of  the  pro-­‐inflammatory  uraemic  state  of  CKD  also.    

Anaemia,   expansion   of   the   extracellular   fluid   compartment   and   iatrogenic  

arterio-­‐venous   fistulae   (AVF)   for   the   performance   of   haemodialysis   may   all  

contribute  substantially  to  the  increase  in  systemic  blood-­‐flow  of  CKD  and  ESRF  

patients.  Combined  with  compensatory  LVH  and  increased  myocardial  metabolic  

demand   caused   by   elevated   systemic   blood   pressure,   systolic   myocardial   wall  

Page 77: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  52  

stress,  diastolic  LV  pressure  and  myocardial  mass,  an  increase  in  basal  coronary  

blood  flow  in  this  condition  appears  likely.295  Uraemic  microvascular  dysfunction  

and   obstructive   coronary   microvascular   disease   also   appear   potential  

contributors   to   the   blunted   coronary   microvascular   response   to   dipyridamole  

and  adenosine  in  studies  to  date.  Thus,  in  combination  with  an  increase  in  basal  

oxygen   demand,   CKD   and   ESRF   patients   likely   suffer   from   an   inability   to  

sufficiently   increase   myocardial   oxygen   delivery   during   periods   of   increased  

metabolic   demand   (e.g.   exercise   /   obstructive   coronary   disease),   potentially  

contributing   substantially   to   the   elevated   rate   of   symptomatic   CAD   in   this  

condition.  

Remarkably,  endothelial-­‐dependent  coronary  vasomotor  function  appears  not  to  

have  been   evaluated   in   this   condition.  This   observation   forms   the  basis   for   the  

invasive  component  of  this  PhD.  

 

Coronary  Atherosclerosis  

CKD   is  associated  with  altered  coronary  plaque  composition,   including  a  higher  

calcific   burden   and   more   diffuse   atherosclerotic   disease.253,300-­‐302   These  

differences   in   plaque  morphology  may   play   a   significant   role   in   the   genesis   of  

clinically   significant   cardiac   events.   In   particular,   plaque   calcification   is   more  

extensive   within   coronary   plaques   of   uraemic   patients   than   amongst   CAD  

patients   with   preserved   renal   function.204,302   Strikingly,   this   calcification   of  

coronary  plaques   is  evident   in  ESRF  patients   from  a  young  age  –  much  younger  

than   is   usual   within   the   general   population.303   Furthermore,   the   process   of  

atherosclerotic   plaque   calcification   appears   to   increase   progressively   with  

Page 78: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  53  

declining   renal   function,   greatest   amongst   ESRF   patients   requiring   dialysis.204  

This   calcification   has   been   demonstrated   to   be   almost   entirely   calcium  

phosphate,   rather   than   calcium  oxalate   or   other   conjugates.302   This   finding   has  

particular  relevance  in  the  context  of  the  altered  calcium  /  phosphate  handling  of  

advancing  CKD,  and  the  control  of  calcium  x  phosphate  product  in  ESRF  patients  

in  particular,  although  this  link  remains  contentious.304    

Another  striking  finding  regarding  CAD  in  the  context  of  declining  renal  function  

is  the  propensity  for  progression,  once  initiated.305  Not  only  is  the  prevalence  of  

coronary   atherosclerotic   plaques   amongst   autopsy   and   angiographic   studies   of  

ESRF   patients   high301,306,307   –   approximately   30-­‐40%   of   most   series   –   but   the  

presence   and   severity   of   coronary   atherosclerosis   plays   a   significant   role   in  

patient  survival,  particularly  following  dialysis  commencement.308,309    

The   traditional   assessment   of   CV   disease   severity   based   on   symptoms   and  

evidence  of  end-­‐organ  damage  may  not  adequately  represent  the  true  risk  of  CVD  

in  CKD  patients.256  As  previously  stated,   the   inverse  relationship  between  renal  

function   and   CVD-­‐risk   implicates   disease-­‐specific   mechanisms   in   the  

development  of   the  accelerated  atherosclerosis,   arteriosclerosis  and  myocardial  

disease   seen   of   CKD.143,310   Not   only   is   the   burden   of   coronary   atherosclerotic  

disease   greater,   but   the   propensity   for   clinically   relevant   coronary   athero-­‐

thrombotic  events  is  increased  further  by  the  uraemic  milieu.    

Over   the   past   three   decades,   enormous   advances   have   been   made   in   the  

treatment   of   acute   coronary   syndrome   (ACS).   Invasive   revascularisation   and  

adjunctive  pharmacotherapy,  in  addition  to  standard  anti-­‐ischaemic  therapy,  has  

led   to   marked   reductions   in   CV   mortality   in   the   general   population.19  

Unfortunately,   the   prognosis   for   ESRF   patients   following   ACS   remains  

Page 79: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  54  

unacceptably   high   however,   and   has   not   appreciably   improved   over   the   same  

time   period.311   Following   acute  myocardial   infarction   (MI),   patients   with   ESRF  

have  been  reported   to  have  an   inpatient  mortality  of  31.8%312  and   longer   term  

mortality   rates   of   59.3%   at   1   year,   and   89.9%   at   5   years.313   This   abysmal  

prognosis   is   not   only   confined   to   dialysis   patients   however,  with   a   progressive  

gradient   of   declining   prognosis   following   MI   in   advancing   CKD.312   In   a   recent  

evaluation   of   19,029   patients   presenting   to   US   hospitals   with   ST-­‐segment  

elevation   myocardial   infarction   (STEMI),   in-­‐hospital   survival   amongst   patients  

with   Stage   3a   (eGFR=45-­‐59mL/min/1.73m2),   Stage   3b   (eGFR=30-­‐

44mL/min/1.73m2)   and   Stage   4   (eGFR=15-­‐29mL/min/1.73m2)   CKD  was   8.8%,  

17.9%   and   27.3%   respectively   (p   value   for   interaction<0.0001).312   This  

compared   to   in-­‐hospital   mortality   of   2.3%   for   patients   with   preserved   renal  

function.312      

Although   less   profound,   CKD   patients   also   suffer   a   markedly   increased   risk   of  

death   following   hospitalisation   for   non-­‐STEMI   ACS.312,314,315   Amongst   30,462  

patients   presenting   with   non-­‐ST-­‐segment   elevation   myocardial   infarction  

(NSTEMI)  to  US  hospitals  in  2007,  in-­‐hospital  mortality  increased  from  1.8%  for  

patients  without  renal  dysfunction,  to  13.4%  and  12.4%  for  patients  with  Stage  4  

and  Stage  5  CKD  respectively.312    

The   are   numerous   reasons   for   this   increased   risk.   CKD   patients   have   been  

systematically   excluded   from   the   majority   of   clinical   trials   assessing   new  

therapies  in  CVD.316,317  Thus,  concerns  exist  regarding  the  applicability  of  clinical  

guidelines   based   on   studies   from   non-­‐CKD   patients,   to   the   CKD   population.  

Significantly,   CKD   patients   presenting   to   hospital   with   ACS   tend   to   be  

‘undertreated’,   with   lower   rates   of   ‘routine’  medication   utilisation   (e.g.   aspirin,  

Page 80: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  55  

clopidogrel,   beta-­‐blockers,   statins)   and   lower   rates   of   coronary  

revascularisation.312,318,319  This  discrepancy  may  result  from  considered  omission  

rather  than  neglect,  given  previous  findings  of  equivocal  benefit  for  statin  therapy  

in  ESRF35,  and  concerns  regarding  the  nephrotoxicity  of  an  invasive  management  

strategy   in  pre-­‐dialysis  patients  (Stages  3-­‐4  ±  5).   In   fact,   it  appears  that  dialysis  

patients   may   receive   more   aggressive   interventional   therapy   than   pre-­‐dialysis  

patients   for   this  reason,  with   the  Study  by  Fox  et  al312  demonstrating   increased  

utilisation   of   cardiac   catheterisation,   percutaneous   coronary   intervention   (PCI)  

and   coronary   artery   bypass   grafting   (CABG)   in   Stage   5,   versus   Stage   4,   CKD   in  

NSTEMI   patients.   In   STEMI   patients   however,   the   utilisation   of   invasive  

management   strategies   declined   with   increasing   CKD   severity.312   Despite   the  

increased  overall  mortality  in  Stage  5  CKD,  bleeding  rates  are  high  in  advancing  

CKD,   particularly   in   the   context   of   the   anti-­‐thrombin   and   anti-­‐platelet   agents  

commonly   employed   in   the   management   of   ACS.   This   excess   risk   of   major  

bleeding  may   stem   from   the   intrinsic   platelet   dysfunction   of   uraemia,   or   from  

inappropriate   dosing   in   the   context   of   reduced   renal   clearance.320-­‐322  

Furthermore,  the  high  rate  of  pre-­‐existing  cardiac  dysfunction  (both  diastolic  and  

systolic),   and   the   reduced   physiological   reserve   induced   by   advancing   CKD  

appear   to   contribute   substantially   to   the   poor   prognosis   of   CKD   patients  

following  hospitalisation  with  acute  myocardial  ischaemia.  

Even   with   aggressive   invasive   management   of   CAD,   historical   2-­‐year   survival  

rates   following   CABG   and   PCI   have   been   reported   to   be   56.4±1.4%   and  

48.4±2.0%   respectively.323   This   poor   prognosis   also   highlights   a   potential  

advantage  of  CABG  over  PCI  for  the  revascularisation  of  ESRF  patients,  with  the  

relative  benefit  of  CABG  over  PCI  confirmed  by  other  studies.324  This  advantage  

Page 81: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  56  

appears  to  stem  from  the  very  high  re-­‐stenosis  rates   in  ESRF  patients   following  

percutaneous   trans-­‐luminal   coronary   angioplasty   (PTCA)   and   bare-­‐metal   stent  

PCI,   although  differences   in   patient   complexity   have  been  blamed.325-­‐327  Recent  

results   for   PCI   in   the   drug-­‐eluting   stent   era   have   been   more   promising  

however328,   though  renal   insufficiency  remains  a  potent  predictor   for   increased  

risk  of  late  stent  thrombosis.329  

 

Vascular  Disease  in  Chronic  Kidney  Disease  

CKD   is   characterised  by   complex  alterations   in  vascular   structure  and   function.  

Although   atherosclerotic   disease   is   highly   prevalent   in   CKD   and   ESRF,  

contributing   substantially   to   the   burden   of   cardiovascular   morbidity   and  

mortality  in  this  condition,  non-­‐atheromatous  vascular  remodelling,  calcification  

and  stiffening  play  a  major  role  in  the  evolution  of  CVD  in  this  population.    

 

Arterial  Function  

The  systemic  arterial  bed  has   two  distinct,   inter-­‐related   functions:   to  deliver  an  

adequate  blood-­‐supply  to  peripheral   tissues  (conduit   function)  and  to  modulate  

pressure  variations  arising  from  intermittent  left  ventricular  ejection  (cushioning  

function).330  The  conduit  function  relies  on  transmission  of  blood  via  large,  low-­‐

resistance   central   arteries,   to   smaller,   less   elastic   peripheral   arteries   and  

arterioles.  In  the  absence  of  atherosclerotic  obstruction,  the  conduit  function  can  

accommodate   significant   changes   in   blood-­‐flow,   depending   on   distal   tissue  

requirements  (e.g.  skeletal  muscle  beds  may  receive  up  to  10-­‐times  resting  blood-­‐

flow   during   exertion).331   The   arterial   conduit   adaptation   to   increased  

Page 82: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  57  

physiological  demand  is  mediated  through  acute  changes  in  blood-­‐flow  velocity,  

and   by   arterial   diameter   (resistance)   changes   –   a   process   necessitating   intact  

endothelium-­‐dependent  vasomotor  function.331  

The  arterial  cushioning  effect  arises  predominantly  from  the  large,  central  elastic  

arteries   (such   as   the   aorta   and   carotid   arteries),   and   lessens   progressively  

towards   the   periphery,   as   arteries   become   more   muscular.332   This   arterial  

elastance   allows   for   the   accommodation   of   up   to   50%   of   ventricular   stroke  

volume  within  the  larger  central  arteries,  with  elastic  recoil  in  diastole  ensuring  

continuous   tissue   perfusion   across   the   cardiac   cycle.331   The   capacity   for   the  

arterial  system  to  cushion  the  impact  of  ventricular  systolic  ejection  depends  on  

the   ‘visco-­‐elastic’   properties   of   the   arterial  wall.331   The   elasticity   of   the   central  

arteries  is  largely  a  function  of  the  absolute  and  relative  representation  of  elastin  

and   collagen   within   the   vessel   wall.331   The   collagen   to   elastin   ratio   increases  

progressively   towards   the   periphery,   contributing   to   progressively   stiffer  

“resistance”   arteries   distally.   Additionally,   turnover   of   extracellular   matrix  

proteins   by   metalloproteinases   and   other   proteolytic   enzymes   contributes   to  

arterial   stiffness   over   time.332   Finally,   vascular   calcification   –   as   a   function   of  

atherosclerosis,  age  and  other  disease  states  (such  as  CKD)  –  may  also  contribute  

to  larger  artery  stiffness.333  

As   arterial   elasticity   declines,   the   elastic   recoil   during   ventricular   diastole  

progressively   lessens,   contributing   to   lower   diastolic   blood   pressure.  

Additionally,   central   arterial   stiffness   leads   to   an   increased   velocity   of   the  

forward  pressure  wave  (from  left  ventricle  to  the  periphery).  In  an  elastic  arterial  

system,  this  forward  (incident)  pressure  wave  is  reflected  from  sites  of  structural  

or   functional   inhomogeneity   within   the   peripheral   arterial   tree,   creating   a  

Page 83: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  58  

backward   (reflected)   pressure  wave   (from  periphery   towards   ascending   aorta)  

that   contributes   to   the   maintenance   of   diastolic   blood   pressure.334,335   The  

incident   pressure  wave   and   the   reflected   pressure  waves   interact,   with   timing  

and  amplitude  of  each  wave  contributing  to  the  final  arterial  waveform  for  each  

cardiac  cycle.336  The  appearance  and  amplitude  of  these  waveforms  also  depend  

entirely  on  the  site  of  assessment  as  it  relates  to  the  sum  of  the  component  waves,  

as   pressure   waveforms   within   the   central   arteries   (distant   from   sites   of  

reflection)  will  be  different  to  those  of   the  peripheral  arteries  (closer  to  sites  of  

wave  reflection).    

Increased  vascular  stiffness   is  associated  with   increased   incident  wave  velocity,  

and  hence  earlier  wave  reflection  from  the  periphery.  Thus,  the  reflected  waves  

may  eventually  arrive  within  the  ascending  aorta  during  mid-­‐systole,  rather  than  

diastole,   contributing   substantially   to   left   ventricular   afterload,   and   detracting  

from   diastolic   blood   pressure.     Thus,   aging   and   disease   states   that   increase  

vascular   stiffness   contribute   to  an   increase   in   central   systolic  blood  pressure,   a  

decline   in   diastolic   blood   pressure,   and   a   resultant   elevation   of   pulse   pressure  

(PP)  at  the  expense  of  coronary  artery  diastolic  perfusion  pressure.337-­‐340  

 

Atherosclerosis  

In   advancing   CKD,   atherosclerosis   poses   a   significant   threat   to   arterial   conduit  

function  and  tissue  perfusion.  Atherosclerosis  is  often  well-­‐advanced  prior  to  the  

commencement   of   dialysis   in   ESRF341-­‐343,   but   appears   to   be   accelerated   in  

haemodialysis  patients  in  particular.253  Although  CAD  contributes  substantially  to  

the  burden  of  overall  CVD  in  CKD  patients,  atherosclerosis  within  the  peripheral,  

Page 84: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  59  

cerebral  and  renal  vascular  beds  plays  a  major  role   in  overall  patient  morbidity  

and   mortality.22,344,345   As   with   the   coronary   system,   atherosclerosis   in   CKD  

patients  exhibits  a  higher  calcific  burden,  and  less  lipidic  plaque  as  is  usual  in  the  

general  population.  Given  the  dearth  of  evaluable  benefit   for  statins  in  ESRF34,35  

(potentially   related   to   the   more   advanced   fibrotic/calcific   nature   of  

atherosclerotic   plaques   in   ESRF),   atherosclerotic   disease   prevention   benefits  

greatest  from  earlier  intervention  in  the  course  of  CKD  disease  progression.  

 

Arteriosclerosis  

Significant  arterial  structural  remodelling  occurs  in  CKD.  Many  of  the  alterations  

identified  in  CKD  patients  are  similar  to  alterations  known  to  occur  with  aging  –  

specifically  dilatation,  intimal-­‐medial  hypertrophy  and  stiffening  of  the  aorta  and  

major   arteries.346   In   advancing   CKD,   anaemia,   arterio-­‐venous   fistulae,  

hypertension  and  fluid  retention  contribute  to  a  perpetual  state  of  “volume/flow  

overload”   that   promotes   compensatory   systemic   arterial   remodelling.331   The  

result  of   this  remodelling,  however,   is  highly  disadvantageous  to  end-­‐organ  and  

cardiac  function.    

CKD  is  characterised  by  a  stepwise  increase  in  vascular  stiffening  corresponding  

to  the  stages  of  declining  renal  function.347  This  progressive  decline  in  aortic  and  

elastic   artery   distensibility   is   associated  with   progressive   increases   in   incident  

(and   reflected)   wave   velocity   and   resultant   patho-­‐physiological   complications.  

Intima-­‐media   thickening   and   calcification,   particularly   within   the   larger   elastic  

arteries,   contribute   substantially   to   this   increased   vascular   stiffening.346   The  

resultant   increases   in   systolic   and   pulse   pressures,   LV   afterload   and  

Page 85: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  60  

compensatory   LVH   represent   core   components   of   the   clinically   relevant  

cardiovascular  pathology  of  CKD.    

This   combination   of   arterial   and   ventricular   stiffening   in   CKD   leads   to   a  

progressive  decline   in  cardiac  reserve,  as   the  reduced  arterial   compliance   leads  

to   disadvantageous   physiological   responses   to   increased   circulatory   demand.  

Exertion  is  generally  associated  with  increases  in  heart  rate  (HR)  and  LV  stroke  

volume  (LVSV)  (unless  diastolic  dysfunction  is  severe,  where  LVSV  may  fall  with  

rising  HR).   In   CKD,   the   increased   arterial   stiffness   is   associated  with  magnified  

blood  pressure  and  LV  afterload  changes  with  any  increase  in  LV  stroke  volume,  

due   to   the   reduced   arterial   capacitance   reserve.348   Significantly,   coronary  

perfusion  may  be  markedly  altered  during  these  conditions,  even  in  the  absence  

of  obstructive  coronary  atherosclerosis.    

 

Vascular  Calcification    

Vascular   calcification   primarily   refers   to   the   process   of   calcium   phosphate  

deposition   within   the   intima   and/or   media   of   arteries   and   arterioles,   and   is   a  

common   finding   with   advancing   age   and   atherosclerosis.349   In   CKD,   vascular  

calcification   is  a  potent  contributor   to   increased  arterial  stiffness.  As  previously  

described,  destruction  of  the  renal  parenchyma  leads  to  a  pro-­‐calcific  milieu  that  

enhances   and   promotes   premature   cardiac   and   vascular   calcification,  

contributing  significantly  to  the  excess  burden  of  CV  morbidity  and  mortality   in  

this   condition.154  Vascular   calcification  may  be   intimal   or  medial,  with  differing  

aetiologies  and  clinical   implications.   Intimal   calcification   is  primarily  associated  

with   atherosclerotic   plaques,   and   is   most   commonly   identified   as   diffuse,  

Page 86: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  61  

punctate  crystals  that  may  progressively  aggregate.349  It  has  been  proposed  that  

atherosclerotic   calcification   develops   initially   within   more   metabolically   active  

plaques   and   may   represent   healing   of   previously   disrupted   plaques.350  

Furthermore,   intimal  calcification  may  be  promoted  by  vascular  smooth  muscle  

and   macrophage   cell   death,   lipoproteins   (particularly   oxidised   forms)   and   the  

presence   of   increased   extracellular   calcium   and   phosphate   concentrations.349  

IVUS  studies,  however,   indicate  that  vulnerable  coronary  plaques   in  the  general  

population   are  most   commonly   not   calcified,   and   that   increased   calcification   is  

associated   with   more   stable,   fibrotic   plaques.351-­‐354   Thus,   in   the   general  

population,   progressive   calcification   may   represent   an   adaptive   mechanism  

stabilising   atherosclerotic   plaques   at   a   later   stage   of   their   temporal  

development.355  In  CKD  however,  the  presence  of  excessive  vascular  calcification,  

may  represent  an  acceleration  of  this  adaptive  response,   in  relation  to  a  greater  

burden  of  atherosclerosis  and  a  more  amenable  systemic  milieu.    

Medial   calcification   however,   occurs   independently   of   atherosclerosis,   most  

commonly   in   the   form   of   linear   deposits   along   elastic   lamellae   and   increases  

progressively  with  age,  contributing  substantially  to  vascular  stiffening.356  At  it’s  

most  severe,  it  may  form  dense  circumferential  sheets  within  the  media,  bounded  

by  vascular   smooth  muscle   cells   on  either   side.349  Most   commonly   identified   in  

the  peripheral  vessels  of  elderly   individuals  as   the  appearance  of  vascular  “rail-­‐

tracking”  on  plain  radiographs357,  medial  calcification  is  also  prevalent  in  younger  

patients  with  diabetes  and  CKD.349  

As  previously  discussed,  although  the  mechanisms  behind  the  pro-­‐calcific  milieu  

of   CKD   are   numerous   and   remain   to   be   definitively   delineated,   the   patho-­‐

physiological   implications   are   widely   appreciated.   Vascular   calcification   is  

Page 87: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  62  

associated  with  significant  morbidity  and  mortality.333,358-­‐363  Arterial  calcification  

contributes   to   significant   vascular   structural   and   functional   alterations   that   are  

subsequently   associated   with   decreased   DBP   and   increased   PP364   -­‐  

haemodynamic   indices   closely   linked   with   reduced   survival   in   ESRF  

patients.365,366   In   ESRF,   vascular   calcification   is   strongly   influenced   by   the  

prescribed   dose   of   calcium-­‐based   phosphate   binders   and   the   duration   of  

haemodialysis.364  Currently-­‐available  therapies  to  reduce  the  burden  of  vascular  

calcification,  once  present,  have  failed  to  dramatically  alter  the  poor  prognosis  of  

ESRF  patients  however.40,367  Further  work  in  this  field  is  urgently  required.  

 

Non-­‐invasive  Evaluation  of  Arterial  Stiffness  

Pulse  Wave  Velocity  

Vascular   stiffening   may   be   evaluated   by   various   methodologies.   Perhaps   the  

simplest   and   best-­‐validated   measure   is   pulse   wave   velocity   (PWV)   –   the  

assessment   of   the   velocity   of   incident   wave   travel   between   two   points   in   the  

arterial   system.   Thus,   to   calculate   PWV,   the   distance   travelled   between   two  

points   is  divided  by   the   time   taken  by   the   incident  wave   to   traverse   the  points  

(PWV   =   Distance   /   Time).   There   is   a   linear   correlation   between   the   speed   of  

travel  of  the  pulse  wave  and  arterial  stiffness  over  the  distance  traversed.348    

Carotid-­‐femoral   PWV   is   considered   the   ‘gold   standard’   for   the   evaluation   of  

central   arterial   stiffness.368   Widely   used   in   epidemiological   and   interventional  

studies  in  CKD,  ESRF  and  a  variety  of  other  disease-­‐states,  carotid-­‐femoral  PWV  

relies   on   an   assumption   of   distance   between   the   aortic   arch   and   the   site   of  

evaluation  at   the   carotid   artery,   and  on   the   course  of   the   aorta   (measured  as   a  

Page 88: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  63  

straight  line  over  the  ventral  thorax  and  abdomen)  between  the  right  carotid  and  

right   femoral   sites   of   evaluation.368   Although   numerous   methods   have   been  

utilised   to   reduce   the   potential   for   inaccuracy   based   on   inaccuracies   in   surface  

distance   measurement   (e.g.   related   to   factors   such   as   abdominal   obesity   or  

prominent   female  bust),  or  partial  obstruction  to   flow  induced  by  aortic  or   iliac  

artery  atherosclerosis.369  Generally,  transit-­‐time  is  measured  from  foot-­‐to-­‐foot  of  

the  waves  at  the  two  measurement  sites  (Figure  9),  and  may  be  enhanced  further  

by  electrocardiographic  gating.368  Although  differences  in  distance  measurement  

arising  from  body  habitus  or  ectatic  aortic  degeneration  (common  in  the  elderly  

and   hypertensives)   are   less   important   in   serial   measurements   (assuming   the  

same   inaccuracies   are   made   at   each   evaluation),   establishment   of   normal  

population  values,  or  comparison  of  results  between  populations  may  be  severely  

impaired  by  such  methodological  inaccuracies.368  

 

Page 89: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  64  

 

Figure  9:   Measurement  of  carotid-­femoral  PWV,  utilising  the  foot-­to-­foot  method,  

where   (∆t)   represents   the   change   in   time,   and   (∆L)   represents   the  

distance   between   waveform   measurement   sites.   (Reproduced   from  

Laurent  S.  et  al.  Eur  Heart  J,  2006;27:2592,  with  permission  from  Oxford  

University  Press  ).  

 

Regardless  of   the  known   limitations  of   the  methodology,  PWV   is   independently  

predictive   of   future   cardiovascular   events,   cardiovascular   death   and   all-­‐cause  

mortality   in   a   variety   of   patient   cohorts370   –   including   ESRF371,372,   pre-­‐dialysis  

CKD373,374,   diabetes375,   established   CAD376-­‐378,   essential   hypertension379-­‐381,  

healthy   elderly382,383   and   younger,   normal   populations.384,385   The   simplicity,  

reproducibility   and   prognostic   significance   of   PWV   ensures   it   will   remain   the  

Page 90: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  65  

non-­‐invasive  gold  standard  for  the  evaluation  of  central  arterial  stiffness  for  the  

foreseeable  future.    

 

Arterial  Distensibility  

Although  PWV  provides  an  “overall”  assessment  of  central  (aortic/carotid/iliac)  

arterial   stiffness,  methods   for   the   assessment   of   regional   arterial   stiffness  may  

provide   alternative,   or   incremental   information   not   provided   by   PWV   (e.g.  

specific   evaluation   of   carotid   artery   stiffness   in   the   assessment   of  

cerebrovascular   risk).   Distensibility   of   superficial   arteries   such   as   the   carotid,  

brachial,   femoral,   and   more   distal   arteries   have   been   evaluated   utilising  

ultrasound   techniques   (Figure   10).   Such   techniques   require   a   higher   level   of  

training,   and   are  more   time   consuming   than   evaluation   of   PWV,   and  hence   are  

poorly   suited   to   epidemiological   studies   and   better   suited   to   mechanistic   /  

interventional   studies.368   Magnetic   resonance   imaging   has   more   recently   been  

utilised   to   evaluate   non-­‐superficial   arteries   (such   as   the   aorta)   in   a   variety   of  

physiological   and  disease   states259,386-­‐393,   and  has  been   shown   to   correlate  well  

with   traditional   PWV.394   Very   recently,   CMR-­‐derived   aortic   distensibility   and  

volumetric   arterial   strain   have   been   found   to   be   predictive   of   cardiovascular  

clinical  end-­‐points  and  overall  survival  in  ESRF  on  multivariate  analysis.395    

 

Page 91: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  66  

 

Figure  10:   Schematic   representation   of   the   method   for   determining   arterial  

distensibility   by   measuring   changes   in   arterial   lumen   cross-­sectional  

area   across   the   cardiac   cycle   (∆A   =   Maximal   change   in   lumen   area  

during   cardiac   cycle;   D   =   diameter),   as   they   relate   to   local   pulse  

pressure.  (Reproduced  from  Laurent  S.  et  al.  Eur  Heart  J,  2006;27:2593,  

with  permission  from  Oxford  University  Press).    

 

In  addition  to  the  evaluation  of  arterial  stiffness  through  assessment  of  PWV  and  

arterial   distensibility,   evaluation   of   the   central   impact   of   peripheral   wave  

reflection   may   also   be   performed   non-­‐invasively.368   This   may   be   performed  

through  the  evaluation  of  the  arterial  waveform  at  the  common  carotid  artery,  or  

peripherally   (conventionally   the   radial   artery)   through   the   application   of   a  

‘transfer   function’.396-­‐398   Both   Millar   strain   gauge   transducers,   and   arterial  

applanation   tonometry  have  been  used   for   this  purpose.396-­‐400  Whether  directly  

evaluated  (at  the  carotid),  or  derived  from  peripheral  (radial)  artery  applanation  

tonometry,   the   resultant   central   pressure   waveform   can   be   interrogated   to  

determine  the  augmentation  index  (AIx)  –  the  difference  between  the  second  and  

first  systolic  pressure  peaks  (P2  -­‐  P1;  Figure  11),  expressed  as  a  percentage  of  the  

Page 92: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  67  

PP.368   Central   arterial   AIx   has   been   demonstrated   to   provide   independent  

prognostic  value  in  the  prediction  of  all-­‐cause  mortality  in  ESRF  patients401,402,  as  

well  as  the  prediction  of  CV  events  in  a  variety  of  other  disease  states.403-­‐405    

 

 

Figure  11:   Representation   of   an   illustrative   central   pressure   waveform,  

demonstrating  identification  of  the  Augmentation  Pressure;  determined  

as  the  difference  between  the  second  (P1)  and  first  (P2)  systolic  pressure  

peaks.   AIx  may   then   be   calculated   by   evaluation   of   the   augmentation  

pressure  in  relation  to  the  pulse  pressure.  (Reproduced  from  Laurent  S.  

et  al.  Eur  Heart  J,  2006;27:2595,  with  permission  from  Oxford  University  

Press).    

 

Page 93: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  68  

Arterial  Stiffness  as  a  Modifiable  Risk  Factor  

Arterial   stiffness  provides   a   clinically   relevant  measure  of   longitudinal   vascular  

injury   and   is   predictive   of   future   cardiovascular   events   independent   of  

conventional   CV   risk   factors.372,375,379,380,382,383,406   Although   risk   factors   such   as  

hypertension  and  hyperlipidaemia  may  be  effectively  reduced  by  pharmacologic  

intervention,   the   vascular   injury   induced   by   such   risk   factors   over   time   is   not  

immediately   negated   by   such   therapies.   Thus   arterial   stiffness   has   been  

postulated   to   provide   a   more   relevant   surrogate   for   future   CV   risk   than  

conventional   risk   factors.370   Until   recently,   however,   this   premise   had   received  

little  attention.    

The   Conduit   Artery   Function   Evaluation   (CAFÉ)404   sub-­‐study   drew   on   2,073  

patients   from   the   larger  Anglo-­Scandinavian  Cardiac  Outcomes  Trial   (ASCOT)407  

to   assess   this   issue.   CAFÉ   demonstrated   that   despite   similar   reductions   in  

brachial  systolic  blood  pressure  (SBP)  and  PP,  the  combination  of  amlodopine  +  

perindopril   was   more   efficacious   in   reducing   central   SBP   and   PP   than   the  

atenolol   +   thiazide   combination404,   corresponding   to   the   demonstration   of  

reduced   cardiovascular   events   in   the   amlodopine   +   perindopril   cohort.407  

Similarly,   losartan   was   shown   to   reduce   arterial   stiffness   and   central   PP   to   a  

greater   degree   than   the   comparator   (atenolol)  with   an   associated   reduction   in  

stroke  in  the  Losartan  Intervention  for  Endpoint  Reduction  in  Hypertension  (LIFE)  

study.408  The  differing   impact  of  alternative  anti-­‐hypertensive  agents  on  central  

vascular   stiffness   has   thus   been   proposed   as   a   potential   explanation   for   the  

differential  effects  of  these  agents  on  CV  events.404,409    

Of   particular   relevance   was   the   finding   that   the   CV   benefits   of   blood   pressure  

lowering  in  ESRF  were  attenuated  in  patients  where  PWV  was  not   improved  by  

Page 94: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  69  

anti-­‐hypertensive   therapies.371   Thus,   though   the   conventional   risk   factor   was  

moderated   by   standard   therapies,   the   modifiability   of   the   associated   arterial  

alterations  was  a  more  useful  predictor  of  future  CV  prognosis.370    

Such   findings   highlight   the   potential   prognostic   impact   of   therapeutic  

interventions   that   improve   central   arterial   structure   and   function,   and   provide  

the  basis  for  the  vascular  research  studies  described  herein.  

 

Arterio-­Venous  Fistulae  and  Cardiovascular  Structure  and  

Function  

Arterio-­venous  Fistula  Creation  

As  CKD  advances  towards  end-­‐stage,  patient  co-­‐morbidities  and  preference  play  a  

significant   role   in   determining   the   optimal   mode   of   RRT.   Although   live-­‐donor  

renal   transplantation   has   increased   in   prevalence   and   popularity   in   eligible  

patients   in   recent  years,   in  Australia  most  advanced  CKD  patients  also  undergo  

surgical   creation   of   a   radial   or   brachial   AVF   (where   surgically   feasible).   The  

surgical   anastomosis   of   the   radial   (or   brachial)   artery   to   an   adjacent   vein   (e.g.  

cephalic   vein)   creates   a   low-­‐resistance   iatrogenic   channel,   diverting   arterial  

pressure  and  flow  directly  into  the  systemic  venous  system.  Once  matured,  such  

fistulae  provide  a  ‘fail-­‐safe’  method  for  the  performance  of  haemodialysis  if/when  

the   metabolic   derangements   of   decompensated   ESRF   intervene.   The  

haemodynamic  consequences  of  AVF  creation  are  not  benign  however.  

Immediately   following   creation,   AVF   are   associated  with   a   10-­‐20%   increase   in  

systemic  cardiac  output,  achieved  predominantly  through  a  reduction  in  systemic  

vascular   resistance,   increased   myocardial   contractility   (through   sympathetic  

Page 95: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  70  

nervous   system  activation)   and  an   increase   in   stroke  volume  and  heart   rate.410  

Over  the  following  week,  circulating  blood  volume  increases  in  conjunction  with  

increases   in   atrial   natriuretic   peptide   (ANP)   and   brain   natriuretic   peptide  

(BNP).411,412   These   alterations   are   associated   with   early   increases   in   LV   filling  

pressure,   and   associated   increases   in   LA   volume   and   LV   end-­‐diastolic   volume  

(LVEDV).411  AVF  blood-­‐flow   increases  progressively  over   the   initial  6-­‐12  weeks  

following  creation145,  diverting  a  substantial  burden  of  overall  cardiac  output  to  

service   the   AVF   (commonly   0.5-­‐2L/minute).   To   maintain   sufficient   systemic  

cardiac   output,   LV   CO   must   increase   proportionately,   resulting   in   longer-­‐term  

implications   for   cardiac   and   vascular   structure   and   function.412,413   In   fact,   AVF  

creation  has  been  demonstrated  to  be  associated  with  worsening  of  LVH  in  ESRF  

patients,   and   echocardiographic   features   of   diastolic   dysfunction   including   left  

atrial  dilatation.411,414  In  some  patients,  giant  AVF  may  lead  to  progressive  high-­‐

output   cardiac   failure,   despite   preserved   systolic   LV   function.415-­‐417   Such   cases  

may   require  AVF  banding   or   ligation   to   limit   flow   and   reduce   systemic   cardiac  

demand.418,419  

Many  of   the  earliest   studies  evaluating   the  cardiac  effects  of  AVF  creation  were  

performed   prior   to   the   institution   of   routine   erythropoietin   supplementation  

when   significant   anaemia   may   have   contributed   to   the   haemodynamic   effects  

witnessed.   Despite   this,   the   increased   cardiac   demand   associated   with   AVF  

creation   is   undisputed,   and   is   believed   to   be   a   significant   contributor   to   the  

excess   burden   of   CV   morbidity   and   mortality   of   ESRF.170   Specifically,   AVF  

creation   has   been   discouraged   in   ESRF   patients   with   significantly   depressed  

cardiac   function   (LVEF<30%),   due   to   fears   of   reduced   physiological   reserve  

precipitating  fulminant  cardiac  decompensation.420,421  Patients  with  pre-­‐existent  

Page 96: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  71  

coronary   stenoses   may   not   have   the   coronary   flow   reserve   to   manage   this  

increase   in   cardiac   work,   with   an   associated   deterioration   in   sub-­‐endocardial  

perfusion  and  worsened  anginal  symptoms.421  Furthermore,  patients  with  prior  

CABG   utilising   internal   thoracic   artery   grafts   may   develop   coronary   steal  

phenomena   from   ipsilateral   AVF   creation/haemodialysis.422,423   Given   the  

prognostic   advantage   of   internal   thoracic   artery   grafting   in   CABG424-­‐426,   such  

findings  may  have  deleterious  implications  for  the  management  of  CKD  patients  

requiring  coronary  revascularisation.    

Despite  these  issues,  AVF  may  still  be  created  in  elderly  ESRF  patients,  following  

appropriate  selection  to  avoid  cardiovascular  complications.427  The  alternative  to  

AVF   creation   for   the   performance   of   haemodialysis,   is   the   insertion   of   a   large-­‐

bore  a  central  venous  catheter  (e.g.  Permacath).  Such  catheters  have  a  substantial  

morbidity  and  mortality,  related  to  vascular  complications  (bleeding,  thrombosis,  

central   venous   stenosis)   and   infection.428   The   use   of   AVF,   despite   the  

disadvantageous   cardiovascular   adaptations,   is   associated   with   lesser  

cardiovascular  mortality  than  catheter-­‐based  haemodialysis.428    

 

Pulmonary  Hypertension  in  Patients  with  Arterio-­‐venous  Fistulae    

Pulmonary  hypertension  (PHT)  refers  to  an  elevation  of  mean  pulmonary  artery  

pressure   (PAP)   beyond   normal   levels   (>25mmHg).   PHT   may   be   caused   by  

cardiac,  pulmonary,  vascular  or  systemic  conditions,  but  regardless  of  aetiology,  

the  development  of  PHT  portends  increased  morbidity  and  mortality,  regardless  

of  the  underlying  condition.429-­‐431    

Page 97: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  72  

PHT  is  a  common  finding  amongst  haemodialysis  patients  with  iatrogenic  arterio-­‐

venous  access.432-­‐434  The  causes  for  this  elevation  are  multi-­‐factorial,  with  factors  

such   as   local   vascular   tone,   pulmonary   vascular   calcification,   reduced   left  

ventricular   diastolic   compliance,   increased   left   atrial   pressure   and   elevated  

pulmonary  blood  flow  induced  by  AVF  maturation  considered  contributory.433,435-­‐

437  Significantly,   this   failure  of   the  pulmonary  circulation   to   compensate   for   the  

increased  right  ventricular  output  is  associated  with  reduced  survival  for  affected  

ESRF   patients.435   Importantly   though,   the   acute   and   chronic   affects   of   AVF  

creation   and,   furthermore,   AVF-­‐ligation   on   right   atrial,   right   ventricular   and  

pulmonary  arterial  decompensation  have  not  been  systematically  studied.    

 

Arterio-­Venous  Fistula  Ligation  

Following   successful   RTx,   AVF  may   persist   indefinitely,   despite   the   absence   of  

ongoing   clinical   necessity.   The   longer-­‐term   cardiac   impact   of   AVF   persistence  

following  successful  RTx  is  not  known,  however  there  is  mounting  evidence  that  

AVF   contribute   significantly   to   persistence   of   LVH   (and   potentially,   associated  

diastolic   left  ventricular  dysfunction)   in  post-­‐transplant  patients.  The  published  

data   in   this   field   is   contradictory   however438-­‐440,   with   some   evidence   that   only  

larger  AVF  are  responsible  for  disadvantageous  cardiac  remodelling.441  A  recent  

study  further  suggests  that  the  AVF,  rather  than  the  necessity  for  haemodialysis,  

is   the  propagating   factor   in  LVH,  demonstrating  a  marked   reduction   in  adverse  

cardiac   indices   following  failure  of  AVF,  but  ongoing   intermittent  haemodialysis  

via  a  central  venous  catheter.442  In  addition  to  the  ongoing  uncertainty  regarding  

the   benefits   of   routine  AVF   ligation  with   regards   left   ventricular   geometry   and  

Page 98: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  73  

function,   the   effect   of  AVF   ligation  on   right   ventricular   and  atrial   structure   and  

function  as  well  as  central  and  peripheral  vascular  structure  and  function  remain  

uncertain.    

Ongoing  uncertainty  in  this  arena  forms  the  foundation  for  the  Studies  evaluating  

alterations   in   cardiovascular   structure  and   function  with  AVF  creation  and  AVF  

ligation  within  this  PhD.    

 

Effects  of  Renal  Transplantation  on  Cardiovascular  Structure  and  

Function  

RTx   is  associated  with  dramatic  alterations   in  QOL,  morbidity  and  mortality   for  

ESRF   patients.443-­‐449   In   fact,   successful   cadaveric   RTx   has   been   shown   to  more  

than   triple   the   life-­‐expectancy   of   ESRF   patients   on   dialysis,  when   compared   to  

patients  remaining  on  the  waiting  list.445  A  substantial  component  of  this  benefit  

arises   from   a   reduction   in   cardiovascular   deaths.   Despite   this,   CVD   remains   a  

leading   cause   of   death   amongst   RTx   recipients.450,451   Significantly,   despite  

marked   improvements   in   post-­‐transplant   care,   longer-­‐term   survival   amongst  

successful  RTx  recipients  has  not  appreciably  improved  in  Australia  over  the  last  

1-­‐2   decades.451,452   Furthermore,   RTx   recipients   experience   an   incidence   of   CV  

mortality   that   is  many   times   that  of   the  age-­‐matched  controls   from   the  general  

population.451,453   Thus   renal   transplantation   is   associated   with   substantial   CV  

benefits,   but   a   significant   burden   of   CVD   persists   in   this   vulnerable   patient  

cohort.  

LV   dilatation   and   hypertrophy   are   highly   prevalent   amongst   RTx   recipients.  

Increased  LVM  has  been  shown  to  be  present   in  40-­‐60%  of  new  RTx  recipients  

Page 99: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  74  

and  only  the  minority  of  RTx  patients  have  normal  left  ventricular  structure  and  

systolic   function   as   measured   by   standard   trans-­‐thoracic   echocardiography  

(TTE).454   Despite   this,   RTx   has   been   shown   to   be   associated   with   significant  

reductions   in   LVM   and   LV   volumes   following   transplantation,   though   cardiac  

structure   and   function   do   not   universally   normalise.454-­‐463   Thus,   despite  

restoration   of   renal   excretory   function,   RTx   does   not   completely   abrogate   the  

trigger   to   disadvantageous   cardiac   remodelling.   As   previously   mentioned,   the  

role  of  AVF  persistence  in  this  context  remains  to  be  definitively  elucidated.  

Mounting   evidence   has   demonstrated   that   the   rigorous   screening   processes  

involved   in   selecting   ESRF   patients   suitable   for   RTx   is   relatively   successful   in  

selecting  patients  at  lower  risk  of  ischaemic  CV  events.  Amongst  patients  free  of  

major  cardiac  events  1  year  following  transplantation,  the  subsequent  incidence  

of  a  major  ischaemic  event  has  been  reported  to  be  1.2-­‐1.5%  per  year453,464,465  –  a  

rate   similar   to   that   experienced   by   the   general   community   within   the  

Framingham  Heart  Study.465,466  Despite  this,  the  rate  of  new  CCF  was  found  to  be  

3-­‐4   times   that   seen   in   the   general   population467-­‐469,   with   only   ~30%   of   CCF  

events   in   post-­‐RTx   patients   appearing   to   be   associated   with   an   ischaemic  

precipitant.465   Compared   to   RTx   patients   who   remain   free   of   new   ischaemic  

events   or   CCF,   affected  RTx   patients   have   a   1.5-­‐   to   2-­‐fold   higher   rate   of   death,  

independent   of   each   other,   patient   age,   gender   or   the   presence   of   TIIDM.465  

Unlike  the  more  common  association  of  IHD  and  CCF  in  the  general  community,  

CCF  following  RTx  appears  to  be  aetiologically  distinct  from  IHD,  but  is  associated  

with   significant   mortality   risk.465   The   role   of   pre-­‐existing,   sub-­‐clinical   LV  

pathology,   and   the   potential   contributions   of   immunosuppressive   therapies,  

Page 100: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  75  

hypertension,   anaemia,   graft   dysfunction   and   persistent   AVF   remain   to   be  

determined.    

Vascular  structure  and  function  appear  also  to  be  favourably  influenced  by  RTx.  

Endothelial  dysfunction   is  a  common  finding   in  ESRF,  contributing  substantially  

to   the   premature   development   of   CVD   in   affected   patients.   Although   generally  

improved,  endothelial  dysfunction  commonly  persists  following  RTx.470-­‐472  Many  

of   the   immunosuppressive   agents   utilised   following   RTx   contribute   to   this  

persistent   endothelial   dysfunction,   and   may   contribute   further   to   overall   CVD  

risk   through   unfavourable   effects   on   lipid   profiles,   blood   pressure   and   glucose  

intolerance.473  Thus,  endothelial  dysfunction  post-­‐RTx  remains  a  potential  trigger  

to   the   development   of   clinically   significant   CVD,   and  hence   remains   a   potential  

target   for   therapeutic   interventions,   whether   by   improved   blood   pressure   and  

lipid  control,  smoking  cessation  or  by  other  novel  means.472    

Large   artery   structure   and   compliance   is   also   adversely   affected   by   ESRF   and  

long-­‐term  dialysis474-­‐476,  with  improvement  but  persistence  of   increased  arterial  

stiffness   following   transplantation.477-­‐480   The   calcineurin   inhibitors   have   been  

implicated   in   the   promotion   of   arterial   stiffness   following   RTx,   although   the  

process  is  clearly  multi-­‐factorial.481-­‐484  The  role  of  ventriculo-­‐arterial  coupling  in  

the  promotion  of  deleterious  LV  and  arterial  remodelling  post-­‐RTx  remains  to  be  

determined.348  

Such  observations  contribute  to   the   foundation  underlying  the  Study  evaluating  

alterations   in   cardiovascular   structure   and   function   following   elective   AVF  

ligation  within  this  PhD.  

 

Page 101: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  76  

Evaluation  of  Cardiovascular  Risk  Prior  to  Renal  Transplantation  

CVD  is  the   leading  cause  of  death   in  ESRF  and  RTx  cohorts,  however  the  risk  of  

CVD  morbidity  and  mortality  in  ESRF  patients  is  markedly  reduced  by  RTx.443-­‐449  

RTx  is  an  expensive  and  highly  intensive  intervention  however,  utilising  a  scarce  

community   resource   (i.e.   organs).   Furthermore,  RTx   is  not  without   risk,   as   it   is  

associated   with   an   early   increase   in   all-­‐cause   and   cardiovascular  mortality   for  

recipients.443,485,486   In   fact,   the   survival   advantage   of   RTx   appears   not   to   be  

apparent  until  beyond  250  days  post-­‐transplantation486,  making  survival   to   this  

point  a  necessary  pre-­‐condition  to  RTx  benefit.  Furthermore,  according  to  a  large  

Scandinavian   study,   between   the   second   and   third   years   post-­‐RTx,   41.4%   of  

failed   transplants   are   lost   due   to   chronic   rejection,   but   42%   are   lost   due   to  

patient   death   with   a   functioning   graft.450   A   substantial   burden   of   this   early  

mortality  is  due  to  CVD.468  To  reduce  peri-­‐operative  CV  morbidity  and  mortality,  

or   early   graft   loss   due   to   CVD,   potential   RTx   recipients   undergo   rigorous  

screening  processes  and  these  pre-­‐RTx  screening  investigations  need  to  consider  

not   only   peri-­‐operative   risk,   but   also  must   be   designed   to   provide   information  

regarding  CV  risk  in  the  early  years  post-­‐RTx  to  ensure  recipients  are  most  likely  

to   enjoy   the  mortality   advantages  associated  with   the  RTx  process.487  Although  

there   is  widespread  support   for  CV  evaluation  prior   to  RTx485,488-­‐492,   there   is  no  

universally   accepted   screening   process   and   hence   each   RTx   centre   may   have  

different  routines  depending  on  local  experience  and  expertise.  

Given   that  CVD   is   a   leading   cause  of  morbidity   and  mortality   in  CKD  and  ESRF  

patients,  and  that  conventional  CV  risk  factors  such  as  TIIDM  and  HT  are  highly  

prevalent   in   this   population,   exclusion   of   coronary   artery   disease   (CAD)  

comprises  a  substantial  component  of  CV  screening  in  higher  risk  RTx  candidates.  

Page 102: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  77  

The   presence   or   absence   of   exertional   chest   pain   is   a   poor   predictor   of   the  

presence  of  significant  CAD  in  CKD  and  ESRF  patients.493  It  has  been  shown  that  

angiographically  severe  CAD  may  be  present  in  asymptomatic  patients  with  CKD,  

potentially   related   to   the   reduced   exertional   capacity   of   uraemia   and   the  

potential   for   autonomic   neuropathy   related   to   both   uraemia   and   TIIDM.494  

Furthermore,   up   to   75%  of  HDx   patients  with   CAD  may   not   experience   typical  

angina495,   with   silent   ischaemia   three   times   more   prevalent   than   in   the  

Framingham  study  population.496  Additionally,  up  to  50%  of  ESRF  patients  with  

angina   have   been   shown   not   to   have   significant   CAD   at   coronary  

angiography.301,497,498   Reasons   postulated   for   this   phenomenon   include   the  

presence   of   anaemia,   reduced   coronary   vasodilatory   reserve,   microvascular  

disease   and   supply-­‐demand  mismatch   associated  with   the   presence   of   LVH   -­‐   a  

common   echocardiographic   finding   in   this   context   (as   previously   discussed).487  

Thus,   the   presence   or   absence   of   chest   pain   provides   little   clinical   certainty   in  

distinguishing  between  the  presence  and  absence  of  significant  CAD  in  potential  

RTx  recipients.      

There   is   substantial   debate   regarding   the   necessity   to   perform   ICA   to   exclude  

significant   CAD   prior   to   RTx.   Numerous   studies   have   been   published  

demonstrating   the   advantages   and   limitations   of   non-­‐invasive   investigations   in  

the  ESRF  context.494,499-­‐513  In  particular,  in  ESRF  it  appears  that  vasodilator  stress  

is   inferior   to   tachycardic   stress   in   the   non-­‐invasive   detection   of   significant  

CAD.513  This  may   result   from   the   requirement   for  dipyridamole,   adenosine   and  

the   recently   FDA-­‐approved   regadenoson   (commonly   utilised   pharmacological  

vasodilators   in  non-­‐invasive   ischaemia   imaging)   to  achieve  maximal  myocardial  

hyperaemia   through   coronary   microvasculature   vasodilatation.514-­‐516   ESRF   is  

Page 103: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  78  

associated   with   significant   endothelial   dysfunction,   and   theoretically,   the  

coronary  microvasculature  of  affected  patients  may  not  maximally  vasodilate   in  

response   to   endothelium-­‐dependent   stimuli.   Hence,   stressors   that   require  

detection   of   differential  myocardial   perfusion   based   on   regional   hyperaemia   in  

non-­‐obstructed   coronary   territories,   as   compared   to   relatively   under-­‐perfused  

territories   unable   to   achieve   maximal   hyperaemia   due   to   epicardial   coronary  

obstruction,  may  be  less  accurate  in  ESRF.    

 

Tachycardia  Stress  Methodologies  

Exercise-­‐based   stress   testing   is   widely   accepted   as   the   preferred,   and   most  

accurate,   methodology   for   the   non-­‐invasive   exclusion   of   coronary   ischaemia.  

Uraemia,   however,   is   commonly   associated   with   reduced   exertional   capacity,  

frequently   preventing   ESRF   patients   from   achieving   the   necessary   level   of  

tachycardia   required   to   minimise   the   occurrence   of   a   false   negative   result.  

Previous   studies   have   demonstrated   a   higher   risk   of   future   CV   events   amongst  

patients  unable  to  complete  exercise  stress  tests,  regardless  of  the  presence  of  a  

negative   result.517   Thus   combinations   of   exercise   and   vasodilatory   agents,   or  

dobutamine  infusion  have  been  utilised  to  optimise  non-­‐invasive  imaging  results.    

Conventionally,   exercise   (+/-­‐   dipyridamole   or   adenosine)   or   dobutamine   single  

photon   emission   computed   tomography   (SPECT)  myocardial   perfusion   imaging  

(MPI)   have   been   the  most   commonly   utilised   investigation   in   the   non-­‐invasive  

exclusion  of  ischaemia  prior  to  RTx.  Dobutamine  stress  echocardiography  (DSE)  

is   a   commonly   utilised   alternative,   with   some   results   indicating   a   higher  

Page 104: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  79  

specificity  attributable   to   this   investigation,  but  similar  overall  accuracy   in  non-­‐

renal  failure  patients.518-­‐522  

Results  of  a  meta-­‐analysis  of  eleven  smaller  studies  in  ESRF  patients  indicate  that  

a   negative   MPI   or   DSE   study   was   associated   with   a   1.8%   annualised   risk   of  

cardiac  death,   compared   to  a  6.3%  risk   following  a  positive  study.511  A  positive  

study  of  course,  may  be  associated  with  more  intensive,  or  invasive  intervention  

to  minimise  the  risk  of  MI,  so  the  relatively  low  rate  of  MI  following  a  positive  MPI  

study  is  obviously  not  representative  of  an  untreated  group.  Regardless,  current  

non-­‐invasive  imaging  techniques  have  an  enviable  evidence  base  supporting  their  

prognostic   value,   and   in   particular   the   favourable   prognosis   associated   with   a  

negative  study  in  the  non-­‐CKD  population.523-­‐530  

Despite  such  results  in  the  general  community,  the  presence  of  a  negative  study  

does  not  entirely  exclude  the  presence  of  haemodynamically  significant  coronary  

artery  disease,  hence  the  preference  within  some  RTx  centres  to  rely  solely  upon  

ICA  for  the  evaluation  of  coronary  risk  in  this  context.501  Importantly,  however,  it  

is  now  widely  appreciated  that  ICA  provides  only  a  2-­‐dimensional  “lumenogram”,  

and  provides   only   limited   insight   into   the   potential   haemodynamic   and   clinical  

significance  of  identified  lesions  in  respect  to  therapeutic  decision-­‐making  in  the  

general   community.531,532   Invasive   assessment   of   fractional   flow   reserve   (FFR)  

has   become   the   new   “gold   standard”   for   the   assessment   of   coronary   lesion  

haemodynamic   significance,   particularly   in   determining   potential   benefit   with  

regards  coronary  revascularisation,  although  ESRF  patients  have  routinely  been  

excluded  from  studies  of   this   technology.531,533-­‐536   Invasive  studies,  however  are  

associated  with  procedural   risk.  The   risk  of   nephrotoxicity   related   to   iodinated  

contrast  administration  during  ICA  remains  a  concern,  however  femoral  artery  /  

Page 105: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  80  

retroperitoneal   bleeding   and   coronary   or   cerebrovascular   complications,   albeit  

uncommon,   should   be   considered   prior   to   performing   these   investigations   as  

routine  screening   tests,   regardless  of   the  high  prevalence  of  CAD   in   this  cohort.  

Ideally,  pre-­‐RTX  risk  would  be  assessed  non-­‐invasively,  but  with  a  high  degree  of  

accuracy  and  lower  rate  of  false  positives  without  compromising  sensitivity.    

Dobutamine  stress  CMR  (DS-­‐CMR)  has  recently  been  demonstrated  to  provide  a  

very  high  level  of  accuracy  in  the  non-­‐invasive  detection  of  significant  CAD,  with  

low   procedural   risk,   and   avoidance   of   nephrotoxic   contrast   agents.537-­‐540  

Additionally,   longer-­‐term   prognostic   data   has   begun   to   emerge   demonstrating  

very   low   rates   of   CV   events   following   a   negative   DS-­‐CMR   study.541   Although  

access   to   CMR   units   with   experience   in   dobutamine   stress   imaging   is   an   issue  

preventing  universal  uptake,  this  highly  accurate  non-­‐invasive  imaging  technique  

has   the  potential   to   improve   specificity  and  hence   reduce  unnecessary   invasive  

angiograms  in  pre-­‐RTx  candidates.  

 

Non-­invasive  Imaging  of  Cardiovascular  Structure  and  Function  

in  CKD  

The   evaluation   of   cardiac   structure   and   function   is   the   cornerstone   of   non-­‐

invasive   cardiac   imaging.   LV   ejection   fraction   (LVEF),   LV   chamber   dimensions  

and  LVM  are  all  closely  associated  with  future  CV  morbidity  and  mortality  in  the  

general  community  and  amongst  CKD  and  ESRF  patients.  Additionally,  measures  

of   left  and  right  atrial   size  and  right  ventricular  size  and   function  are  known  to  

provide  incremental,  clinically  relevant  information  during  cardiac  imaging,  with  

Page 106: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  81  

recent  evidence  supporting  an  association  between  left  atrial  size  and  mortality  

amongst  ESRF  patients  referred  for  RTx.196    

Numerous  methodologies  exist  to  evaluate  cardiac  structure  and  function,  though  

few   are   also   capable   of   evaluating   vascular   structure   and   function  

simultaneously.  The  available  methodologies  are  briefly  discussed.    

 

Trans-­‐thoracic  Echocardiography  

TTE  provides  a  widely  available,  relatively  inexpensive,  portable  and  universally  

safe   method   for   evaluation   of   LV   structure   and   function.   Quantitative   TTE  

imaging   requires   the   acquisition   of   parasternal   and   trans-­‐apical   images   of   the  

heart  via  variable  imaging  windows  in-­‐between  adjacent  ribs.  As  a  result,  TTE  is  

highly  operator  and  acoustic  window  dependent.542-­‐544  Pulmonary  parenchymal  

over-­‐expansion  (such  as  in  COPD),  thoracic  obesity  (or  profound  cachexia  where  

insufficient   tissue   remains   to   allow   optimal   probe   contact),   and   myriad  

musculoskeletal  and  co-­‐morbid  medical  conditions  may  impair  image  quality,  and  

hence  the  reliability  of  quantitative  TTE  results.    

Utilising   2-­‐dimensional   TTE,   LVEF   is   conventionally   evaluated   by   a   method  

known   as   Simpson’s   Bi-­‐plane  Method   of  Discs   (MOD).  Utilising   the   apical   long-­‐

axis  images  in  the  4-­‐chamber  and  2-­‐chamber  projections,  3-­‐dimensional  volumes  

are   calculated   based   on   geometric   assumptions   arising   from   the   two   long   axis  

areas   outlined   in   diastole   and   systole.   Unfortunately,   the   LV   apex   is   frequently  

foreshortened   by   echocardiography,   and   regional   impairment   of   endocardial  

definition   (particularly   affecting   the   anterior   wall)   contribute   to   the   relatively  

high-­‐degree   of   intra-­‐observer   and   inter-­‐observer   variability   described   when  

Page 107: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  82  

measuring  LVEF  by  TTE  –  often  greater  than  20%.545-­‐548  TTE  may  also  be  used  to  

estimate  LVM,  with  robust  prognostic  data  published  in  this  area   in  a  variety  of  

patient  subsets  including  CKD  and  post-­‐RTx  cohorts.  TTE  estimates  of  LVM  have  

been   shown   to   vary   significantly,  with   accuracy   declining   as   distance   from   the  

transducer  increases.543  Thus,  despite  the  numerous  publications  utilising  TTE  to  

evaluate   LVM,   concerns   remain   regarding   the   accuracy   of   this  

methodology.542,543,549,550  

Distinct  from  LV  assessment,  TTE  allows  for  the  reproducible  assessment  of   left  

and   right  atrial   chamber  dimensions,  with   results   comparable   to  3-­‐dimensional  

TTE   and   CMR   measures.551-­‐553   Quantitative   right   ventricular   assessment   is  

suboptimal  by  echocardiography  however,  owing  to  the  non-­‐uniform  geometry  of  

the  right  ventricle  and  limited  number  of  available  imaging  planes  by  TTE.  There  

is   increasing   recognition,   however,   of   the   importance   of   this   chamber   in   the  

development   of   exertional   limitation   in   health   and   disease.554,555   Real-­‐time   3-­‐

dimensional  TTE  may  provide  superior  accuracy  in  this  field  in  the  future.556  

TTE  does  however  provide  valuable  information  regarding  valvular  structure  and  

function,   and   LV   diastolic   function   that   is   superior   to   that   provided   by   other  

available   methodologies.   Furthermore,   recent   advances   in   real-­‐time   3-­‐

dimensional   TTE   have   enhanced   the   capabilities   and   reproducibility   of   this  

ubiquitous   technology.   Of   course,   TTE   is   limited   to   assessment   of   cardiac  

structure  and  function  only,  with  alternative  ultrasound  techniques  necessary  for  

evaluation   of   peripheral   artery   structure   and   function.   Acoustic   window  

limitations   also   prevent   evaluation   of   central   arteries   (e.g.   aorta)   in   the  

determination   of   alterations   in   vascular   structure   and   function   in   the   CKD  

context.  

Page 108: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  83  

 

Single  Photon  Emission  Computed  Tomography  

ECG-­‐gated   myocardial   perfusion   tomography   has   been   validated   in   the  

assessment   of   LV   volumes   and   LVEF.557   As   has   previously   been   demonstrated  

with   TTE,   SPECT   has   reasonable   reliability   in   the   normal   heart,   but   accuracy  

declines  in  the  presence  of  LV  impairment  and  prior  myocardial  infarction.558-­‐562  

SPECT   also   suffers   from  poor   spatial   and   temporal   resolution,   and  necessitates  

exposure   to   ionising   radiation   (10-­‐20mSv  doses  have  been  reported),   lessening  

its  appeal  as  a  routine  screening  investigation,  particularly  for  serial  studies.544    

 

Cardiovascular  Computed  Tomography  

Substantial  advances  have  been  made  in  the  field  of  CV  CT  in  recent  years.563  The  

availability   of  wider  detector   arrays   (256-­‐row  and  320-­‐row),   able   to   image   the  

whole   heart   in   a   single   (or   partial)   gantry   rotation   has   markedly   improved  

cardiac   image   acquisition   and   speed.   This   further   allows   most   studies   to   be  

completed   within   a   single   heartbeat,   and   with   retrospective   gating,   to   acquire  

both   systolic   and  diastolic   images   for  ventricular   (and  atrial)   volume  and  LVEF  

assessment.   The   information   provided   by   such   imaging   is   comparable   to   that  

derived   from   CMR,   and   superior   to   standard   TTE.564-­‐570   CT   however   has  

significantly  inferior  temporal  resolution  to  TTE  and  CMR,  and  spatial  resolution  

during  the  systolic  phases  is  frequently  reduced  to  minimise  radiation  dose.566    

CT  is  able,  by  widening  the  imaging  field,  to  also  image  the  aorta  during  cardiac  

assessment.  Due  to  the  capacity  for  unlimited  image  reconstructions  following  CT  

image  acquisition,  evaluation  of  aortic  compliance  is  possible  (with  retrospective  

Page 109: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  84  

gating)  at  any  level  within  the  field  of  imaging.571  Evaluation  of  peripheral  arterial  

structure  and  function  is  more  difficult,  however.    

Despite   its   numerous   imaging   advantages,   the   most   significant   limitation   to  

imaging   with   CT   is   the   escalating   radiation   exposure   for   repeated   imaging  

(routinely  <2mSv  per  scan).  Thoracic  (and  mammary)  radiation  exposure  during  

cardiac  CT   largely  precludes  use  of   this   investigation   for  routine  cardiovascular  

imaging   in   research   studies,   or   repeated   serial   studies,   particularly   in   young  

patients/subjects  (especially  women),  where  the  potential  for  triggering  delayed  

malignancy  is  greatest.572-­‐574    

 

Cardiovascular  Magnetic  Resonance  Imaging  

Cardiac  Structure  and  Function  

CMR   has   been   recognised   as   the   modern   non-­‐invasive   gold   standard   for   the  

evaluation   of   cardiac   structure   and   function.   It   has   numerous   advantages   over  

TTE,   SPECT   and   the   emerging   technology   of   ECG-­‐gated   multi-­‐detector   CT.  

Without  exposure   to  contrast  or   ionising  radiation,  CMR   is  able   to  provide  high  

quality   epicardial   and   endocardial   border   definition   for   the   left   and   right  

ventricles,  with  the  capacity  to  evaluate  structure  and  function  with  unrestricted  

imaging   planes   during   image   acquisition.   Hence,   CMR   does   not   require   any  

geometric   assumptions   in   determining   volumetric   assessments   of   cardiac  

chambers.    

LV  and  right  ventricular  function  and  mass  can  be  measured  with  high  degrees  of  

accuracy  and  reproducibility  by  CMR.568,575-­‐578   In   fact,  TTE  has   less  than  50%  of  

Page 110: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  85  

the  precision  of  CMR  in  evaluation  of  LVM  –  a  strong  independent  predictor  of  CV  

events  in  ESRF  and  post-­‐RTx  patients.549,550  

In   this   regard,   CMR   has   demonstrated   the   lowest   standard   deviation   in  

differences   between   inter-­‐study   measurements   for   left   ventricular   volumetric  

indices   and   LVEF.579   Such   improvements   in   inter-­‐study   standard   deviations  

allows  for  a  squared  reduction  in  required  sample  sizes  for  research  studies  –  i.e.  

halving  of  the  standard  deviation  allows  for  a  quartering  of  the  required  sample  

size.  It  has  been  determined  that  to  undertake  a  study  evaluating  an  intervention  

aiming  to  achieve  a  10%  reduction  in  left  ventricular  mass  (with  80%  power,  and  

p=0.05),   TTE   would   require   a   sample   size   of   505.   For   the   demonstration   of   a  

statistically   significant   reduction   in   LVM   of   10%,   CMR  would   require   a   sample  

size  of  only  14.544,549  

Right  ventricular  (RV)  size  and  function  is  also  readily  assessable  by  CMR.578  CMR  

has   become   the   non-­‐invasive   gold-­‐standard   investigation   for   this   purpose   also,  

providing   markedly   improved   assessment   of   alterations   in   RV   structure   and  

function   in  healthy  subjects  and  a  variety  of  disease  states,   including  congenital  

heart   disease   states,   arrhythmogenic   right   ventricular   cardiomyopathy   (ARVC),  

atrial  septal  defects  and  primary  PHT.555,556,578,580-­‐583  RV  mass  measurements  are  

also  possible  by  CMR,  with   validation  previously  performed  against  ex   vivo   calf  

hearts,  with  a  high  level  of  accuracy  demonstrated.581  Although  potentially  more  

technically   challenging   due   to   the   highly   trabeculated   nature   of   the   right  

ventricle,   such   assessments   may   have   clinical   utility   in   disease   states   that  

contribute  to  the  development  of  PHT.  

Atrial   size   and   function   can   be   readily   assessed   by   CMR   during   a   conventional  

cardiac   study.   Both   area   and   volumes   may   be   calculated,   with   atrial   function  

Page 111: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  86  

assessable   by   atrial   ejection   fractions.   In   this   regard,   the   atria   may   be  

interrogated  in  the  horizontal  long  axis,  short  axis  or  vertical  long  axis  to  derive  a  

true  3-­‐dimensional  volume  in  atrial  diastole  and  systole,  although  horizontal  long  

axis  imaging  is  most  commonly  utilised.584  Furthermore,  left  and  right  ventricular  

diastolic   function   may   also   be   estimated   by   mitral   and   tricuspid   inflow  

characteristics   during   phase-­‐contrast   CMR   sequences,   deriving   waveforms  

similar   to   that   demonstrated   by   Doppler   echocardiographic   techniques.585-­‐588  

Even  pulmonary  vein  flow  characteristics  may  be  assessable  by  CMR,  in  imitation  

of  echocardiographic  assessments.589    

Hence,   CMR   not   only   provides   superior   accuracy   to   other   available   imaging  

techniques,   but   allows   a   more   comprehensive   assessment   of   cardiovascular  

structure   and   function,   and   enables   research   into   potentially   beneficial  

therapeutic  interventions  to  be  undertaken  with  more  readily  achievable  subject  

sample  sizes.  

 

Vascular  Structure  and  Function  

Unlike   the   aforementioned   technologies,   CMR   is   also   able   to   evaluate   dynamic  

aortic,  carotid  and  peripheral  arterial  structure  and  function  in  the  same  setting.  

Measures   of   aortic   flow   and   compliance   have   been   widely   published   utilising  

CMR   techniques147,259,389-­‐391,394,395,   with   growing   evidence   supporting   a   link  

between  declining  aortic  distensibility  and  increased  morbidity  and  mortality  in  

ESRF  patients.333,371,395,406  Furthermore,  there  is  evidence  that  aortic  distensibility  

can  be  favourably  modified  by  therapeutic  interventions.590    

Brachial   artery   FMD,   as   previously   discussed,   is   a   widely   utilised   and  

prognostically   relevant   investigation257,266,591,   most   commonly   performed   using  

Page 112: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  87  

ultrasound  techniques.254,258  Impairment  of  endothelial  function  as  measured  by  

FMD  has  also  been  associated  with  increased  central  vascular  stiffness,  providing  

a   link   between   functional   and   structural   vascular   changes   in   the   initiation   and  

perpetuation   of   disease.259,592   Brachial   artery   FMD   has   been   demonstrated   to  

improve   following   RTx,   and   thus   provides   a   valuable,   modifiable   marker   of  

vascular  structure  and  function  in  response  to  therapeutic  interventions  in  ESRF  

and  post-­‐RTx.470,593    

FMD  is  able  to  be  reliably  assessed  utilising  CMR.  CMR  allows  for  assessment  of  

brachial  artery  area,  with  three-­‐dimensional  reconstructions  allowing  for  a  truly  

perpendicular   imaging   plane   –   a   factor   that   is   difficult   to   reliably   achieve  with  

ultrasound  techniques.594  Furthermore,  edge  detection  and  image  reproducibility  

are   critical   to   detecting   small   changes   in   vessel   diameter   by   ultrasound.   For  

example,  an  11.7%  increase  in  brachial  artery  diameter  from  3.65mm  to  4.08mm  

with   hyperaemia   requires   the   reliable   detection   of   a   0.43mm   change   in   vessel  

diameter,   unaffected   by   altered   imaging   plane   or   vessel   deformation.   CMR  

provides   for   the   non-­‐invasive,   reproducible   evaluation   of   cross-­‐sectional   vessel  

area,  vessel  compliance  over  the  cardiac  cycle  and  even  quantification  of  brachial  

artery  flow,  if  desired.  Although  the  prognostic  value  of  brachial  artery  flow  and  

shear   stress   calculations   remains   to   be   determined,   recent   work   suggests   a  

stronger   association   between   vessel   flow   and   CV   risk   factors   than   traditional  

FMD  measures.595  Such  observations  potentially  open  a  new  avenue  of  research  

in  this  area.  

Thus,   CMR   is   able   to   provide   accurate,   reproducible   and   comprehensive  

assessments   of   cardiac   and   vascular   structure   and   function   within   a   single  

investigation.  Such  utility  provides  the  basis  for  the  Projects  outlined  in  this  PhD.    

Page 113: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  88  

Aims  of  this  Thesis  

The   aim   of   the   Studies   outlined   within   this   Thesis   is   to   provide   insights   into  

alterations   in   CV   structure   and   function   in   the   context   of   routine   therapeutic  

interventions  and  investigations  in  ESRF  and  following  RTx.    

Specifically,  the  broad  aims  of  the  Studies  outlined  include:  

1. To   evaluate   alterations   in   CV   structure   and   function   following   elective  

AVF-­‐creation  in  pre-­‐dialysis  ESRF.  

2. To   evaluate   alterations   in   CV   structure   and   function   following   elective  

AVF-­‐ligation  following  stable,  successful  RTx.    

3. To   evaluate   the   diagnostic   accuracy   of   DS-­‐CMR   in   the   detection   of  

haemodynamically  significant  CAD  prior  to  RTx.  

4. To  evaluate  the  impact  of  ESRF  on  dynamic  coronary  endothelial  function.  

 

 

 

 

Page 114: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  89  

 

METHODS  

Page 115: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  90  

Research  Ethics  Considerations  

All   patients   involved   in   the   research   studies   outlined   herein   provided   written  

informed   consent   following   approval   of   the   study   protocols   by   the   Research  

Ethics  Committee  of  the  Royal  Adelaide  Hospital.    

 

Study  1:  Evaluation  of  Alterations  in  Cardiovascular  Structure  

and  Function  Following  Elective  Arterio-­Venous  Fistula  Creation  

in  Pre-­Dialysis  End-­Stage  Renal  Failure  

 

Subjects  

Inclusion  Criteria  

Patients  aged  over  18-­‐years  under  the  care  of  the  Royal  Adelaide  Hospital  Renal  

Medicine  Unit  for  advanced,  progressive  CKD  were  eligible  for  the  study.  Patients  

were   enrolled   prior   to   undergoing   clinically-­‐driven,   elective   surgical   AVF  

formation   in   preparation   for   anticipated   haemodialysis   commencement   in   the  

subsequent  6-­‐12months,  as  clinically  indicated.  

Exclusion  Criteria  

Patients   with   acute,   or   rapidly   deteriorating   renal   dysfunction   anticipated   to  

require  haemodialysis  within  the  next  6months.  

CKD,  ESRF  or  post-­‐RTx  patients  with  a  history  of  previous  AVF  creation.  

Solid  organ  or  haematological  malignancy  in  previous  five  years.    

Current  or  planned  pregnancy  (within  next  9-­‐months)  

Page 116: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  91  

Presence  of  contraindications  to  CMR:  

Cardiac  Pacemaker  /  Defibrillator  or  retained  pacemaker  leads  

Cerebral  aneurysm  clips  

Implanted  neuro-­‐stimulators  or  electronic  devices  including  Cochlear  Implant  

History  of  penetrating  eye  injury,  or  presence  of  ocular  metallic  fragments  

Presence  of  shrapnel  

Claustrophobia    

Presence  of  Specific  Contra-­indications  to  the  use  of  Glyceryl-­trinitrate:  

Hypertrophic  obstructive  cardiomyopathy  

Haemodynamically  significant  aortic  or  mitral  stenosis  

Recent  cerebral  haemorrhage  /  head  trauma  

Concomitant  sildenafil,  tadalafil  or  vardenafil  therapy  

 

Study  Investigations  

Following   enrolment   and   informed   consent,   all   patients   were   scheduled   for  

elective   surgical   AVF-­‐formation   as   per   the   clinical   practice   of   the   RAH   Renal  

Medicine  and  Vascular  Surgery  Units.    

Clinical  history  and  study  CMR  evaluation  of  baseline  CV  structure  and  function  

were   scheduled   to   occur   two   weeks   prior   to   the   elective   surgical   date   (CMR  

protocol  detailed  below  [Page  94]).  

At   six-­‐months   following   elective   AVF-­‐formation,   repeat   clinical   history   and  

identical  CMR  study  were  performed  to  evaluate  alterations  in  CV  structure  and  

function   related   to   AVF-­‐formation   and   maturation   in   the   context   of   declining  

renal  function.  The  CMR  protocol  is  summarized  below  [Page  94].  

Page 117: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  92  

Study  2:  Evaluation  of  Alterations  in  Cardiovascular  Structure  

and  Function  Following  Elective  Arterio-­Venous  Fistula  Ligation  

Following  Successful,  Stable  Renal  Transplantation  

 

Subjects  

Inclusion  Criteria  

Patients  aged  over  18-­‐years  under  the  care  of  the  Royal  Adelaide  Hospital  Renal  

Medicine   Unit   following   stable,   successful   RTx,   with   a   persistently   functioning  

AVF   were   considered   for   enrolment   prior   to   clinically-­‐indicated,   surgical   AVF  

ligation.      

Exclusion  Criteria  

Patients   with   unstable   or   deteriorating   post-­‐RTx   renal   function   anticipated   to  

require  reinstitution  of  haemodialysis  within  the  subsequent  12-­‐24months.    

Solid  organ  or  haematological  malignancy  in  previous  five  years.    

Current  or  planned  pregnancy  (within  next  9-­‐months)  

Presence  of  contraindications  to  CMR:  

Cardiac  Pacemaker  /  Defibrillator  or  retained  pacemaker  leads  

Cerebral  aneurysm  clips  

Implanted  neuro-­‐stimulators  or  electronic  devices  including  Cochlear  Implant  

History  of  penetrating  eye  injury,  or  presence  of  ocular  metallic  fragments  

Presence  of  shrapnel  

Claustrophobia    

Page 118: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  93  

Presence  of  Specific  Contra-­indications  to  the  use  of  Glyceryl-­trinitrate:  

Hypertrophic  obstructive  cardiomyopathy  

Haemodynamically  significant  aortic  or  mitral  stenosis  

Recent  cerebral  haemorrhage  /  head  trauma  

Concomitant  sildenafil,  tadalafil  or  vardenafil  therapy  

 

Study  Investigations  

Following   enrolment   and   informed   consent,   all   patients   were   scheduled   for  

elective   surgical   AVF-­‐ligation   as   per   the   clinical   practice   of   the   RAH   Renal  

Medicine  and  Vascular  Surgery  Units.    

Clinical  history  and  study  CMR  evaluation  of  baseline  CV  structure  and  function  

were   scheduled   to   occur   two   weeks   prior   to   the   elective   surgical   date   (CMR  

protocol  detailed  below).  

At  six-­‐months  following  elective  AVF-­‐ligation,  repeat  clinical  history  and  identical  

CMR  study  were  performed  to  evaluate  alterations   in  CV  structure  and  function  

related  to  AVF-­‐ligation  in  the  context  of  continued  stable  renal  function  following  

successful  RTx.    

 

Page 119: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  94  

Cardiovascular  Magnetic  Resonance  Protocol  –  Studies  1  and  2  

All  CMR  studies  were  performed  utilising  the  Siemens  Avanto  1.5  Tesla  magnetic  

resonance   imaging   scanner   (Siemens   Medical   Imaging,   Erlangen,   Germany)  

located   within   the   Cardiovascular   Investigation   Unit   of   the   Royal   Adelaide  

Hospital.    

 

Cardiac  Protocol  

All   CMR   studies  were   performed  with   the   subjects   in   a   supine   position,  with   a  

phased-­‐array   surface   coil   positioned  over   the   thorax.   Initial   long   axis   reference  

views  were  performed  to  enable  optimal  placement  of  the  7  to  12  parallel  short-­‐

axis  slices  from  the  mitral  annulus  to  beyond  the  left  ventricular  apex  (Figure  12).  

Horizontal  and  vertical  long  axis  views  were  also  taken  of  the  left  atrium  and  left  

ventricle,   as   well   as   a   long   axis   view   of   the   left   ventricular   outflow   tract.   All  

images   were   acquired   during   expiratory   breath-­‐hold   (approximately   8-­‐12  

seconds)   with   retrospectively   ECG-­‐gated   True-­‐FISP   (Fast   Imaging   with   Steady  

State   Free   Precession)   sequences.   Section   thickness   was   6mm   with   short-­‐axis  

intersection   intervals  of  4mm.  Acquisition  time  was  determined  to   include  90%  

of   the   R-­‐R   interval,   image   matrix   256   x   150,   Field   of   View   (FOV)   380mm,  

Repetition   Time   (TR)   52ms,   Echo   Time   (TE)   1.74ms,   flip   angle   700   with   8-­‐15  

cardiac  cycles  required  per  image.    

 

Page 120: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  95  

 

Figure  12:   Representation   of   CMR   methodology   for   the   use   of   the   long   axis  

reference   images   (horizontal   long  axis   image   shown  on   left)   to   enable  

acquisition  of  sequential,  parallel  ventricular  short-­axis  images  from  the  

atrio-­ventricular   plane   to   the   ventricular   apices   (end-­diastolic   images  

shown).    

 

Offline   analysis  was   performed   to   determine   LA,   RA,   LV   and  RV   dimensions   in  

diastole   and   systole.     Diastolic   LVM   was   also   concurrently   determined.   Image  

analysis  was  performed  utilising  proprietary  software  (Argus  software,  Siemens  

Medical  Imaging,  Erlangen,  Germany).  Ventricular  short  axis  images  were  utilized  

for   ventricular   assessment,   with   epicardial   and   endocardial   LV   contours   and  

endocardial   RV   contours  manually   traced   at   diastole   (start   of   the  ECG  R-­‐wave)  

and   at   end-­‐systole   (determined  by   the   timing  of   the   smallest   ventricular   cavity  

size).  As  per   standard  CMR  protocol,  myocardial   trabeculations  and  unattached  

papillary  muscles  were  ascribed  to  the  left  ventricular  cavity.  The  basal  LV  slice  

was  determined  to  be  that  slice  where  at  least  50%  of  the  cavity  was  surrounded  

Page 121: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  96  

by  ventricular  myocardium,   and   the   apical   slice  was  defined  as   the  most   apical  

slice   still   containing   intra-­‐cavity  blood-­‐pool.596,597  A   similar   assessment  of  basal  

LV  slice  was  then  undertaken  at  end-­‐systole,  with  the  overall  number  of  LV  short-­‐

axis   images   generally   1-­‐2   slices   less   at   end-­‐systole,   due   to   the  well   recognized  

phenomenon  of  ventricular  shortening  associated  with  systolic  contraction.544,598  

If  the  aortic  valve  appeared  in  the  basal  slice  at  diastole  or  systole,  only  the  intra-­‐

cavity  volume  up  to  the  level  of  the  aortic  valve  was  included  as  a  component  of  

the  ventricular  volume,  as  per  accepted  protocol.597    

For   the   right   ventricle,   intra-­‐cavity   volumes   below   the   level   of   the   pulmonary  

valve  were  included  in  the  analysis.  For  the  RV  inflow  tract,  intra-­‐cavity  volumes  

were   excluded   if   the   surrounding   myocardium   was   thin   and   not   trabeculated,  

indicative  of  presence  within  the  RA  cavity.596    

By   measurement   of   diastolic   and   end-­‐systolic   volumes   for   both   left   and   right  

ventricles,  and  tracing  of  the  epicardial  LV  contour  at  end-­‐diastole,  left  and  right  

ventricular   end-­‐diastolic   volumes,   end-­‐systolic   volumes,   stroke   volumes,  

ejections  fractions,  cardiac  output  and  LVM  were  all  able  to  be  derived.    

Left  and  right  atrial  area  were  assessed  in  the  horizontal  long-­‐axis  in  atrial  end-­‐

diastole  (largest  area)  immediately  prior  to  mitral  valve  opening.  

Owing   to   the   reduced   accuracy   in   contour   tracing   by   untrained,   inexperienced  

observers599,   all   study   CMR   images   were   evaluated   by   a   single   experienced  

operator  blinded  to  the  name  and  date  of  the  Study.    

 

Page 122: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  97  

Vascular  Protocol  

Aortic  Distensibility  

Immediately   following   completion  of   the   cardiac  protocol,  ECG-­‐gated  True-­‐FISP  

cine  sequences  were  acquired  of   the  ascending  aorta,  descending  thoracic  aorta  

and  proximal  abdominal  aorta  in  a  sagittal  oblique  orientation.  Utilising  the  level  

of   the   right   pulmonary   artery   as   the   reference   level   in   each   patient,   a  

perpendicular   cross-­‐sectional   True-­‐FISP   cine   image   was   then   taken   at   the  

ascending  aorta  and  the  proximal  descending  aorta.  A  final  True-­‐FISP  cine  image  

was  then  acquired  at  the  level  of  the  distal  descending  aorta,  5-­‐10cm  distal  to  the  

diaphragm  (Figure  13),  as  previously  described.394    

Brachial  artery  blood  pressure  was  taken  concurrently  using  an  MRI  compatible  

automated   non-­‐invasive   sphygmomanometer,   with   the   results   of   three  

measurements   averaged,   and   any  outliers  discarded   and   repeat   blood  pressure  

taken  as  required.    

 

Page 123: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  98  

 

Figure  13:   Sagittal  oblique  image  of  the  aorta  (left)  with  pictorial  representation  of  

the   reference   levels   used   in   the   acquisition   of   cross-­sectional   aortic  

images  at  the  Ascending  Aorta  (AA),  Proximal  Descending  Aorta  (PDA)  

and  Distal  Descending  Aorta  (DDA)  (right).    

 

Aortic  distensibility  was  then  determined  offline  by  manually  tracing  aortic  cross-­‐

sectional   images   at   the   level   of   the   ascending   aorta,   proximal   descending   aorta  

and   distal   descending   aorta   in   end-­‐diastole   (minimum   lumen   area)   and   peak-­‐

systole  (maximum  lumen  area).  Aortic  distensibility  was  derived  by  the  following  

equation:  

 

Page 124: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  99  

where   pulse   pressure  was   derived   from   the   non-­‐invasive   brachial   artery   blood  

pressure  during   image  acquisition.  Aortic  area  was  measured   in  mm2  and  pulse  

pressure   measured   in   mmHg,   with   the   final   unit   of   aortic   distensibility  

represented  as  mmHg-­‐1,  by  standard  convention.  Measures  of  aortic  distensibility  

were   recorded   at   each   location   individually,   and   then   the   three  measurements  

were  averaged  for  an  indicative  average  aortic  distensibility  for  each  subject.  Our  

research   group   has   previously   published   robust   intra-­‐   and   inter-­‐individual  

reproducibility  for  this  technique  (1%  and  2%  respectively).394    

 

Brachial  Artery  Blood  Flow  –  Arterio  Venous  Fistula  Arm  

Patients   were   then   removed   from   the   scanner   briefly,   to   allow   removal   of   the  

thoracic   phased-­‐array   surface   coil   and   placement   of   a   single   four-­‐channel  

Machnet  phased-­‐array  surface  coil  (Machnet,  Netherlands)  overlying  the  brachial  

artery   ipsilateral   to   the   site   of   AVF   surgery.   Scout   “time   of   flight”   images  were  

acquired  of  the  brachial  artery  to  allow  positioning  of  the  cross-­‐sectional  plane  of  

brachial   artery   imaging,   proximal   to   the   brachial   bifurcation.   A   single,   velocity  

encoded  sequence  was  acquired  during  free-­‐breathing,  with  sequence  acquisition  

individually  optimized  for  peak  brachial  artery  flow  velocity.    

Analysis   of   brachial   artery   flow   was   performed   utilizing   proprietary   software  

(Argus   software,   Siemens   Medical   Imaging,   Erlangen,   Germany),   following  

manual   tracing   of   the   brachial   artery   in   each   of   twenty-­‐five   phases   over   the  

cardiac  cycle.  Brachial  artery  flow  was  evaluated  prior  to  AVF-­‐surgery  and  at  6-­‐

months  post-­‐surgery.    

 

Page 125: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  100  

Brachial  Artery  Flow  Mediated  Dilatation  

Patients  were  again  briefly  removed  from  the  scanner,   to  allow  repositioning  of  

the   single   four-­‐channel   Machnet   phased-­‐array   surface   coil   (Machnet,  

Netherlands)   to   overlay   the   brachial   artery   contralateral   to   the   site   of   AVF  

surgery.   A   manual   sphygmomanometer   cuff   was   then   applied   to   the   forearm  

ipsilateral  to  the  imaging  coil  prior  to  imaging.  Scout  “time  of  flight”  images  of  the  

brachial   artery   were   then   acquired   to   allow   optimal   positioning   of   the   cross-­‐

sectional  plane  of  brachial  artery  imaging,  proximal  to  the  brachial  bifurcation.    

At  baseline,  the  brachial  artery  cross-­‐sectional  area  was  evaluated  utilising  True-­‐

FISP  cine  imaging  at  a  single  location  at  end-­‐diastole.  In  a  sub-­‐group  within  each  

study,  baseline  brachial  artery  flow  was  also  evaluated  utilising  velocity-­‐encoded  

imaging.   The   forearm   sphygmomanometer   cuff   was   then   inflated   to   50mmHg  

above   systolic   blood   pressure   and   pressure   maintained   for   5-­‐minutes,   as   per  

validated   protocol.254,258,594   One   minute   following   release   of   the   occlusive   cuff,  

brachial  artery  endothelium-­‐dependent  vascular   function  was  assessed  utilizing  

repeat  True-­‐FISP  cine  imaging  at  the  same  location  as  the  baseline  image.  

Ten  minutes  following  release  of  the  cuff  pressure,  repeat  baseline  cine  imaging  

was   performed   (again   at   the   same   cross-­‐sectional   location   within   the   brachial  

artery),   prior   to   administration   of   400mcg   of   sublingual   GTN.   Three   minutes  

following   GTN   administration,   True-­‐FISP   cine   sequences   were   repeated,   for  

evaluation  of  endothelium-­‐independent  vascular  function.254    

Offline   analysis   was   performed   using   proprietary   software   (Argus   software,  

Siemens   Medical   Imaging,   Erlangen,   Germany),   with   manual   tracing   of   the  

brachial  artery  lumen  area  in  each  of  the  cine  and  velocity  encoded  acquisitions.  

Endothelium-­‐dependent   responses   were   determined   by   percentage   change   in  

Page 126: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  101  

vessel   area   following   ischaemic   stimulus,   and   endothelium-­‐independent  

responses   were   determine   by   percentage   change   in   vessel   area   following   GTN  

administration.  

 

Summary  of  CMR  Investigations  for  Arterio-­‐Venous  Fistula  Studies  

The  CMR  protocol  outlined  was  performed  1-­‐2  weeks  prior   to  planned  elective  

AVF  surgery,  and  the  identical  protocol  was  repeated  6-­‐months  following  surgery  

for  comparison  with  pre-­‐surgical  results.    

A  6-­‐month  follow-­‐up  period  was  chosen  for  the  AVF  studies  following  evaluation  

of  the  available  literature  in  this  field.  Studies  utilising  relatively  short  follow-­‐up  

(<2-­‐months)   periods   have   demonstrated   alterations   in   cardiac   output,   cardiac  

chamber   size,   and   neurohormonal  measures   following  AVF   creation.411,412   Such  

studies  were  of   insufficient   follow-­‐up  duration   to  enable  evaluation  of   adaptive  

changes   in   LVM   however.170   Longer   follow-­‐up   studies   following   either  

spontaneous   or   deliberate   AVF   closure   have   evaluated   echocardiographic  

alterations   in   cardiac   structure   and   function   at   6-­‐months,   10-­‐months   and   21-­‐

months   with   similar   signals   regarding   the   potential   for   advantageous   CV  

remodeling   following   AVF-­‐ligation.438,439,462   Thus,   a   6-­‐month   follow-­‐up   period  

was  chosen  to  ensure  sufficient  time  to  allow  acute  haemodynamic  alterations  to  

induce  any  relevant  adaptive  cardiac  remodeling,  but  for  the  follow-­‐up  duration  

to  not  be  so   lengthy  as   to  prevent  completion  of   the  Studies  within   the  allotted  

PhD  period,  or  prior  to  the  commencement  of  dialysis  in  the  majority  of  subjects.  

On   the   basis   of   the   available   literature,   we   believed   6-­‐months   to   be   an  

appropriate  duration   to   allow   firm   conclusions   to   be  determined   regarding   the  

Page 127: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  102  

potential   longer-­‐term   impact   of   AVF   creation   /   ligation   on   CV   structure   and  

function,  and  to  be  of  sufficient  length  to  determine  that  where  alterations  were  

not   seen,   such  parameters,  perhaps,  were  either   less  malleable,  or   could  not  be  

influenced  by  the  presence  or  absence  of  an  AVF.    

Page 128: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  103  

Study  3:  Evaluation  of  the  Diagnostic  Accuracy  of  Dobutamine-­

Stress  Cardiac  MRI  in  the  Detection  of  Angiographically-­

significant  Coronary  Artery  Disease  prior  to  Renal  

Transplantation  

 

Subjects  

Inclusion  Criteria  

Patients  aged  over  18-­‐years  under  the  care  of  the  Royal  Adelaide  Hospital  Renal  

Medicine   Unit   being   considered   for   acceptance   onto   the   South   Australian   RTx  

waiting   list,   for   the   treatment  of  advanced  CKD  /  ESRF  and  who  were  clinically  

deemed  to  be  at  high-­‐risk  of  significant  CAD  by  the  RTx  assessment  team.    

Exclusion  Criteria  

Standard,  clinically  driven  contraindications  to  RTx  

Presence  of  contraindications  to  CMR:  

Cardiac  Pacemaker  /  Defibrillator  or  retained  pacemaker  leads  

Cerebral  aneurysm  clips  

Implanted  neuro-­‐stimulators  or  electronic  devices  including  Cochlear  Implant  

History  of  penetrating  eye  injury,  or  presence  of  ocular  metallic  fragments  

Presence  of  shrapnel  

Claustrophobia    

Presence  of  Specific  Contra-­indications  to  the  use  of  Dobutamine:  

Hypertrophic  obstructive  cardiomyopathy  

Haemodynamically  significant  aortic  or  mitral  stenosis  

Page 129: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  104  

Recent  cerebral  haemorrhage  /  head  trauma  

Presence  of  Specific  Contra-­indications  to  Invasive  Coronary  Angiography:  

Absence  of  suitable  femoral  arterial  access  to  allow  the  performance  of  ICA  

Allergy  or  other  non-­‐renal  intolerance  to  iodinated  contrast  media  

 

Study  Investigations  

Dobutamine  Stress  Cardiac  MRI  

Patients  will  be  required  to  refrain  from  anti-­‐anginal  medications  including  beta-­‐

blockers,  calcium  channel  antagonists  and  nitrate  medications  for  a  period  of  48-­‐

hours   prior   to   the   scheduled   procedure.   On   the   day   of   the   procedure,   subjects  

were  required  to  fast  for  4-­‐hours  prior  to  the  DS-­‐CMR  and  blood  sugar  readings  

were   taken   in   diabetic   subjects.   A   single   18-­‐gauge   intra-­‐venous   cannula   was  

inserted  and  body  weight  taken  to  determine  the  appropriate  dobutamine  dose.  

All  DS-­‐CMR  studies  were  performed  with  the  subjects  in  a  supine  position,  with  a  

phased-­‐array   surface   coil   positioned  over   the   thorax.   Initial   long   axis   reference  

views  were  performed  to  enable  optimal  placement  of  the  three  ventricular  short  

axis  and  three  ventricular  long  axis  views  (horizontal  long  axis,  vertical  long  axis  

and  longitudinal   left  ventricular  outflow  tract)  evaluating  all  17  American  Heart  

Association  myocardial  segments.600,601    

Resting  images  were  acquired  during  expiratory  breath-­‐hold  (approximately  5-­‐8  

seconds)   with   retrospectively   ECG-­‐gated   True-­‐FISP   sequences   (25   phases   per  

cardiac   cycle;   TR   2.7ms,   TE   1.4ms,   flip   angle   600).   Typical   in-­‐plane   spatial  

resolution  was  1.8  x  1.8mm  with  section  thickness  of  6mm,  similar  to  previously  

published  work  in  this  field.539    

Page 130: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  105  

Dobutamine   infusion  was  undertaken  as  per  standard  protocol  –  progressive  3-­‐

minutely  intravenous  infusion  of  10mcg/kg/min,  20mcg/kg/min,  30mcg/kg/min  

and   40mcg/kg/min   ±   atropine   up   to   1.2mg   (in   600mcg   increments)   until  

achievement   of   ≥85%   of   maximal   expected   heart   rate   (220   –   age   [beats   per  

minute]).  Standard  termination  criteria  for  dobutamine  cessation  were  applied.  

Regional   wall   motion   was   assessed   at   each   dose   increment,   utilising   the  

aforementioned  views,  with  segmental  analysis  of   the  cine  scans  performed  on-­‐

line   throughout   the   procedure   as   a   component   of   the   procedural   safety  

monitoring.   Offline   analysis   was   subsequently   performed   for   the   purposes   of  

clinical   and   research   reporting   by   consensus   of   two   experienced   observers  

blinded   to   the   results   of   the   subsequent   coronary   angiography.   A   standard  

segmental   wall   motion   scoring   system   was   utilised   (1=normokinesis,  

2=hypokinesis,  3=akinesis,  4=dyskinesis).  For  dobutamine  studies,  ischaemia  was  

defined   as   ≥1   segment   showing   inducible   regional   wall  motion   abnormality   as  

defined  by  deterioration  in  segmental  wall  motion  score  of  ≥1  grade.539    

 

Invasive  Coronary  Angiography  

On  a  separate  day  following  performance  of  the  DS-­‐CMR,  patients  were  scheduled  

to  undergo  ICA.  On  the  day  of  the  procedure,  subjects  were  required  to  fast  for  6-­‐

hours  prior  to  the  procedure  and  blood  sugar  readings  were  assessed  in  diabetic  

subjects.   A   single   18-­‐gauge   intra-­‐venous   cannula  was   inserted   and   intravenous  

saline   administered   at   a   rate   of   80mL/hour   to   a   maximum   of   500mL   pre-­‐

procedure   in   non-­‐dialysis-­‐dependent   patients   with   significant   residual   urine  

output.    

Page 131: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  106  

Standard   coronary   angiography   was   performed   via   femoral   arterial   access.  

Standard  Judkins  catheters  were  used  to  engage  the  left  main  and  right  coronary  

arteries,  with  dedicated  views  taken  of  the  left  main,  left  anterior  descending,  left  

circumflex   and   right   coronary   arteries   and   their   branches   utilizing   iodinated  

contrast  (Iohexol-­‐350).    

Offline   analysis   of   angiographic   stenosis   severity   was   performed   by   two  

experienced   observers,   with   clinical   significance   determined   for   coronary  

stenoses  of  ≥70%  in  luminal  diameter,  by  visual  estimation.    

Comparison   of   correlation   of   DS-­‐CMR   and   invasive   coronary   angiographic    

findings  was  determined   following   independent   reporting   of   each   investigation  

by  observers  blinded  to  the  results  of  the  alternative  investigation.  Correlation  of  

significant   inducible  wall  motion   abnormalities   during  DS-­‐CMR  with   territories  

supplied   by   epicardial   coronary   arteries   was   based   on   individual   coronary  

dominance.  

 

Page 132: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  107  

Study  4:  Evaluation  of  Dynamic  Coronary  Endothelial  Function  in  

End-­Stage  Renal  Failure  

 

Subjects  

Inclusion  Criteria  

Subjects  –  Chronic  Kidney  Disease  Study  Cohort  

Patients   aged   18-­‐75   years   under   the   care   of   the  Royal   Adelaide  Hospital   Renal  

Medicine   Unit   being   considered   for   RTx   for   the   treatment   of   advanced   CKD   /  

ESRF  and  who  are  clinically  deemed  to  require  ICA  prior  to  listing  as  a  candidate  

by  the  South  Australian  RTx  assessment  team.    

 

Subjects  –Non-­Chronic  Kidney  Disease  Study  Cohort  

Patients   aged   18-­‐75   years   undergoing   clinically   indicated   ICA   at   the   Royal  

Adelaide  Hospital  Cardiovascular   Investigation  Unit,  and  who  are   found  to  have  

only  minor  epicardial  coronary  artery  stenoses  and  CrCL≥60mL/min.  

 

Exclusion  Criteria  

Presence   of   significant   co-­‐morbidity   that,   in   the   opinion   of   the   treating  

Cardiologist,   may   be   expected   to   cause   death   or   significant   disability   in   the  

following  12-­‐months.  

Presence  of  Specific  Contra-­indications  to  Invasive  Coronary  Angiography:  

Absence  of  suitable  femoral  arterial  access  to  allow  the  performance  of  ICA  

Allergy  or  other  non-­‐renal  intolerance  to  iodinated  contrast  media  

Page 133: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  108  

Presence   of   Specific   Contra-­indications   to   Coronary   Endothelial   Function  

Assessment:  

Coronary   anatomy   unsuitable   for   Doppler   Flo-­‐wire   instrumentation   –   e.g.  

excessive  coronary  tortuosity  or  heavy  calcification  

Presence   of   epicardial   coronary   artery   stenoses   in   the   target   vessel   of   >20%  

luminal  diameter  

Haemodynamic  instability  as  to  prevent  cardiac  catheterisation.  

Presence   of   Clinical   Characteristics   Unfavourable   for   Accurate   Assessment   of  

Coronary  Endothelial  Function:  

Presence  of  cardiomyopathy  

Presence   of   diffuse   atherosclerosis   within   the   Study   vessel   as   determined   by  

invasive  angiography  

Prior  CABG  

 

Study  Investigations  

Coronary  Endothelial  Function    

At   the   time   of   Coronary   Angiography,   a   0.014-­‐inch   Coronary   Doppler   Flo-­‐wire  

(Volcano   Therapeutics,   CA,   USA)  was   advanced   into   the   study   vessel   (the   LAD  

was  chosen  preferentially)  via  an  intra-­‐coronary  infusion  catheter,  following  the  

administration   of   therapeutic   heparin.   The   Flo-­‐wire   was   positioned   in   the  

proximal  or  mid-­‐segment  of  the  Study  vessel  so  as  to  obtain  stable  Doppler  flow  

velocity   signals.   Resting   coronary   flow   velocities  were   recorded   and   epicardial  

coronary   diameter   was   determined   5mm   distal   to   the   tip   of   the   coronary  

guidewire  by  QCA.    

Page 134: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  109  

Protocol  consisted  of  the  following  interventions:  

  -­‐  5%  dextrose  control  infusion  for  2-­‐minutes  (Control  1)  

  -­‐  Acetylcholine  (3-­‐minute  infusions  of  Ach  10-­‐7M  [1.6mcg/min],  then  10-­‐6M  

[16mcg/min)  

  -­‐  5%  dextrose  control  infusion  for  5-­‐minutes  (Control  2)  

  -­‐  bolus  dose  of  GTN  (50mcg)  

  -­‐  bolus  dose  of  Adenosine  (48mcg)  

as  per  validated  protocol.602,603  At  the  completion  of  each  intra-­‐coronary  infusion,  

a   coronary   angiogram   was   performed   using   9mL   of   non-­‐ionic   contrast  

(Omnipaque,  GE  Healthcare,  Waukesha,  USA)  injected  through  a  Medrad  infusion  

pump   at   5mL/s,   with   images   saved   for   offline   analysis.   Doppler   indices,  

haemodynamic   data   (systemic   blood  pressure   and  heart   rate)   and  ECG   rhythm  

strip  were  recorded  continuously  throughout  the  study  for  off-­‐line  analysis.    

Coronary  endothelial  function  data  were  presented  as  response  to  Ach  10-­‐6M  for  

CBF   and   vessel   diameter.   Values   for   Ach   10-­‐7M   used   if   severe   epicardial  

constriction   response   to   10-­‐6M   precluded   data   collection.   Values   for   ESRF   and  

non-­‐CKD   cohorts   were   then   compared   for   evaluation   of   coronary   endothelial  

dysfunction  in  ESRF  vs.  non-­‐CKD  control  subjects.  

 

Quantitative  Coronary  Angiography  

Following   acquisition   of   standardised   coronary   angiography   during   the   Study  

protocol,   offline   analysis   was   performed   using   proprietary   edge-­‐detection  

software   (QCA-­‐CMSTM,   Medis   Medical   Imaging   Systems,   Leiden,   Netherlands).  

Mean   coronary   diameter   was   assessed   5mm   distal   to   the   tip   of   the   Doppler  

Page 135: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  110  

guidewire  over  a  5mm  segment.  Changes   in  vessel  diameter   in  response   to  Ach  

and  GTN  were  analysed  as  measures  of  epicardial  endothelium-­‐dependent  and  –

independent   function.   As   previously   described,   subjects   experiencing   a   >5%  

reduction  in  vessel  diameter  in  response  to  Ach  10-­‐6M  were  designated  as  having  

endothelium  dysfunction.602    

 

Coronary  Blood  Flow  /  Microvascular  Function  

Coronary   velocity  measurements  were   analysed   by   a   technician   blinded   to   the  

results  of  the  QCA  analysis.  Coronary  blood  flow  (CBF)  was  then  calculated  from  

the  formula:275  

[π   x   0.125   x   (Coronary   Diameter)2   x   (Coronary   Blood   Flow   APV)]   x   60    

where   Diameter   is   measured   in   cm,   Average   Peak   Velocity   (APV)   of   coronary  

blood  flow  is  measured  in  cm/sec  and  CBF  is  measured  in  mL/min.  Coronary  flow  

velocity  reserve  (CFR)  is  determined  as  a  ratio  of:  

APV  (post-­‐adenosine)  /  APV  (baseline)      

A  normal  response  is  considered  to  have  occurred  if  endothelial-­‐dependent  CBF  

increases  by  more  than  50%  in  response  to  Ach,  and  the  coronary   flow  reserve  

(CFR)   –   the   ratio   of   maximal   to   baseline   CBF   -­‐   is   greater   than   2.5   following  

adenosine.276  

Page 136: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  111  

Statistical  Methods  

All  measures  were  tested  for  normality  using  the  Kolmogorov-­‐Smirnov  /  Lilliefor  

Test  and  Shapiro-­‐Wilk  W  test.  All  normally  distributed  values  are  represented  as  

mean±standard   deviation,   with   all   column   graphs   represented   as   mean   with  

standard  error  bars.  Parameters  that  were  deemed  not  normally  distributed  were  

reported   as   median   and   inter-­‐quartile   range   (IQR).   Paired   parameters   were  

analysed   by   two-­‐tailed   paired   Student   T-­‐test.   Where   normally   distributed,  

comparison   of   non-­‐paired   measures   was   performed   by   unpaired   t-­‐test   (with  

Welch’s   correction   for   samples   of   unequal   variance),   or   one-­‐way   ANOVA   as  

appropriate.  Where   parameters  were   not   normally   distributed,   paired   analyses  

were   performed   utilising   the   Wilcoxon   matched   pairs   test,   and   non-­‐paired  

analyses  were   performed   using   the  Mann-­‐Whitney   U   test.   Correlation   between  

parameters   was   performed   utilising   Pearson’s   correlation   for   normally  

distributed  samples,  and  Spearman’s  correlation  for  non-­‐parametric  data.  

 

In  Study  1  and  Study  2,  comparison  of  binary  test  outcomes  pre-­‐  and  post-­‐surgery  

was  performed  using  Fisher’s  exact  test.    

 

In   Study   3,   sensitivity,   specificity,   accuracy,   predictive   values   (positive   and  

negative)  and  likelihood  ratios  were  calculated  according  to  standard  definitions  

and   compared   between   groups   (χ2   or   Fisher’s   exact   test   for   small   samples).  

Diagnostic  performance  of  DS-­‐CMR  vs.   stress-­‐SPECT  was  performed  utilising  an  

identity   binomial   generalized   estimating   equation   as   per  University   Statistician  

advice.  Accuracy  of   SPECT  assessment  of   LVEF   compared   to  non-­‐invasive   gold-­‐

Page 137: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  112  

standard  CMR  was  performed  utilising  paired  Student  T-­‐test   and  Bland-­‐Altman  

comparison.  

 

In   Study   4,   comparison   of   haemodynamic   and   invasive   coronary   indices   was  

undertaken   with   an   unpaired   T-­‐test   (with   Welch   correction   for   samples   with  

different  variances)  where  values  were  normally  distributed  and  Mann-­‐Whitney  

U  test  where  values  were  non-­‐parametrically  distributed.  Comparison  of  within-­‐

group   haemodynamic   measures   was   performed   using   one-­‐way   repeated-­‐

measures  ANOVA  with  Tukey  post-­‐hoc  multiple  comparison  test.  

 

Statistical   significance   was   determined   by   2-­‐tailed   tests,   with   statistical  

significance  determined  at  p=0.05.  

 

Analyses  were  performed  with  Prism  5  for  Mac  OS  X  (GraphPad  Software,  Inc,  CA,  

USA).   The   identity   binomial   generalized   estimating   equation   was   performed  

utilizing  validated  University  software.  

 

 

Page 138: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  113  

 

RESULTS  

Page 139: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  114  

Study  1:  Evaluation  of  Alterations  in  Cardiovascular  Structure  

and  Function  following  Elective  Arterio-­Venous  Fistula  Creation  

in  Pre-­dialysis  End-­Stage  Renal  Failure  

 

Introduction  

End-­‐stage   renal   failure   (ESRF)   necessitates   provision   of   alternative   excretory  

capacity   and   pharmacological   replacement   of   endogenous   renal   endocrine  

function  for  the  maintenance  of   life.  Although  peritoneal  dialysis  provides  many  

ESRF  patients  with  a  more   flexible   alternative,  haemodialysis   (HDx)   remains  at  

the  core  of  renal  replacement  therapies  (RRT)  for  ESRF  patients  worldwide.  It  is  

well   appreciated   that  HDx  performed  via   an   implanted   central   venous   catheter  

(e.g.  Permacath,  Vascath,  etc)   is  associated  with  a  marked  increase   in  morbidity  

and   mortality,   predominantly   related   to   vascular   complications   (bleeding,  

thrombosis,  central  venous  stenosis)  and  infection.428  Thus,  HDx  necessitates  the  

creation  of  an  iatrogenic  arterio-­‐venous  fistula  (AVF)  –  most  commonly  involving  

the  radial  or  brachial  arteries  and  an  adjacent   large  vein  –  with   the  subsequent  

low-­‐resistance   channel   diverting   arterial   pressure   and   flow   directly   into   the  

systemic  venous  system.  Once  matured,  such  fistulae  provide  a  ‘fail-­‐safe’  method  

for   the   performance   of   haemodialysis   if/when   the   metabolic   derangements   of  

decompensated   ESRF   intervene.   The   haemodynamic   consequences   of   AVF  

creation  are  not  benign  however.  

Immediately   following   creation,   AVF   are   associated  with   a   10-­‐20%   increase   in  

systemic  cardiac  output,  achieved  predominantly  through  a  reduction  in  systemic  

vascular   resistance,   increased   myocardial   contractility   (through   sympathetic  

Page 140: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  115  

nervous   system  activation)   and  an   increase   in   stroke  volume  and  heart   rate.410  

Over  the  following  week,  circulating  blood  volume  increases  in  conjunction  with  

increases   in   ANP   and   BNP.411,412   These   alterations   are   associated   with   early  

increases   in   LV   filling   pressure,   and   associated   increases   in   LA   volume   and  

LVEDV.411   AVF   blood-­‐flow   increases   progressively   over   the   initial   6-­‐12   weeks  

following  creation145,  diverting  a  substantial  burden  of  overall  cardiac  output  to  

service  the  AVF  (commonly  0.5-­‐2L/minute).    

To   maintain   sufficient   systemic   cardiac   output,   LV   CO   must   increase  

proportionately,   resulting   in   longer-­‐term   implications   for   cardiac   and   vascular  

structure  and   function.412,413   In   fact,  AVF  creation  has  been  demonstrated   to  be  

associated   with   worsening   of   LVH   in   ESRF   patients,   and   echocardiographic  

features   of   diastolic   dysfunction   including   LA  dilatation.411,414   In   some  patients,  

giant  AVF  may  lead  to  progressive  high-­‐output  cardiac  failure,  despite  preserved  

systolic  LV  function.415-­‐417  Such  cases  may  require  AVF  banding  or  ligation  to  limit  

flow  and  reduce  systemic  cardiac  demand.418,419  

Many  of   the  earliest   studies  evaluating   the  cardiac  effects  of  AVF  creation  were  

performed   prior   to   the   institution   of   routine   erythropoietin   supplementation  

when   significant   anaemia   may   have   contributed   to   the   haemodynamic   effects  

witnessed.   Despite   this,   the   increased   cardiac   demand   associated   with   AVF  

creation   is   undisputed,   and   is   believed   to   be   a   significant   contributor   to   the  

excess   burden   of   CV   morbidity   and   mortality   of   ESRF.170   Specifically,   AVF  

creation   has   been   discouraged   in   ESRF   patients   with   significantly   depressed  

cardiac   function   (LVEF<30%),   due   to   fears   of   reduced   physiological   reserve  

precipitating  fulminant  cardiac  decompensation.420,421  Patients  with  pre-­‐existent  

coronary  stenoses  may  suffer  an  unmanageable  increase  in  cardiac  work,  with  an  

Page 141: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  116  

associated   deterioration   in   sub-­‐endocardial   perfusion   and   worsened   anginal  

symptoms.421   Furthermore,   patients  with   prior   CABG   utilising   internal   thoracic  

artery   grafts   may   develop   coronary   steal   phenomenon   from   ipsilateral   AVF  

creation/haemodialysis.422,423  Given  the  prognostic  advantage  of  internal  thoracic  

artery  grafting  in  CABG424-­‐426,  such  findings  may  have  deleterious  implications  for  

the  management   of   CKD   patients   requiring   coronary   revascularisation.   Despite  

these   issues,   AVF   may   still   be   created   in   elderly   ESRF   patients,   following  

appropriate   selection   to   avoid   cardiovascular   complications.427   Furthermore,  

despite   the   numerous   disadvantageous   cardiovascular   adaptations,   HDx   via   an  

AVF   is   associated   with   lesser   cardiovascular   mortality   than   catheter-­‐based  

haemodialysis.428    

We  sought  to  evaluate  the  effect  of  AVF  creation  on  cardiovascular  structure  and  

function  in  the  modern  era  of  ESRF  management  utilizing  recent  advances  in  non-­‐

invasive  CMR  imaging.    

 

Page 142: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  117  

Methods  

Study  Methods  have  been  detailed  previously  (p90).  

In  brief,   subjects  with   stable,  progressive  CKD  were  enrolled  prior   to   clinically-­‐

driven,   elective   surgical   AVF   formation   in   preparation   of   anticipated  

haemodialysis   commencement   in   the   subsequent   6-­‐12-­‐months,   as   clinically  

indicated.  Standard  exclusion  criteria  were  applied.  

Subjects  were  then  evaluated  utilizing  combined  Cardiac  and  Vascular  magnetic  

resonance   protocols   (protocol   detailed   previously,   p94)   at   baseline,   ideally   2-­‐

weeks   prior   to   the   planned   surgical   date.   An   identical   follow-­‐up   CMR   protocol  

was  then  performed  at  6-­‐months  post-­‐AVF  creation  to  evaluate  alterations  in  CV  

parameters  in  response  to  AVF  creation.    

 

Statistical  Methods  

As  previously  described  (Statistical  Methods,  p111).    

 

Power  Calculation  

The   proposed   study   is   multi-­‐factorial   in   nature   and   has   not   previously   been  

performed   in   the  manner  described.   For   the  purposes   of   the  power   calculation  

for   this  Pilot  Study,   in   line  with  previously  published  data   in  echocardiographic  

studies  and  our  experience  with  CMR  in  other  subject  subsets,  we  set  increase  in  

left  ventricular  end-­‐diastolic  volume  as  our  primary  end-­‐point.  We  estimated  that  

we   would   need   to   complete   baseline   and   follow-­‐up   studies   in   18   subjects   to  

provide   80%   power   to   detect   a   20%   difference   in   the   primary   end-­‐point  

assuming   a   standard   deviation   of   25%   in   the  measured   parameter,   correlation  

Page 143: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  118  

between  baseline  and  follow-­‐up  measures  of  0.5  (equivalent  to  an  effect  size  [dz]  

of  0.63)  and  alpha  error  of  0.05  (G*Power  v3.0.10).  

Page 144: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  119  

Results  

Twenty-­‐seven  subjects  (median  age  60-­‐years,  59.3%  male)  were  enrolled  in  the  

Study   with   initial   CMR   imaging   undertaken   approximately   2-­‐weeks   prior   to  

planned   AVF   surgery.   Due   to   the   elective   nature   of   the   surgery,   surgical   dates  

were  often  cancelled  by  the  Hospital  in  favour  of  more  urgent  cases,  such  that  the  

interval   from  scan  to  surgery  often  exceeded  the  2-­‐week  time-­‐frame  (time  from  

scan  to  surgery  17±22  days).  One  subject  was  unable  to  undergo  AVF  creation  at  

the  scheduled  surgical  date  due  to  surgically  unattractive  anatomy  not  apparent  

at  pre-­‐surgical  assessment.  One  subject  died  following  development  of  acute  CVD  

progression  between  the  CMR  scan  and  scheduled  surgical  date,  with  deferral  of  

AVF   surgery   and   subsequent  patient  death.  No   clinical   predictors  of   impending  

CV   decompensation   were   apparent   at   the   initial   Study   CMR   scan.   These   two  

subjects  were  excluded  from  the  Study  analyses.  

A   complete   CV   protocol   was   possible   in   twenty-­‐five   (25)   subjects,   with   two  

subjects  unable  to  undergo  FMD  protocol  due  to  SBP>200mmHg  at  time  of  FMD  

acquisition.  A  third  subject  was  unable  to  complete  the  endothelium-­‐independent  

component  of   the  FMD  protocol  due   to  back  pain   related   to   lying   supine   in   the  

CMR  scanner.    

Of   the   twenty-­‐five   (25)   subjects   who   underwent   successful   AVF   surgery   (age  

60±13   years,   60%   male),   one   subject   developed   an   occluded   AVF   within   one  

month   of   surgery,   and   following   commencement   of   peritoneal   dialysis,   elected  

not  to  have  the  AVF  repaired.  This  subject  had  no  follow-­‐up  CMR  data  and  hence  

was  also  excluded  from  the  subsequent  analysis.  Twenty-­‐four  patients  were  thus  

included   in   the   follow-­‐up   study   to   evaluate   alterations   in   cardiac   and   vascular  

Page 145: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  120  

structure   over   time   following   successful   AVF   creation   (age   59±12   years,   58%  

male).  Baseline  characteristics  are  detailed  in  Table  3.  All  baseline  and  follow-­‐up  

scan   parameters  were   normally   distributed.   The   average   time   from   surgery   to  

follow-­‐up  scan  was  198±32  days.  At  follow-­‐up,  all  subjects  completed  the  cardiac  

protocol,   aortic   distensibility   and   brachial   artery   blood   flow   protocols.   One  

subject  was   unable   to   undertake   the   FMD  protocol   due   to   back   pain.   A   further  

two  subjects  only  undertook  the  endothelium-­‐dependent  component  of  the  FMD  

protocol,  unable  to  tolerate  the  endothelium-­‐independent  component  of  the  FMD  

protocol  due  to  back  pain.    

 

Characteristic   n=24  

Age  (years)   59±12  

Gender  (male),  %  (n)   58  (14)  

Hypertension,  %  (n)   88  (21)  

Hyperlipidaemia,  %  (n)   54  (13)  

Type  II  Diabetes  Mellitus,  %  (n)   38  (9)  

Smoking,  %  (n)  

-­‐ current  

-­‐ former  

-­‐ non-­‐smoker  

 

12  (3)  

17  (4)  

71  (17)  

Prior  Coronary  Artery  Disease,  %  (n)   21  (5)  

Cerebrovascular  Disease,  %  (n)   8  (2)  

Chronic  Pulmonary  Disease.  %  (n)   21  (5)  

Baseline  Creatinine  (μmol/L)   552±130  

Table  3:   Subject  Baseline  Characteristics  –  Study  1  

Page 146: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  121  

Clinical  Results  

Clinical  findings  were  predominantly  unchanged  following  AVF-­‐creation  (weight:  

80±19kg  vs.  78±17kg,  p=0.07;  SBP:  146±19mmHg  vs.  146±17mmHg,  p=0.96;  Hb:  

115±12g/dL   vs.   119±15g/dL,   p=0.26).   All   subjects   were   undergoing   treatment  

with  EPO-­‐analogues  at  baseline  and  at  follow-­‐up.  Notably,  resting  heart  rate  was  

significantly   increased   at   follow-­‐up   compared   to   baseline   (HR:   71±12bpm   vs.  

76±11bpm,   p=0.008).   Furthermore,   across   the   entire   cohort,   a   small,   non-­‐

significant   increase   in   serum   creatinine   was   noted   (serum   creatinine:  

552±127μmol/L  vs.  620±163μmol/L,  p=0.11).  When  the  three  subjects  who  had  

commenced   dialysis   prior   to   follow-­‐up   imaging   were   excluded   from   the  

creatinine  analysis,  the  serum  creatinine  for  the  remaining  subjects  was  noted  to  

have   increased   significantly   6-­‐months   following   study   enrolment,   as   would   be  

expected   clinically   in   this   condition   (529±91μmol/L   vs.   652±123μmol/L,  

p=0.0006).  

 

Cardiac  Results  

In   the   presence   of   advanced   CKD   /   ESRF,   baseline   imaging   revealed   preserved  

left   ventricular   systolic   function   (LVEF   72±7%;   Normal   range   58-­‐76%)586  with  

normal   left   ventricular   size   (LVEDV   149±31mL;   Reference   range:   Males   115-­‐

198mL;   Females   88-­‐168mL)586   and   CO   (7.5±1.5L/min;   Reference   range:   Males  

2.82-­‐8.82L/min,   Females   2.65-­‐5.98L/min).   Despite   the   high   prevalence   of   HT,  

LVM   was   within   normal   limits   at   baseline   (132±33g;   Reference   ranges:   Males  

108-­‐184g,  Females  72-­‐144g).586  LA  area  was  mildly  increased  across  the  cohort,  

Page 147: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  122  

with  RA  area  at  the  upper  limits  of  the  normal  range    (LA  Area  27±6cm2,  RA  Area  

23±6cm2;  Normal  range  <24cm2).551  

At   follow-­‐up,   significant   alterations   in   cardiac   structure   and   function   were  

identified.  LVEF  and  RVEF  were  unchanged  at  follow-­‐up  however,  confirming  the  

limited  utility  of   this   index   for   the  evaluation  of  alterations   in  cardiac  structure  

and   function   despite   its   universal   use   in   echocardiographic   surveillance   (LVEF  

72±7%   vs.   71±9%,   p=0.60;   RVEF   66±5%   vs.   67±6%,   p=0.45).   Significant  

increases  were  seen  for  the  majority  of  measured  or  derived  parameters  for  atrial  

and   ventricular   structure   and   function   however.   Mean   LVEDV   increased   by  

17.2%  (149±31mL  vs.  175±43mL,  p<0.0001),  mean  LVESV  by  20.7%  (43±16mL  

vs.   52±24mL,   p=0.014),   mean   LVSV   by   15.9%   (107±24mL   vs.   124±29mL,  

p<0.0001)   and   LV   CO   by   25.0%   (7.5±1.5L/min   vs.   9.4±2.2L/min,   p<0.0001).  

Significantly,   mean   LVM   was   increased   by   12.7%   (132±32g   vs.   149±35g,  

p<0.0001)  6-­‐months  following  AVF-­‐creation.    

Similar   results   were   seen   for   the   increases   in   mean   RVEDV   (17.9%   increase;  

142±32mL   vs.   167±42mL   p<0.0001),   RVESV   (15.1%   increase;   49±14mL   vs.  

56±18mL,   p=0.0014)   and   RVSV   (19.6%   increase;   93±24mL   vs.   112±27mL,  

p<0.0001).   Mean   LA   area   was   increased   by   11.3%   (27±6cm2vs.   30±6cm2,  

p=0.0003)   and   mean   RA   area   was   increased   by   8.9%   (23±6cm2   vs.   25±6cm2,  

p=0.0046).  

Notably,  62.5%  of  subjects  had  CMR  measures  for  LVEF,  LVEDV,  LVESV,  LVSV  and  

LVMI  within   normal   limits   prior   to   AVF   creation,   however   this   had   reduced   to  

41.7%   of   subjects   6-­‐months   following   AVF   creation   (p=0.24).   The   results   of  

changes  in  cardiac  structure  and  function  are  summarised  graphically   in  figures  

14-­‐16.  

Page 148: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  123  

 

 

Figure   14:   Alterations   in   Left   Ventricular   Structure   and   Function   following  

successful  AVF  creation  in  ESRF.  

Page 149: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  124  

 

 

 

Figure   15:   Alterations   in   Right   Ventricular   Structure   and   Function   following  

successful  AVF  creation  in  ESRF.  

 

Page 150: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  125  

 

Figure   16:   Alterations   in   Left   and   Right   Atrial   Area   following   successful   AVF  

creation  in  ESRF.    

 

Vascular  Results:  

Aortic  Distensibility  

Aortic  distensibility  was  not  significantly  altered  by  the  creation  of  a  surgical  AVF  

at   the   6-­‐month   follow-­‐up   scan   (2.3±1.2mmHg-­‐1   vs.   2.2±1.2mmHg-­‐1,   p=0.59).  

Ascending  aorta  (AA),  proximal  descending  aorta  (PDA),  distal  descending  aorta  

(DDA)  and  average  aortic  distensibility  ([AA+PDA+DDA]/3)  were  all  numerically,  

but  not  statistically  significantly,  lower  following  AVF  creation  (Figure  17).    

 

Page 151: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  126  

 

Figure  17:   Alterations  in  Aortic  Distensibility  following  AVF  creation  in  ESRF.    

 

Prior  to  AVF  creation,  baseline  aortic  distensibility  decreased  progressively  from  

DDA   to   AA,   consistent   with   an   increase   in   aortic   stiffness   (reduced   aortic  

compliance)  in  the  more  proximal  aortic  segments  (AA  1.41±1.0mmHg-­‐1  vs.  PDA  

2.20±1.3mmHg-­‐1,   p=0.023;   AA   1.41±1.0mmHg-­‐1   vs.   DDA   3.20±2.0mmHg-­‐1,  

p=0.0003;   PDA   2.20±1.3mmHg-­‐1   vs.   DDA   3.20±2.0mmHg-­‐1,   p=0.046).   These  

finding   remained   similar   following   AVF   creation,   although   the   numerical  

difference   between   aortic   distensibility   at   PDA   and   DDA   did   not   quite   reach  

Page 152: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  127  

statistical   significance   (AA   1.27±1.2mmHg-­‐1   vs.   PDA   2.11±1.3mmHg-­‐1,   p=0.024;  

AA   1.27±1.2mmHg-­‐1   vs.   DDA   3.10±2.0mmHg-­‐1,   p=0.0004;   PDA   2.11±1.3mmHg-­‐1  

vs.  DDA  3.10±2.0mmHg-­‐1,  p=0.052)  (Figure  18).      

 

 

Figure  18:   Aortic  Distensibility  by  Aortic  Level  Prior  to  (Pre-­),  and  Following  (Post-­)  

AVF  creation  in  ESRF.  

 

Brachial  Artery  Flow-­Mediated  Dilatation  

Twenty-­‐one  subjects  completed  the  FMD  protocol  at  both  pre-­‐AVF  and  follow-­‐up  

scanning.   In   these   subjects,   brachial   artery   endothelium-­‐dependent  

vasodilatation,   as  measured  by   flow-­‐mediated  dilatation  was  markedly   reduced  

at   6-­‐month   follow-­‐up   imaging   following   AVF-­‐creation   (9.0±9.2%   vs.   3.0±5.7%,  

p=0.012;  Figure  19).  Endothelium-­‐independent  vasodilatation  was  unaffected  by  

AVF-­‐creation   in   the   subjects   evaluated   (13.3±9.1%   vs.   12.2±10.0%,   p=0.74).  

Notably,  in  a  sub-­‐population  of  17-­‐subjects  where  this  sequence  was  performed,  

there  was  no  significant  change  in  baseline  brachial  artery  blood  flow  in  the  arm  

Page 153: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  128  

contralateral   to   the   AVF   –   a   factor   with   the   potential   to   contribute   to   any  

measured   alterations   in   endothelial   function   (0.054±0.030L/minute   vs.  

0.055±0.03L/minute,   p=0.97)   (Figure   20).   Baseline   brachial   artery   area   was  

unchanged   across   the   study   cohort   between   baseline   and   follow-­‐up   scans  

(26.5±8mm2   vs.   27.7±7mm2,   p=0.31).   There   was   no   significant   correlation  

between  %  change  in  FMD  and  %  change  in  AVF  flow  (r=0.17,  p=0.52),  %  change  

in  LV  CO  (r=-­‐0.29,  p=0.24)  or  %  change  in  LVSV  (r=-­‐0.27,  p=0.28).    

 

 

Figure  19:    Alterations  in  Peripheral  Endothelial  Function  following  successful  AVF  

creation  in  ESRF.  

 

Brachial  Artery  Blood  Flow  –  Arterio-­Venous  Fistula  Arm  

Brachial  artery  blood  flow  ipsilateral  to  the  AVF  increased  substantially  following  

AVF   creation   (0.057±0.04L/minute   vs.   1.158±0.44L/minute,   p<0.0001)(Figure  

20).   This   represents   a   more   than   20-­‐fold   increase   in   mean   ipsilateral   brachial  

artery   blood-­‐flow   6-­‐months   following   AVF-­‐creation.   Notably,   there   was   no  

Page 154: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  129  

significant  association  between  increases   in  AVF-­‐arm  brachial  artery  blood  flow  

and   adaptive   change   in   LV   CO   (r=0.09,   p=0.71)   or   LVSV   (r=0.13,   p=0.59),  

potentially   implicating   a  more   complex   systemic   circulatory   adaptation   to   AVF  

creation.  

 

 

Figure  20:   Alteration   in   CMR-­assessed   brachial   artery   blood-­flow,   ipsilateral   and  

contralateral  to  the  newly  created  arterio-­venous  fistula.  

 

 

Page 155: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  130  

Discussion  

Elective   AVF   creation   is   associated   with   substantial   alterations   in   cardiac  

structure  and  function,  necessary  to  accommodate  the  increase  in  cardiac  output  

sufficient   to   service   the   fistula  whilst  maintaining  homeostatic   systemic   supply.  

These   changes   include   bi-­‐atrial   and   bi-­‐ventricular   dilatation,   increased  

ventricular   stroke   volume   and   cardiac   output,   as  well   as   a   clinically   significant  

increase  in  LVM  –  a  measure  closely  associated  with  adverse  outcomes  in  ESRF.  

This   adaptive   cardiac   remodelling,   coupled  with  a  >2000%   increase   in  brachial  

artery  blood  flow  ipsilateral  to  the  newly  created  AVF,  was  also  associated  with  a  

marked  reduction  in  remote  endothelial  function  and  a  consistent  numerical,  but  

not  statistically  significant,  increase  in  aortic  stiffness.  Although  necessary  for  the  

provision  of  HDx,   it   is   striking   that   a  planned  medical   intervention   could   cause  

such   widespread   maladaptation   within   the   CV   system   of   already   high-­‐risk  

individuals.  That  said,   it   is  acknowledged  that  HDx  performed  via  such  conduits  

results   in   a   substantially   lower   burden  of   overall  morbidity   and  mortality   than  

HDx   via   implanted   catheters   which   may   not   contribute   so   significantly   to   CV  

maladaptation.428    

Previous  TTE  studies  have  demonstrated  the  potential  for  increased  LVM  and  LV  

dilatation  following  AVF  creation.411,414  Since  the  first  publication  of  efficacy  for  a  

synthetic  EPO   in   the   treatment  of  ESRF  anaemia   in   the  New  England   Journal   of  

Medicine   in   January   1987604,   substantial   inroads   have   been   made   in   the  

management   of   anaemia,   hypertension   and   salt/fluid   imbalance   in   ESRF.  

Downward  revision  of  blood  pressure  targets,  increased  therapeutic  options  and  

an   increased   recognition   of   the   horrifying   CV   prognosis   of   patients   with   ESRF  

Page 156: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  131  

have  all  contributed  to  improvements  in  care  for  affected  patients.  Despite  such  

advances,   however,   our   Study   demonstrates   comprehensively   the   enduring   CV  

impact  of  AVF  creation  in  these  high-­‐risk  individuals.  

Parfrey  et  al  have  previously  demonstrated  the  negative  prognostic  implications  

of  concentric  LVH,  LV  dilatation  and  LV  dysfunction  as  measured  by  TTE  in  ESRF  

patients   commencing   dialysis.145   Furthermore,   London   et   al   have   previously  

demonstrated   an   extraordinary   prognostic   advantage   to   therapeutic  

interventions   in   ESRF   that   successfully   reduce   LVM   by   at   least   10%.160   Such  

measures  were  associated  with  a   relative   risk  of  0.78   (0.63-­‐0.92,  p=0.0012)   for  

all-­‐cause   mortality,   and   0.72   (0.51-­‐0.90,   p=0.0016)   for   CV-­‐event-­‐free   survival  

across  the  cohort.  This  relative  risk  reduction  was  particularly  notable  amongst  

subjects  with  no  prior  history  of  CVD  (RR  0.69  [0.52-­‐0.83,  p=0.0182]  for  all  cause  

mortality,  and  0.52  [0.23-­‐0.75,  p=0.0204]  for  CV  event-­‐free  survival).160    

In   the  present  Study,  we  demonstrated  a  17.2%   increase   in  mean  LVEDV  and  a  

12.7%   increase   in   mean   LVM   6-­‐months   following   AVF-­‐creation   (p<0.0001   for  

both).   Although   beyond   the   scope   of   this   observational   study,   such   cardiac  

adaptations  may  thus  be  expected  to  be  associated  with  a  deleterious  impact  on  

CV  morbidity  and  mortality.  Furthermore,   recognition  of   the   impact  of   a  25.0%  

increase   in   mean   CO   6-­‐months   following   AVF   creation   (p<0.0001)   may   be   an  

important  factor  in  the  clinical  management  of  pre-­‐dialysis  patients  –  particularly  

as   such   measures   are   rarely   reported   using   conventional   cardiac   imaging  

modalities,   where   LVEF   (unchanged   in   this   Study   despite   the   myriad   other  

structural   and   functional   cardiac   alterations)   routinely   forms   the   basis   of   a  

clinician’s  determination  of  significant  functional  cardiac  impact.    

 

Page 157: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  132  

RV   structure   and   function  have   historically   been  neglected   in   the   evaluation   of  

cardiac  structure  and  function.  TTE  provides  only  a  limited  evaluation  of  RV  size  

and   systolic   function,   although   tissue   Doppler   indices   of   RV   function   have  

recently   been   evaluated   –   particularly   in   the   context   of   known   pulmonary  

hypertension.  Substantial  recent  research  has  focussed  on  the  importance  of  RV  

structure  and  function  in  the  maintenance  of  exercise  capacity  –  both  in  healthy  

athletes   and   diverse   disease   states.605-­‐611   The   role   of   RV   remodelling   in   the  

reduced  exercise   capacity   common   in  ESRF   remains   to  be  determined,   but   it   is  

certain  that  CMR  will  be  integral  to  future  research  in  this  area.  Unlike  previous  

studies,   CMR  enabled  more   comprehensive  RV  evaluation   in   the  present   Study.  

Accordingly,   we   demonstrated   substantial   alterations   in   RV   structure   and  

function   6-­‐months   following   AVF   creation,   with   >15%   increases   seen   in   mean  

RVEDV,  RVESV  and  RVSV  (p≤0.0003  for  all).  Although  intuitive,  such  findings  are  

important   to   appreciate   given   the   known   association   of   AVF   creation   and   the  

development  of  clinically  significant  PHT  in  ESRF  patients.  The  role  of  sub-­‐clinical  

RV  remodelling  and  dysfunction  in  the  exercise  intolerance  of  ESRF  remains  to  be  

determined  but  the  results  from  this  Study  provide  an  important  link  in  this  line  

of  enquiry.  

LA   size   is   more   commonly   increased   in   ESRF,   in   comparison   to   the   general  

community.189   Such   atrial   dilatation   is   known   to   be   associated   with   the  

development   of   patchy   interstitial   fibrosis  within   the   LA  myocardium,   delaying  

local   atrial   conduction   velocities   and   providing   rich   substrate   for   the  

perpetuation  of  multiple  re-­‐entrant  circuits  in  the  perpetuation  of  AF.187,188,193  In  

fact,  LA  dilatation  has  previously  been  identified  as  an  independent  risk  factor  for  

the  development  of  AF  in  ESRF  and  may  contribute  to  the  poor  CV  prognosis  of  

Page 158: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  133  

patients  with  CKD.183,195  Furthermore,  whether  through  the  predisposition  to  AF  

or  as  a  marker  of  chronic  LV  diastolic   impairment,   recent  evidence  confirms  an  

association  between  LA  dilatation  and  increased  mortality  in  ESRF  patients  with  

LVH.196    

In  the  present  Study,  at  6-­‐month  follow-­‐up  imaging,  AVF-­‐creation  was  associated  

with  an  11.3%  increase  in  mean  LA  area  (p=0.0003)  and  an  8.9%  increase  in  RA  

area   (p=0.0046).   As   previously   mentioned,   such   alterations   occurred   in   the  

context  of  increases  in  LVEDV/RVEDV,  LVSV/RVSV,  and  LVM.  Thus,  increased  LA  

and   RA   area   may   be   expected   to   occur   following   AVF   creation   as   a   result   of  

increases   in   both   ventricular   volumes   and   filling   pressures   in   the   context   of  

increased  myocardial  mass   and   stretch.   As   such,   the   induced   increase   in   atrial  

stretch   (LA   in   particular)   provides   a   more   conducive   substrate   for   the  

development  of  intra-­‐atrial  re-­‐entrant  arrhythmia,  and  AF  more  specifically.    

Atrial   fibrillation  (AF)   is   the  most  common  sustained  arrhythmia   in   the  general  

population   and   recent   studies   have   confirmed   AF   as   a   significant   negative  

prognostic   factor   in   ESRF.182-­‐184   AF   is   more   highly   prevalent   in   ESRF   than   the  

general   community,   and   contributes   disproportionately   to   morbidity   and  

mortality   in   affected   patients.183,185   Although   haemodialysis   in   particular   is   a  

known   risk   factor   for   the   development   of   AF182,186,   it   remains   unclear  whether  

declining   renal   function   contributes   independently   to   this   risk,   or  whether   the  

high   prevalence   of   AF   risk   factors   (e.g.   advancing   age,   hypertension,   CCF,   LVH,  

coronary   artery   disease,   valvular   heart   disease)   amongst   CKD   patients   is  

responsible  for  the  high  prevalence  of  this  condition  in  CKD.  It  would  appear  that  

AVF   creation  might   play   a   significant   role   in   the   promotion   of   atrial   dilatation  

within  the  ESRF  milieu.    

Page 159: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  134  

Thus,   in   the   modern   era   of   anaemia   and   uraemia   management,   this   Study  

demonstrates  the  significant  role  AVF  creation  has  in  the  genesis  and  promotion  

of  atrial  and  ventricular  structural  and  functional  abnormalities.  Although  beyond  

the   scope   of   this   observational   study,   the   potential   for   disadvantageous  

prognostic   outcomes   directly   related   to   such   alterations   remains   to   be  

determined.   Of   course,   the   absence   of   a   feasible,   lower   risk   alternative   to   the  

provision  of  HDx  remains  a  major  stumbling  block.  

 

Aortic  Distensibility  

Arterial   stiffness  provides   a   clinically   relevant  measure  of   longitudinal   vascular  

injury   and   is   predictive   of   future   cardiovascular   events   independent   of  

conventional   CV   risk   factors.372,375,379,380,382,383,406   Although   risk   factors   such   as  

hypertension  and  hyperlipidaemia  may  be  effectively  reduced  by  pharmacologic  

intervention,   the   vascular   injury   induced   by   such   risk   factors   over   time   is   not  

immediately   negated   by   such   therapies.   Thus   arterial   stiffness   has   been  

postulated   to   provide   a   more   relevant   surrogate   for   future   CV   risk   than  

conventional  risk  factors.370    

This  theory  was  tested  by  the  Conduit  Artery  Function  Evaluation  (CAFÉ)404  sub-­‐

study  which  drew  on  2,073  patients  from  the  larger  Anglo-­Scandinavian  Cardiac  

Outcomes  Trial   (ASCOT)407   to  assess   this   issue.  CAFÉ  demonstrated  that  despite  

similar   reductions   in   brachial   systolic   blood   pressure   (SBP)   and   PP,   the  

combination   of   amlodopine   +   perindopril   was   more   efficacious   in   reducing  

central  SBP  and  PP  than  the  atenolol  +  thiazide  combination404,  corresponding  to  

the   demonstration   of   lesser   cardiovascular   events   in   the   amlodopine   +  

perindopril   cohort.407   Similarly,   losartan  was   shown   to   reduce   arterial   stiffness  

Page 160: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  135  

and   central   PP   to   a   greater   degree   than   the   comparator   (atenolol)   with   an  

associated  reduction  in  stroke  in  the  Losartan  Intervention  for  Endpoint  Reduction  

in   Hypertension   (LIFE)   study.408   The   differing   impact   of   alternative   anti-­‐

hypertensive   agents   on   central   vascular   stiffness   has   thus   been   proposed   as   a  

potential   explanation   for   the   differential   effects   of   these   agents   on   CV  

events.404,409    

Of   particular   relevance   was   the   finding   that   the   CV   benefits   of   blood   pressure  

lowering  in  ESRF  were  attenuated  in  patients  where  PWV  was  not   improved  by  

anti-­‐hypertensive   therapies.371   Thus,   though   the   conventional   risk   factor   was  

moderated   by   standard   therapies,   the   modifiability   of   the   associated   arterial  

alterations  was  a  more  useful  predictor  of  future  CV  prognosis.612  

Aortic  distensibility  provides  a  novel  measure  of  central  vascular  compliance   in  

response   to  systemic  pulse  pressure.  MRI  has  recently  been  utilised   to  evaluate  

non-­‐superficial   arteries   (such   as   the   aorta)   in   a   variety   of   physiological   and  

disease   states259,386-­‐393,   and   has   been   shown   to   correlate   well   with   traditional  

PWV.394   Specifically,   CMR-­‐derived   aortic   distensibility   and   volumetric   arterial  

strain  have  been  found  to  be  predictive  of  cardiovascular  clinical  end-­‐points  and  

overall  survival  in  ESRF  on  multivariate  analysis.395    

We   evaluated   aortic   distensibility   at   baseline   and   6-­‐months   following   AVF-­‐

creation  utilising  a  validated  CMR  methodology.  Notably,  aortic  distensibility  was  

not   significantly   altered   at   6-­‐month   follow-­‐up   although   a   consistent   numerical  

fall  in  distensibility  was  noted  at  each  of  the  aortic  levels  assessed.  Such  a  finding  

may  of  course  be  a  chance  observation,  but  provides  substrate  for  the  hypothesis  

that   6-­‐months   is   too   short   a   follow-­‐up   period   to   identify   chronic   alterations   in  

central   vascular   stiffness   in   response   to   AVF-­‐creation   in   the   context   of   chronic  

Page 161: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  136  

uraemia.    Notably,  the  CAFÉ  study  evaluated  vascular  stiffness  on  repeated  visits  

for   up   to   4-­‐years   in   their   demonstration   of   significant   differences   between   the  

large  treatment  arms.    

Of   perhaps   more   significance   is   the   finding   that   aortic   stiffness   increases  

progressively   from   distal   aorta   to   proximal.   Our   research   team   has   previously  

identified   a   significant   difference   between   aortic   distensibility   at   the   distal  

descending  aorta  as  compared  to  the  ascending  aorta  in  healthy  elderly  subjects,  

with   a   numerical,   but   not   statistically   significant   trend   for   stepwise   increasing  

stiffness   from  distal   to  proximal  segments.394  This   finding  was  not  replicated   in  

young  healthy  subjects  in  that  study  and  had  not  previously  been  demonstrated  

for  measures  of  aortic  distensibility.  We  proposed  that  this  finding  might  relate  to  

regional   differences   in   the   aortic   elastin:collagen   ration,  with   the  proportion   of  

elastin  known  to  be  greater   in   the  proximal  segments  of   the  aorta  compared   to  

the  distal  segments  (almost  three-­‐fold  relative  difference).613  Elastin  is  thought  to  

be  particularly   susceptible   to   fragmentation   and  destruction   in   response   to   the  

cyclical   fatigue  associated  with  repetitive  systolic/diastolic  pressure  waves  over  

time.  Hence   the  proximal   aortic   segments  would  be  expected   to  be  particularly  

prone   to   deterioration   in   compliance   with   diminution   of   medial   elastic  

content.614,615   By   contrast,   the   distal   aorta   may   behave   relatively   more   like  

muscular  conduit  arteries  that  have  been  shown  to  have  less  elastin  content  and  

exhibit  little  or  no  age-­‐related  alteration  in  distensibility  or  compliance  compared  

to   more   proximal   arteries   which   have   a   higher   elastin   content.616-­‐618   Such  

findings  have  previously  been  inferred  using  PWV  methodologies.619-­‐621    

Such  an  observation   is  particularly   significant   as   an   increase   in  proximal   aortic  

stiffness  may  be  expected  to  play  a  prominent  role  in  the  generation  of  CVD.  More  

Page 162: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  137  

specifically,  we  hypothesised  that  increased  proximal  segmental  stiffness  may  be  

associated   with   an   increase   in   ventricular   afterload   and   loss   of   the   usual  

cushioning   of   the   transmission   of   cyclical   ventricular   stroke   volume   to   the  

peripheries.   Furthermore,   we   proposed   that   this   derangement   of   ventriculo-­‐

vascular   coupling   might   play   a   significant   role   in   the   promotion   of   LVH   and,  

potentially,  deterioration  in  diastolic  coronary  perfusion  resulting  from  reduced  

proximal  aortic  diastolic  elastic  recoil.394  Such  a  finding  is  particularly  relevant  in  

the  context  of  CKD,  as  deterioration  in  vascular  elasticity  has  been  proposed  as  a  

metabolic   consequence   of   chronic   uraemia,   with   the   addition   of   accelerated  

vascular  calcification  (common  within  the  proximal  aorta)  further  contributing  to  

increased  vascular  stiffness  in  CKD.  

The   combination   of   increased   arterial   stiffening   and   reduced   ventricular  

compliance   in   the   context   of   ventricular   hypertrophy   and   dilatation   in   ESRF  

contributes   to   a   progressive   decline   in   cardiac   reserve,   as   the   reduced   arterial  

compliance   leads   to   disadvantageous   physiological   responses   to   increased  

circulatory   demand.   Exertion   is   generally   associated   with   increases   in   HR   and  

LVSV  (unless  diastolic  dysfunction  is  severe,  where  LVSV  may  fall  with  rising  HR).  

In   CKD,   the   increased   arterial   stiffness   is   associated   with   magnified   blood  

pressure  and  exaggerated  LV  afterload  in  response  to  any  increase  in  LVSV,  due  

to   the   reduced   arterial   capacitance   reserve.348   Significantly,   coronary   perfusion  

may   be   markedly   altered   during   these   conditions,   even   in   the   absence   of  

obstructive  coronary  atherosclerosis.   Such  a   combination  may  provide  a  potent  

substrate   for   functional   myocardial   ischaemia   during   exertion   and   periods   of  

increased   circulatory   demand   (e.g.   infection,   haemodialysis)   and   contribute  

further  to  myocardial  dysfunction  and  CV  morbidity.  

Page 163: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  138  

Endothelial  Function  

Endothelial  dysfunction  is  known  to  be  a  critical  precondition  to  the  development  

of   atherosclerosis   and   subsequent  CV   sequelae.228   Significantly,   the  presence  of  

peripheral   endothelial   dysfunction   has   previously   been   correlated   with  

impairment   in   coronary   endothelial   function270,   and   hence   has   been   used   to  

provide   a   non-­‐invasive   method   for   predicting   the   presence   of   coronary   artery  

atherosclerosis,  and  future  coronary  events  in  at-­‐risk  patients.262-­‐266  Additionally,  

improvements   in   peripheral   endothelial   function   have   been   associated   with  

therapeutic  interventions  that  improve  cardiovascular  risk.263,264    

CKD   provides   a   particularly   complex   precipitant   for   endothelial   dysfunction,  

resulting   from   multiple   circulating   factors   injurious   to   the   endothelium   and  

promotional   of   the   necessary   pro-­‐inflammatory   setting   for   endothelial  

dysfunction   and   accelerated   atherosclerosis.256  Notably,   impairment   in   forearm  

endothelial   function   has   been   shown   to   be   associated   with   an   increase   in   all-­‐

cause  mortality  in  ESRF.265    

In   this   Study,  we   found  a   clinically   significant   reduction   in   endothelial   function  

(as  measured  by  brachial  artery  FMD)  6-­‐months  following  elective  AVF  creation.  

Our  results  demonstrated  a  reduction  in  mean  FMD  response  from  9.02±9.2%  to  

3.05±5.7%   at   6-­‐month   follow-­‐up   (p=0.012).   There   was   no   deterioration   in  

endothelium-­‐independent   (GTN-­‐mediated)   brachial   artery   dilatation   over   the  

follow-­‐up   period   however,   indicating   a   primarily   functional   rather   than  

structural   contribution   to   this   dysfunction.   Such   a   finding   strongly   implicates   a  

mechanistic   trigger   to  remote  endothelial  dysfunction   from  the   increased  blood  

flow   and   vascular   shear   stress   in   the   AVF   arm   and   that   induced   by   the  

compensatory  increase  in  systemic  cardiac  output  required  to  service  the  fistula.  

Page 164: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  139  

Furthermore,   such   findings   occurred   in   the   absence   of   detectable   change   in  

baseline  brachial  artery  blood  flow  in  the  FMD  arm.  Such  findings  implicate  AVF  

creation   in   the   promotion   of   the   complex   pro-­‐atherogenic   milieu   of   CKD   and  

ESRF   and   such   conduits   may   contribute   significantly   to   the   development   of  

accelerated  CVD  associated  with  this  condition.    

 

Limitations  

Although  similiarities  exist  between  our  Study  design  and  that  of  other  published  

studies  evaluating   the   cardiac  effects  of  AVF  creation411,414,   the  most   significant  

limitation  of   the  current  study   is   the  absence  of  a  comparable  control  group.   In  

this   regard,   due   to   clinical   imperatives,   there  was   no   available   cohort   of   stable  

advanced   CKD   subjects   with   functioning   AVF,   but   not   yet   receiving   dialysis  

therapy,  at  our   institution.  Comparison  with  a  pre-­‐dialysis,  pre-­‐AVF  cohort  may  

have  provided  a  beneficial  comparison,  despite  the  lesser  severity  of  CKD  such  a  

cohort   would   necessarily   have   experienced.   Despite   the   absence   of   a   control  

group   in   this  study,   the  results  were  highly  consistent  across   the  cohort,  with  a  

high  degree  of  biological  plausibility.    

Additionally,   although   values   for   the  majority   of   clinically   relevant   parameters  

evaluated   remained   stable   between   the   Study   investigations,   the   progressive  

decline  in  renal  function  witnessed  cannot  be  excluded  as  a  potential  contributor  

to  the  CV  alterations  demonstrated.  The  magnitude  of  change  detected  across  the  

majority  of  evaluated  parameters  in  this  Study,  however,  are  demonstrably  out  of  

proportion   to   the   decline   in   renal   function   seen,   implicating   an   alternative  

mechanism   capable   of   relatively   acute   adaptive   change.   AVF   creation   provides  

such  a  potential  mechanism.    

Page 165: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  140  

Furthermore,  re-­‐evaluation  of  the  cohort  at  an  additional,  earlier  time-­‐point  may  

have   provided   valuable   information   regarding   the   time-­‐course   of   these   CV  

adaptations.  Whether  many   of   these   CV   adaptations   occur   acutely,   or   whether  

such  alterations   (other   than  LVM)  occur  progressively  over  months,   remains   to  

be  determined.    

 

Conclusion  

Elective  AVF  creation  in  pre-­‐dialysis  CKD  is  associated  with  significant  increases  

in  bi-­‐atrial  and  bi-­‐ventricular  chamber  volumes  and  LVM  commensurate  with  the  

requirement   for   a   25%   mean   increase   in   cardiac   output.   Furthermore,   AVF  

creation   is  associated  with  deterioration   in  systemic  endothelial   function,  and  a  

consistent   small,  but   statistically  non-­‐significant   trend   towards   increased  aortic  

stiffening   at   all   levels.   Such   alterations   in   CV   structure   and   function   have   been  

strongly  linked  to  poorer  CV  and  all-­‐cause  mortality  in  previous  epidemiological  

and  observational  studies.  The  role  of  therapeutic  strategies  in  ameliorating  such  

disadvantageous   sequelae   following   creation   of   these   necessary   iatrogenic  

conduits  in  high-­‐risk  ESRF  patients  requires  further  study.    

Page 166: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  141  

Study  2:  Evaluation  of  Alterations  in  Cardiovascular  Structure  

and  Function  following  Elective  Arterio-­Venous  Fistula  Ligation  

following  Successful  Stable  Renal  Transplantation  

 

Introduction  

CVD   is   the   leading   cause   of   death   in   patients  with  ESRF   and   remains   a   leading  

cause   of  morbidity   and  mortality   amongst   successful   RTx   recipients.451  Despite  

substantial   improvements   in   all-­‐cause   and   CV  mortality   following   RTx443,622,623,  

transplant   patients   endure   a   significantly   higher   burden   of   CV   and   all-­‐cause  

mortality   than   similarly-­‐aged   members   of   the   general   population.444,451   Such  

persistently   elevated   risk   is   multi-­‐factorial   and   is   influenced   by   the   burden   of  

maladaptive   CV   alterations   accumulated   during   the   period   of   impaired   renal  

function,   in   addition   to   the   contribution   of   post-­‐transplant   immunosuppressive  

therapies   to   CV   risk.   As   such,   efforts   to   promote   the   reversal   of   ESRF-­‐induced  

maladaptive  CV  alteration  may  enhance  the  prognostic  advantage  of  RTx  for  ESRF  

patients.  

Previous   studies   have   demonstrated   conflicting   results   with   regards   the  

beneficial   impact  of  RTx  on  CV   structure  and   function.624-­‐626  LVH   is   common   in  

ESRF   and   is   an   independent   predictor   of   adverse   outcomes   in   ESRF   and   post-­‐

RTx.627,628  Furthermore,  increased  LA  size  has  recently  been  linked  with  elevated  

mortality   in   association   with   LVH   in   ESRF   patients   referred   for   renal  

transplantation.196   Similarly,   altered   vascular   function   has   been   linked   with  

elevated  CV  mortality  in  ESRF395,629,  however  results  of  recent  studies  evaluating  

Page 167: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  142  

improvements   in   vascular   structure   and   function   following   RTx   have   been  

mixed.630-­‐633    

Significantly,  many  successful  RTx  recipients  have  persistently   functioning  AVF,  

despite   the   absence   of   ongoing   clinical   need.   Although   some   AVF   may  

spontaneously   occlude   following   RTx,   such   AVF   place   a   persistently   elevated  

demand   on   cardiac   function,   and  may   contribute   to   the   promotion   of   vascular  

structural  and  functional  derangement  that  precedes  clinically  significant  CVD.    

Previous   small   echocardiographic   studies   have   demonstrated   improvements   in  

LV  size  and  LVM  following  elective  surgical   ligation  of  clinically   large  AVF  post-­‐

RTx.439,634   It   remains   unclear   whether   such   improvements   in   cardiac   structure  

and  function  are  limited  to  ligation  of  clinically  large  fistulae,  or  whether  routine  

AVF   ligation  may  be  associated  with  beneficial   cardiac  and  vascular  effects.  We  

sought   to   evaluate   the   effect   of   AVF   ligation   on   cardiovascular   structure   and  

function  in  the  modern  era  of  post-­‐RTx  management  utilizing  recent  advances  in  

non-­‐invasive  CMR  imaging.    

Page 168: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  143  

Methods  

Study  Methods  have  been  detailed  previously  (p92).  

In   brief,   subjects   with   were   enrolled   following   stable,   successful   RTx   in   the  

context  of  persistent  AVF  prior  to  clinically-­‐driven,  elective  surgical  AVF  ligation.  

Standard  exclusion  criteria  were  applied.  

Subjects  were  then  evaluated  utilizing  combined  Cardiac  and  Vascular  magnetic  

resonance   protocols   (protocols   detailed   previously,   p94)   at   baseline,   ideally   2-­‐

weeks   prior   to   the   planned   surgical   date.   An   identical   follow-­‐up   CMR   protocol  

was   then   performed   at   6-­‐months   post-­‐surgery   to   evaluate   alterations   in   CV  

parameters  in  response  to  AVF  ligation.    

 

Statistical  Methods  

As  previously  described  (Statistical  Methods,  p111).    

 

Power  Calculation  

This   Pilot   study   was   multi-­‐factorial   in   nature   and   had   not   previously   been  

performed  in  the  manner  described.  For  the  purposes  of  the  power  calculation,  in  

line   with   previously   published   data   in   echocardiographic   studies   and   our  

experience  with  CMR  in  other  subject  subsets,  we  set  a  decrease  in  LVEDV  as  our  

primary  end-­‐point.  We  estimated   that  we  would  need   to  complete  baseline  and  

follow-­‐up  studies  in  18  subjects  to  provide  80%  power  to  detect  a  20%  difference  

in  the  primary  end-­‐point  assuming  a  standard  deviation  of  25%  in  the  measured  

parameter,   correlation   between   baseline   and   follow-­‐up   measures   of   0.5  

Page 169: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  144  

(equivalent   to   an   effect   size   [dz]   of   0.63)   and   alpha   error   of   0.05   (G*Power  

v3.0.10).  

 

Page 170: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  145  

Results  

Eighteen   (18)   subjects   (median   age   59-­‐years   [IQR   47-­‐65   years],   77.8%   male)  

were  enrolled  in  the  study  with  initial  CMR  imaging  undertaken  approximately  2-­‐

weeks   prior   to   planned   elective   AVF   surgery.   Due   to   the   elective   nature   of   the  

surgery,   surgical   dates  were   often   cancelled   by   the   Hospital   in   favour   of  more  

urgent   cases,   such   that   the   interval   from  scan   to   surgery  often  exceeded   the  2-­‐

week   time-­‐frame   (time   from   scan   to   surgery   20.3±18   days).   Baseline  

characteristics  are  detailed  in  Table  4.  

 

Characteristic   n=18  

Age  (years)  [IQR]   58.5  [47.0-­‐64.5]  

Gender  (male),  %  (n)   78  (14)  

Time  from  Transplant  to  Initial  Scan  (days)   1141  [884-­‐1565]  

Hypertension,  %  (n)   94  (17)  

Hyperlipidaemia,  %  (n)   83  (15)  

Type  II  Diabetes  Mellitus,  %  (n)   28  (5)  

Smoking,  %  (n)  

-­‐ current  

-­‐ former  

-­‐ non-­‐smoker  

 

6  (1)  

50  (9)  

44  (8)  

Prior  Coronary  Artery  Disease,  %  (n)   33  (6)  

Peripheral  Vascular  Disease,  %  (n)   0  (0)  

Cerebrovascular  Disease,  %  (n)   0  (0)  

Table  4:   Subject  Baseline  Characteristics  –  Study  2  

 

A  complete  CV  protocol  was  possible   in  sixteen  (16)  subjects,  with  two  subjects  

unable   to   undergo   FMD   protocol   due   to   SBP>200mmHg   at   time   of   FMD  

Page 171: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  146  

acquisition.  A  third  subject  was  unable  to  complete  the  endothelium-­‐independent  

component  of  the  FMD  protocol  due  to  back  pain  related  to  lying  supine  for  the  

long  CMR  protocol.    

The   median   time   from   surgery   to   follow-­‐up   scan   was   201   days   (IQR   187-­‐220  

days).   All   subjects   completed   the   cardiac   protocol,   aortic   distensibility   and  

brachial   artery   blood   flow   protocols.   One   subject  was   unable   to   undertake   the  

FMD   protocol   due   to   back   pain.   A   further   one   subject   only   undertook   the  

endothelium-­‐dependent   component  of   the  FMD  protocol,   unable   to   tolerate   the  

additional   duration   in   the   scanner   necessary   to   complete   the   endothelium-­‐

independent  component  of  the  FMD  protocol  due  to  back  pain.    

 

Clinical  Results  

No  significant  changes  were  detected  in  clinical  parameters  between  baseline  and  

follow-­‐up  imaging  (weight:  81±16kg  vs.  81±16kg,  p=0.69;  SBP:  144±17mmHg  vs.  

138±18mmHg,  p=0.13;  HR:  72±8bpm  vs.  71±11bpm,  p=0.73;  Hb:  131±18g/dL  vs.  

134±15g/dL,   p=0.26;   serum   creatinine:   125±63μmol/L   vs.   130±65μmol/L,  

p=0.60).   No   subjects   required   blood   transfusion   or   dialysis   during   the   study  

period.  

 

Cardiac  Results  

Eighteen   subjects   were   included   in   the   follow-­‐up   study   and   underwent   initial  

cardiac   protocol.   In   the   presence   of   successful,   stable   RTx,   baseline   imaging  

revealed  preserved  mean  left  ventricular  systolic  function  (LVEF  73%  [67-­‐80%];  

Normal   range   58%-­‐76%)586   with   mean   LVEDV   at   the   upper   range   of   normal  

Page 172: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  147  

(192±52mL;  Reference  range:  Males  115-­‐198mL;  Females  88-­‐168mL).586  Cardiac  

output  was  increased  in  this  cohort  at  baseline  (9.6±2.9L/min;  Reference  range:  

Males   2.82-­‐8.82L/min,   Females   2.65-­‐5.98L/min).   In   the   context   of   a   high  

prevalence  of  prior  HT,  LVM  was  at   the  upper   limit  of  normal   limits  at  baseline  

(166±56g;   Reference   ranges:   Males   108-­‐184g,   Females   72-­‐144g).586   Left   and  

right   atrial   area   were  mildly   increased   across   the   cohort   at   baseline   (LA   Area  

29±5cm2,  RA  Area  27±4cm2;  Normal  range  <24cm2).551  

At   follow-­‐up,   significant   alterations   in   cardiac   structure   and   function   were  

identified.   LVEF   and   RVEF   were   unchanged   however,   confirming   the   limited  

utility   of   this   index   for   the   evaluation   of   alterations   in   cardiac   structure   and  

function,  despite  its  universal  use  in  echocardiographic  surveillance  (mean  LVEF  

73%   [67-­‐80%]   vs.   72%   [68-­‐78%],   p=0.89;   RVEF   65%   [60-­‐69%]   vs.   64%   [56-­‐

68%],  p=0.34).  Significant  alterations  were  seen  for  a  number  of  other  measured  

or  derived  parameters  for  atrial  and  ventricular  structure  and  function.  

Mean   LVEDV   decreased   by   13.1%   (192±52mL   vs.   167±52mL,   p=0.013),   mean  

LVSV  by  14.4%  (135±43mL  vs.  115±33mL,  p=0.008)  and  mean  LV  CO  by  15.6%  

(9.6±2.9L/min  vs.  8.1±2.3L/min,  p=0.004).  Significantly,  mean  LVM  decreased  by  

9.7%  (166±56g  vs.  149±51g,  p=0.0001)  6-­‐months  following  AVF-­‐ligation.  Change  

in  LVESV  (10.1%  decrease;  57±31mL  vs.  52±32mL,  p=0.16)  was  not  statistically  

significant  (Figures  21-­‐23).  

Similar   results   were   seen   for   the   decreases   in   mean   RVEDV   (12.1%   decrease;  

175±45mL   vs.   153±43mL,   p=0.006)   and   RVSV   (14.8%  decrease,   112±34mL   vs.  

95±29mL,  p=0.003).  Mean  LA  area  was  reduced  by  10.1%  (29±5cm2  vs.  26±5cm2,  

p=0.016)  and  mean  RA  area  decreased  by  8.4%  (27±4cm2  vs.  25±3cm2,  p=0.016)  

(Figures  21-­‐23).  

Page 173: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  148  

 

 

Figure  21:   Alterations   in   Left   Ventricular   Structure   and   Function   following   AVF-­

ligation  in  the  context  of  successful,  stable  renal  transplantation.  

Page 174: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  149  

 

 

Figure  22:   Alterations   in  Right  Ventricular  Structure  and  Function   following  AVF-­

ligation  in  the  context  of  successful,  stable  renal  transplantation.  

 

Page 175: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  150  

 

Figure  23:   Alterations   in   Left   and  Right  Atrial   Area   following  AVF-­ligation   in   the  

context  of  successful,  stable  renal  transplantation.  

 

Vascular  Results:  

Aortic  Distensibility  

Aortic  distensibility  was  not  significantly  altered  by  the  surgical  ligation  the  AVF  

at   the   6-­‐month   follow-­‐up   scan   (2.6±1.4mmHg-­‐1   vs.   2.6±1.2mmHg-­‐1,   p=0.84).  

Ascending  aorta  (AA),  proximal  descending  aorta  (PDA),  distal  descending  aorta  

(DDA)  and  average  aortic  distensibility  ([AA+PDA+DDA]/3)  were  all  numerically  

similar  following  AVF  ligation  (Figure  24).    

 

 

Page 176: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  151  

 

Figure  24:   Alterations  in  Aortic  Distensibility  following  AVF-­ligation  in  the  context  

of  successful,  stable  renal  transplantation.  

 

Prior  to  AVF  creation,  baseline  aortic  distensibility  decreased  progressively  from  

DDA   to  AA,   consistent  with  an   increase   in  aortic   stiffness   in   the  more  proximal  

aortic   segments,   though   only   the   comparison   of   AA   with   DDA   distensibility  

demonstrated   a   statistically   significant   difference   (AA   1.74±1.5mmHg-­‐1   vs.   PDA  

2.51±1.2mmHg-­‐1,  p=0.11;  AA  1.74±1.5mmHg-­‐1  vs.  DDA  3.51±2.2mmHg-­‐1,  p=0.010;  

PDA  2.51±1.2mmHg-­‐1  vs.  DDA  3.51±2.2mmHg-­‐1,  p=0.11).  These  finding  remained  

Page 177: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  152  

similar   following   AVF   ligation   (AA   1.78±1.3mmHg-­‐1   vs.   PDA   2.60±1.4mmHg-­‐1,  

p=0.08;   AA   1.78±1.3mmHg-­‐1   vs.   DDA   3.49±1.8mmHg-­‐1,   p=0.002;   PDA  

2.60±1.4mmHg-­‐1  vs.  DDA  3.49±1.8mmHg-­‐1,  p=0.10)  (Figure  25).      

 

 

Figure  25:   Aortic  Distensibility  by  Aortic  Level  Prior  to  (Pre-­),  and  Following  (Post-­)  

AVF  ligation  in  the  context  of  stable,  successful  renal  transplantation.  

 

Although   representative   of   significantly   different   clinical   cohorts,   there  was   no  

significant   difference   detected   in   average   aortic   distensibility   between   Study   1  

subjects   with   ESRF   6-­‐months   following   AVF-­‐creation,   and   stable   post-­‐RTx  

patients   6-­‐months   following   AVF   ligation   in   this   Study   (2.16±1.3mmHg-­‐1   vs.  

2.62±1.2mmHg-­‐1,  p=0.23;  Figure  26).    

 

Page 178: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  153  

 

Figure  26:   Average   Aortic   Distensibility   in   ESRF   subjects   following   AVF-­creation  

compared  to  successful  RTx  recipients  following  AVF-­ligation.    

 

Flow-­Mediated  Brachial  Artery  Dilatation  

Sixteen  (16)  subjects  completed  the  FMD  protocol  at  both  pre-­‐AVF  and  follow-­‐up  

scanning.   In   these   subjects,   brachial   artery   endothelium-­‐dependent  

vasodilatation,   as   measured   by   flow-­‐mediated   dilatation   was   significantly  

improved   at   6-­‐month   follow-­‐up   imaging   following   AVF-­‐ligation   (2.5±6.5%   vs.  

8.0±5.9%,   p=0.0426;   Figure   27).   Endothelium-­‐independent   vasodilatation   was  

unaffected  by  AVF-­‐ligation   in   the   subjects   evaluated   (11.9±4.4%  vs.   11.6±7.6%,  

p=0.87).   Importantly,   no   significant   change   was   detected   in   baseline   brachial  

artery   blood   flow   between   initial   and   follow-­‐up   scans   (0.08±0.04L/min   vs.  

0.09±0.05L/min,  p=0.24)   in  a  sub-­‐population  of  8-­‐subjects  where   this  sequence  

was  performed  (Figure  28).  Similarly,  there  was  no  significant  change  in  baseline  

brachial   artery   area   detected   across   the   study   cohort   between   baseline   and  

follow-­‐up   scans   (28.4±10mm2   vs.   27.4±10mm2,   p=0.76).   There   was   no  

Page 179: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  154  

correlation  between  %  change  in  FMD  and  %  change  in  LV  CO  (r=0.24,  p=0.56)  or  

LVSV  (r=-­‐0.08,  p=0.84).  

 

 

Figure  27:    Evaluation  of  Alterations  in  Endothelial  Function  following  AVF  ligation  

in  the  context  of  stable,  successful  renal  transplantation.  

 

Brachial  Artery  Blood  Flow  –  Arterio-­Venous  Fistula  Arm  

Brachial   artery   blood   flow   ipsilateral   to   the   AVF   decreased   substantially  

following   AVF   creation   (1.59±0.69L/minute   vs.   0.083±0.05L/minute,  

p<0.0001)(Figure   28).   This   represents   an   almost   95%   reduction   in   mean  

ipsilateral   brachial   artery   blood-­‐flow  6-­‐months   following  AVF-­‐ligation.  Notably,  

there  was  no  significant  association  between  %  change   in  brachial  artery  blood  

flow   and   %   change   in   LV   CO   (r=0.22,   p=0.41)   or   %   change   in   LVSV   (r=0.09,  

p=0.74).  

 

Page 180: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  155  

 

Figure  28:   Alteration   in   CMR-­assessed   brachial   artery   blood-­flow,   ipsilateral   and  

contralateral   to   the   ligated   arterio-­venous   fistula   in   the   context   of  

stable,  successful  renal  transplantation.  

Page 181: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  156  

Discussion  

Following  successful,  stable  RTx,  elective  AVF  ligation  is  associated  with  myriad  

desirable  alterations  in  cardiac  structure  and  function.  Most  notably,  AVF  ligation  

was  associated  with  substantial  regression  of  LV  cavity  dilatation  and  a  clinically  

significant   reduction   in   LVM   –   increased   at   baseline   in   this   post-­‐RTx   cohort.  

Additionally,  in  the  context  of  unchanged  LVEF  and  RVEF,  there  were  significant  

reductions  in  measures  of  RV  and  bi-­‐atrial  dilatation.  Such  alterations  were  noted  

in  the  context  of  a  >15%  reduction  in  mean  CO  6-­‐months  following  AVF  ligation  

and  a  95%  reduction  in  brachial  artery  blood-­‐flow  ipsilateral  to  the  ligated  AVF.  

Notably,   the   improvement   in   contralateral   brachial   FMD   closely   mirrored   the  

deterioration   in   this   parameter   following   AVF   creation   in   Study   1.   Such  

alterations   in   cardiac   structure   and   function   were   not   mirrored   by   significant  

alterations   in   vascular   structure,   as   measured   by   CMR-­‐derived   aortic  

distensibility  however.  Most  importantly,  the  majority  of  the  subjects  studied  had  

undergone   successful   renal   transplantation  >3  years  previously,  with   indefinite  

persistence  of  clinically  unnecessary  AVF  potentially  providing  a  strong  source  of  

maladaptive  CV  stress  in  affected  patients.    

AVF   may   persist   indefinitely   following   successful   RTX.   Although   some   RTx  

patients   note   spontaneous   thrombosis   of   their   AVF,   routine   post-­‐RTx   surgical  

AVF-­‐ligation  following  a  meaningful  period  of  clinically  stability  remains  a  focus  

of  ongoing  research  rather  than  routine  clinical  practice  worldwide.  The  longer-­‐

term   cardiac   impact   of  AVF  persistence   following   successful  RTx   is   not   known,  

however   there   is   mounting   evidence   that   AVF   contribute   significantly   to  

persistence   of   LVH   (and   potentially,   associated   diastolic   left   ventricular  

dysfunction)   in   post-­‐transplant   patients.   The   published   data   in   this   field   is  

Page 182: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  157  

contradictory   however438-­‐440,   with   some   evidence   that   only   larger   AVF   are  

responsible   for   disadvantageous   cardiac   remodelling.441   A   recent   study   further  

suggests   that   the   AVF,   rather   than   the   necessity   for   haemodialysis,   is   the  

propagating  factor  in  LVH,  demonstrating  a  marked  reduction  in  adverse  cardiac  

indices   following   failure   of   AVF,   but   ongoing   intermittent   haemodialysis   via   a  

central   venous   catheter.442   Moreover,   the   impact   of   AVF-­‐ligation   on   right  

ventricular   and   atrial   structure   and   function   as   well   as   central   and   peripheral  

vascular   structure  and   function  has  not  previously  been  determined.  Our  Study  

demonstrates   regression   of   bi-­‐ventricular   and   bi-­‐atrial   dilatation,   improvement  

in  LVM  and  a  statistically  significant  improvement  in  remote  endothelial  function  

as  measured  by  FMD  –  all  factors  associated  with  lesser  morbidity  and  mortality.    

It   is   well   appreciated   that   successful   RTx   is   associated   with   a   substantial  

improvement   in   morbidity   and   mortality   for   ESRF   patients.443-­‐449   Despite   this,  

RTx  recipients  endure  a  persistently  elevated  risk  of  CV  morbidity  and  mortality  

compared   to   the  general  population,  despite   substantial   improvements   in  post-­‐

RTx  care  in  the  last  two  decades.451  Successful  RTx  has  previously  been  shown  to  

be   associated   with   significant   reductions   in   LVM   and   LV   volumes   following  

transplantation,   though   cardiac   structure   and   function   do   not   universally  

normalise.454-­‐463  Thus,  the  role  for  novel  therapies  to  improve  post-­‐RTx  care,  and  

CV  morbidity  and  mortality  in  particular,  deserves  particular  attention.  

Endothelial   dysfunction   is   a   common   finding   in   ESRF.   Although   generally  

improved,  endothelial  dysfunction  commonly  persists  following  RTx.470-­‐472  Many  

of   the   immunosuppressive   agents   utilised   following   RTx   contribute   to   this  

persistent   endothelial   dysfunction,   and   may   contribute   further   to   overall   CVD  

risk   through   unfavourable   effects   on   lipid   profiles,   blood   pressure   and   glucose  

Page 183: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  158  

intolerance.473  Thus,  endothelial  dysfunction  post-­‐RTx  remains  a  potential  trigger  

to   the   development   of   clinically   significant   CVD,   and  hence   remains   a   potential  

target   for   therapeutic   interventions,   whether   by   improved   blood   pressure   and  

lipid   control,   smoking   cessation   or   by   other   novel   means.472   In   our   Study,  

endothelium-­‐dependent   vasodilatation   (as   measured   by   FMD)   demonstrated   a  

significant   improvement   in  mean   brachial   artery   dilatation   6-­‐months   following  

AVF-­‐ligation.   Notably,   endothelial   function   at   baseline   was   particularly   poor,  

despite  generally  preserved  RTx  function.  The  finding  of  improved  endothelium-­‐

dependent   vasodilatation   is   significant,   as   it   infers   a   widespread   benefit   to  

systemic   endothelial   function,   related   potentially   to   a   combination   of   reduced  

systemic   blood   flow   and/or   alteration   of   circulating   triggers   to   endothelial  

dysfunction.   Importantly,   our   Study   did   not   find   any   significant   change   in  

baseline  brachial  artery  blood  flow  in  the  FMD  arm  that  may  have  contributed  to  

these   findings.   Moreover,   that   a   peripheral   arterial   bed   remote   from   the   AVF  

demonstrated   improved   endothelial   function   raises   the   possibility   of  

improvements   in   clinically  more   important   vascular   beds   such   as   the   coronary  

and   cerebral   circulations.   Previous   studies   in   non-­‐CKD   cohorts   have  

demonstrated   reduction   in   future   CV   events   associated   with   improvements   in  

peripheral  endothelial  function.635  Such  an  hypothesis  remains  to  be  determined  

in   post-­‐RTx,   however   the   potential   for   the   relatively   minimally-­‐invasive   AVF  

ligation   procedure   to   induce   a   beneficial   impact   on   clinical   CV   events   through  

improved   systemic   endothelial   function   deserves   further   investigation.  

Anecdotally,   the   male   subjects   evaluated   commented   upon   noticeable  

improvements   in   erectile   function   following   AVF-­‐ligation.   Although   this   factor  

was  not   evaluated  prospectively,   it   provides   further   basis   for   the  hypothesis   of  

Page 184: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  159  

potential   improvement   in   systemic   endothelial   function   with   AVF-­‐ligation.  

Regardless,   it   remains   to  be  determined  whether   the  FMD   finding   in   this  Study  

would  be  replicated   in  other  vascular  beds,  and  whether  such   improvements   in  

systemic  endothelial  function  may  abrogate  this  potent  trigger  to  atherosclerosis  

and  future  CV  events  this  high-­‐risk  cohort.      

Large   artery   structure   and   compliance   is   also   adversely   affected   by   ESRF   and  

long-­‐term  dialysis474-­‐476,  with  improvement  but  persistence  of   increased  arterial  

stiffness   following   transplantation.477-­‐480   The   calcineurin   inhibitors   have   been  

implicated   in   the   promotion   of   arterial   stiffness   following   RTx,   although   the  

process   is   clearly   multi-­‐factorial.481-­‐484   Persistence   of   LVH   and   diastolic   LV  

impairment  are  also  believed  to  play  a  significant  role  in  the  continuation  of  large  

artery  dysfunction,  with  disadvantageous  CV  sequelae.348   In  this  Study,  we  have  

demonstrated  persistence  of  aortic  stiffness  despite  marked  reductions  in  CO  and  

LVM   following   elective  AVF-­‐ligation.   Such   a   finding  may   relate   to   the   relatively  

less   modifiable   nature   of   aortic   structure,   or   perhaps   an   insufficient   duration  

between   surgical   AVF   ligation   and   the   follow-­‐up   evaluation.   Interestingly  

however,   this  Study  further  demonstrates  a  stepwise   increase   in  aortic  stiffness  

from  distal  to  proximal  aorta.  As  discussed  in  the  previous  Chapter,  such  a  finding  

may   relate   to   intrinsic   differences   in   the   elastin:collagen   ratio   in   proximal   vs.  

distal  aortic  segments.  Regardless,  we  propose  that  an  increase  in  proximal  aortic  

stiffening   may   contribute   significantly   to   LV   afterload,   and   have   a   particularly  

deleterious  impact  on  coronary  artery  perfusion  resulting  from  reduced  proximal  

aortic  diastolic  elastic  recoil.394    

Despite  persistence  of  aortic  stiffness  in  this  RTx  cohort,  there  was  no  statistically  

significant   difference   in   aortic   distensibility   between   ESRF   patients   6-­‐months  

Page 185: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  160  

following   AVF-­‐creation   and   the   successful   RTx   recipients   evaluated   6-­‐months  

following   AVF-­‐ligation.   This   is   despite   the   post-­‐RTx   subjects   being   generally  

younger   than   the   ESRF   subjects   evaluated   in   Study   1   (54.6±12years   vs.  

59.2±12years,   p=0.22).   Such   a   finding  would   suggest   that   previously   published  

improvements  in  reported  exercise  capacity  following  RTx  may  stem  more  from  

improvements   in   cardiac,   rather   than   vascular,   structure   enabling   improved  

cardiac   reserve   despite   persistently   elevated   ventricular   afterload.   Such   an  

hypothesis  remains  to  be  investigated.      

We   have   demonstrated   significant   improvements   in   CV   structure   and   function  

following  elective  AVF-­‐ligation,  utilising  recent  advances  in  cardiac  and  vascular  

imaging   through   CMR.   CMR   provides   for   substantially   greater   accuracy   and  

reproducibility   in   the   detection   of   cardiac   abnormalities   as   compared   to  

traditional  TTE  or  nuclear  technologies.525,536-­‐539  In  fact,  TTE  has  less  than  50%  of  

the  precision  of  CMR  in  evaluation  of  LVM  –  a  strong  independent  predictor  of  CV  

events  in  ESRF  and  post-­‐RTx  patients.509,510  As  such,  studies  utilising  CMR  require  

a   substantially   reduced   sample   size   to   detect   significant   differences   in   CV  

structure   and   function   following   therapeutic   intervention.   In   this   regard,   our  

Study  is  unique,  in  that  we  have  been  able  to  address  alterations  in  CV  structure  

and   function   following  AVF-­‐ligation  more   accurately   and   comprehensively   than  

previously  possible,  with  our  results  highlighting  this  capacity.    

 

Limitations  

This  Study  represented  a  Pilot  examination  of  the  potential  for  advantageous  CV  

remodelling   in   response   to   elective   AVF   ligation   in   the   context   of   successful,  

stable  RTx.  Although  prospectively  conducted  and  similar  in  design  to  previously  

Page 186: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  161  

published   work   evaluating   alterations   in   cardiac   structure   and   function   as  

assessed  by  TTE440,  the  absence  of  a  control  group  provides  a  notable  limitation  

to  the  generalizability  of   the  Study  results.   Ideally,  a  control  group  consisting  of  

successful   RTx   recipients   with   persistently   functioning   AVF,   matched   for   time  

from  AVF   creation,   time   from  RTx  and  baseline   characteristics   such   as   age   and  

gender  would  have  served  to  optimise  the  Study  design.  Using  this  Pilot  study  for  

power   calculations,   such   a   study   is   currently   being   undertaken   at   our   centre.  

Despite  this,  the  cohort  evaluated  in  the  present  Study  represented  patients  with  

long-­‐standing   successful   RTx,   with   stable   renal   function   and   best-­‐practice   co-­‐

morbidity   management.   Clinical   stability   was   an   overriding   clinical   imperative  

prior   to   referral   for   AVF   ligation,   reducing   the   chance   of   RTx   management   or  

renal  function  to  contribute  to  the  alterations  seen.    

Furthermore,  it  remains  to  be  determined  whether  a  larger  sample  size  may  have  

enabled  the  detection  of  significant  alterations  in  aortic  distensibility,  or  whether  

such   changes   require   a   longer   follow-­‐up   interval,   given   the   more   structural  

nature   of   this   parameter.   Given   the   recent   recognition   of   the   prognostic  

significance  of  this  measure,  further  work  in  this  area  is  certainly  warranted.    

 

Conclusion  

Cardiac  structure  and  function  is  significantly  improved  by  elective  AVF-­‐ligation  

in  the  context  of  stable  successful  RTx.  Furthermore,  AVF-­‐ligation  was  associated  

with   significant   improvement   in   systemic   endothelial   function,   as   evaluated   by  

FMD.   Aortic   distensibility   was   unaltered   by   AVF-­‐ligation   in   this   Study.   Thus  

despite  a  >15%  reduction  in  overall  CO  and  a  ~95%  reduction  in  brachial  artery  

Page 187: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  162  

blood  flow  ipsilateral  to  the  ligated  AVF,  disadvantageous  alterations  in  vascular  

structure  may   be  more   entrenched   than   derangements   in   vascular   function   or  

disadvantageous   cardiac   remodelling.   Efforts   to   minimise   the   duration   of  

maladaptive   triggers   to   vascular   dysfunction   require   further   attention   in   the  

prevention   of   potentially   irreversible   deleterious   vascular   remodelling   in   ESRF  

and  following  successful  RTx.  We  propose  elective  AVF  ligation  be  considered  in  

all  successful  RTx  recipients  following  a  suitable  period  of  clinical  stability.    

Page 188: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  163  

Study  3:  Evaluation  of  the  Diagnostic  Accuracy  of  Dobutamine-­

Stress  Cardiac  MRI  in  the  Detection  of  Angiographically-­

Significant  Coronary  Artery  Disease  prior  to  Renal  

Transplantation  

 

Introduction  

RTx  is  associated  with  significant  improvements  in  QOL,  morbidity  and  mortality  

for   successful   recipients.443-­‐449   In   comparison   to   ESRF   patients   accepted   for  

transplantation  but  remaining  on  the  waiting  list,  cadaveric  RTx  has  been  shown  

to   more   than   triple   the   life-­‐expectancy   of   ESRF   patients   on   dialysis.445   A  

substantial  proportion  of  this  benefit  relates  to  a  reduction  in  CV  death.  Despite  

this,  CVD  remains  a  leading  cause  of  death  amongst  RTx  recipients450,451  and  RTx  

recipients  experience  an  incidence  of  CV  mortality  that  is  many  times  that  of  the  

age-­‐matched  controls   from  the  general  population.451,453  Thus  RTx   is  associated  

with   substantial   CV   benefits,   but   a   significant   burden   of   CVD   persists   in   this  

vulnerable,  high-­‐risk  patient  cohort.  

Current   pre-­‐RTx   screening   processes   are   somewhat   heterogeneous,   but   are  

relatively  successful  in  identifying  patients  at  lower  risk  of  ischaemic  CV  events.  

Despite   this,   RTx   is   associated   with   an   early   increase   in   all-­‐cause   and  

cardiovascular  mortality   for   recipients.443,485,486  Notably,   the   survival   advantage  

of  RTx  appears  not  to  be  apparent  until  beyond  250-­‐days  post-­‐transplantation486,  

making   survival   to   this   point   a   necessary   pre-­‐condition   to   RTx   benefit.  

Furthermore,   according   to   a   large  Scandinavian   study,  between   the   second  and  

Page 189: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  164  

third  years  post-­‐RTx,  41.4%  of  failed  grafts  are  lost  due  to  chronic  rejection,  but  

42%   are   lost   due   to   patient   death   with   a   functioning   graft.450   A   substantial  

burden  of  this  early  mortality  is  due  to  CVD.468    

To   reduce  peri-­‐operative  CV  morbidity   and  mortality,   or   early   graft   loss  due   to  

CVD,  potential  RTx  recipients  undergo  rigorous  screening  processes.  These  pre-­‐

RTx   screening   investigations   must   consider   not   only   peri-­‐operative   risk,   but  

should  also  be  designed  to  provide   information  regarding  CV  risk   into  the  early  

years   post-­‐RTx   to   ensure   recipients   are   most   likely   to   enjoy   the   mortality  

advantages   associated   with   the   RTx   process.487   Although   there   is   widespread  

support  for  CV  evaluation  prior  to  RTx485,488-­‐492,  there  is  no  universally  accepted  

screening   process   and   hence   each   RTx   centre   may   have   different   routines  

depending   on   local   experience   and   expertise.  Much   of   this   debate   also   centres  

around  the  appropriateness  of  coronary  revascularisation  in  often  asymptomatic  

subjects  in  whom  ‘significant’  coronary  artery  disease  has  been  detected.  

There   is   substantial   debate   regarding   the   necessity   to   perform   ICA   to   exclude  

significant   CAD   prior   to   RTx.   Numerous   studies   have   been   published  

demonstrating   the   advantages   and   limitations   of   non-­‐invasive   investigations   in  

the   ESRF   context.499,501,505,636   In   particular,   in   ESRF   it   appears   that   vasodilator  

stress  is  inferior  to  tachycardia-­‐stress  in  the  non-­‐invasive  detection  of  significant  

CAD.513  Exercise-­‐capacity  is  often  limited  in  ESRF  however,  limiting  the  capacity  

for   exercise-­‐based   stress   imaging   to   provide   a   universally   applicable   non-­‐

invasive   methodology   for   the   exclusion   of   significant   coronary   artery   disease.  

Nuclear-­‐based   technologies   have   been  widely   utilised   for   this   purpose,   though  

suffer   from   technical   limitations   and   a   not-­‐insignificant   radiation   dose,  

particularly   for   younger   patients   requiring   recurrent   studies.   The   incidence   of  

Page 190: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  165  

malignancy   is   known   to   be   increased   following   RTx,   hence   it   would   appear  

reasonable  to  avoid  unnecessary  medical  radiation  in  the  pre-­‐RTx  evaluation.  As  

a  result,  many  authors  have  favoured  stress  echocardiography  for  the  evaluation  

of  pre-­‐RTx  subjects.493,505,512,637  This  technique,  however,  is  highly  dependent  on  

imaging  adequacy  and  interpreter  expertise,  and  is  confined  to  a  limited  range  of  

imaging  windows.  

DS-­‐CMR   is   a   relatively   more   recent   addition   to   the   non-­‐invasive   imaging  

pantheon,  but  provides  a  high   level  of  diagnostic  accuracy   in  studies  evaluating  

non-­‐CKD   patients   at   intermediate-­‐high   clinical   risk.638,639   Following   a   standard  

dobutamine-­‐stress   protocol   (as   for   dobutamine-­‐stress   echocardiography),   DS-­‐

CMR  provides  superior  image  quality  and  unlimited  imaging  planes,  without  the  

administration  of  exogenous  contrast  agents  or  ionising  radiation.  The  diagnostic  

accuracy   of   this   methodology   is   yet   to   be   determined   in   the   ESRF   /   pre-­‐RTx  

context   however.   Hence,   we   sought   to   evaluate   the   diagnostic   accuracy   of   DS-­‐

CMR   in   comparison   to   ICA,   and   to   compare   these   results   to   the   current  

institutional  standard  –  myocardial  perfusion  scintigraphy.  

Page 191: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  166  

Methods  

Study  Methods  have  been  detailed  previously  (p103).  

In  brief,  Subjects  were  enrolled  following  referral  for  exclusion  of  significant  CAD,  

prior   to   listing   for  RTx   for   the   treatment  of  advanced  CKD  /  ESRF  by   the  South  

Australia   RTx   Team.   Standard   exclusion   criteria   were   applied.   All   subjects  

underwent  DS-­‐CMR  as  per  validated  protocol.  Offline  analysis  was  subsequently  

performed  to  exclude  inducible  wall  motion  abnormalities  indicative  of  regional  

ischaemia.  On  a  separate  day,  all  subjects   then  underwent   ICA  to  determine  the  

presence   and   severity   of   epicardial   coronary   stenoses.   Offline   analysis   of  

angiographic   stenosis   severity   was   determined   by   two   experienced   observers,  

with   clinical   significance   determined   for   coronary   stenoses   of   ≥70%   in   luminal  

diameter  by  visual  estimation.    

Comparison   of   DS-­‐CMR   and   invasive   coronary   angiographic   findings   was  

determined   following   independent   reporting  of  each   investigation  by  observers  

blinded  to  the  results  of  the  alternative  investigation.    

 

Statistical  Analysis  

As  previously  described  (Statistical  Methods,  p111)  

 

Page 192: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  167  

Results  

Twenty-­‐two  subjects  were  evaluated  with  DS-­‐CMR  prior  to  ICA,  as  per  the  clinical  

protocol   of   the   Royal   Adelaide  Hospital   Renal  Medicine   Department   and   South  

Australian   Renal   Transplant   Unit   (Age   56.1±8.5years,   68.2%   male).   Baseline  

characteristics  are  detailed  in  Table  5.  Twenty  subjects  (90.9%)  also  underwent  

SPECT  perfusion  imaging,  as  a  component  of  the  standard  current  clinical  work-­‐

up  for  higher-­‐risk  pre-­‐transplant  candidates  at  our  institution.  All  subjects  were  

asymptomatic  with  regards  myocardial  ischaemia.  

 

Characteristic   Proportion  

(n=22)  

Age  (years)   56.1±8.5  

Gender  (male),  %  (n)   68  (15)  

Hypertension,  %  (n)   91  (20)  

Hyperlipidaemia,  %  (n)   27  (6)  

Type  II  Diabetes  Mellitus,  %  (n)   41  (9)  

Smoking,  %  (n)  

-­‐ current  

-­‐ former  

-­‐ non-­‐smoker  

 

5  (1)  

18  (4)  

77  (17)  

Prior  Coronary  Artery  Disease,  %  (n)   36  (8)  

Peripheral  Vascular  Disease,  %  (n)   9  (2)  

Cerebrovascular  Disease,  %  (n)   9  (2)  

Receiving  Dialysis,  %  (n)   95  (21)  

Table  5:   Subject  Baseline  Characteristics  –  Study  3  

 

Page 193: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  168  

The  median  time-­‐period  between  DS-­‐CMR  and  ICA  was  13  days  (IQR  8-­‐31  days).  

At   DS-­‐CMR,   target   HR   was   achieved   in   19   subjects   (86.4%),   with   one   subject  

reaching   93%   of   predicted   target   heart   rate   at   a   Dobutamine   dose   of  

40mcg/kg/minute   and   supplemental   Atropine   (1.2mg).   One   subject’s   DS-­‐CMR  

protocol  was  ceased  prematurely  due  to  the  development  of  clinically  significant  

regional   myocardial   dysfunction,   indicative   of   a   large   territory   of   inducible  

myocardial   ischaemia   at   sub-­‐maximal   dobutamine   stress.   One   subject   failed   to  

reach  target  HR  at  maximal  dobutamine  dose,  with  evidence  of  widespread,  non-­‐

viable   myocardial   infarction   noted   (deemed   a   positive   study   for   CAD,   hence  

atropine   not   administered).   There   were   no   other   haemodynamic   or   clinically  

relevant  complications  related  to  Dobutamine-­‐infusion  in  the  subjects  evaluated.  

Mean   LVEF   was   preserved   overall   (61±15%)   with   six   subjects   having   LVEF  

<55%.   LVM   was   significantly   increased   within   this   cohort,   indexed   to   body-­‐

surface   area   (113g/m2;   Reference   range:   45-­‐81g/m2   for   men,   31-­‐79g/m2   for  

women).    

The   median   time-­‐period   between   SPECT   and   ICA   was   108   days   (IQR   49-­‐231  

days).  This  is  substantially  longer  than  that  for  the  DS-­‐CMR,  as  the  SPECT  imaging  

was  performed  as  a  clinically-­‐referred  test,  with  subsequent  referral  for  coronary  

angiography   proceeding   after   assessment   of   the   results   within   the   clinical  

practice   of   the   SA   Renal   Transplant   and   RAH   Cardiology   Units.   Of   the   SPECT  

studies,  11  (55%)  utilised  Dobutamine  as  the  stressor,  7  (35%)  utilised  exercise  

stress   and   two   studies   (10%)   utilised   dipyridamole   –   a   vasodilator   stress  

previously  associated  with  reduced  diagnostic  accuracy  in  the  context  of  ESRF.513  

Notably,  one  dipyridamole-­‐SPECT  study  result  was  a  true  negative  for  ischaemia  

and  the  other  a  false  negative  for  ischaemia.  

Page 194: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  169  

Diagnostic  Accuracy:  

At   ICA,   seven   subjects   (31.8%)   had   coronary   artery   stenoses   of   ≥70%   severity  

within   the   major   epicardial   coronary   arteries.   DS-­‐CMR   correctly   identified   the  

presence  of  significant  coronary  artery  disease  in  all  seven  subjects  (Sensitivity  =  

100%;   95%   CI   54-­‐100%).   Of   the   fifteen   subjects   without   significant   coronary  

artery  disease,  DS-­‐CMR  was  negative  in  14  (Specificity  =  93%,  95%  CI  68-­‐100%).  

A   single   subject   was   deemed   to   have   a   positive   DS-­‐CMR   study   with   no  

haemodynamically  significant  coronary  artery  disease   identified  at   ICA.  Positive  

predictive   value   (PPV)   of   DS-­‐CMR   was   88%   (95%   CI   47-­‐100%)   and   negative  

predictive  value  (NPV)  was  100%  (95%  CI  77-­‐100%).  (Table  6)  

SPECT  imaging  correctly  identified  the  presence  of  significant  coronary  stenoses  

in   four   of   the   seven   subjects   with   stenoses   ≥70%   severity   (Sensitivity   =   57%,  

95%  CI  18-­‐90%).  SPECT  falsely   identified  the  presence  of  myocardial   ischaemia  

related  to  epicardial  coronary  artery  disease  in  eight  of  thirteen  subjects  without  

significant  stenoses  at  ICA  (Specificity  =  38%,  95%  CI  14-­‐68%).  PPV  of  SPECT  in  

this   cohort   was   33%   (95%   CI   10-­‐65%)   and   NPV   was   63%   (95%   CI   25-­‐91%).  

(Table  6)    

Page 195: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  170  

 

    DS-­CMR   SPECT  

Sensitivity   100%   57%  

Specificity   93%   38%  

Positive  Predictive  Value   88%   33%  

Negative  Predictive  Value   100%   63%  

Accuracy   95%   42%  

Likelihood  Ratio   15.00   0.93  

Table  6:   Diagnostic   performance   of   DS-­CMR   and   Stress-­Perfusion   SPECT   in   the  

detection  of  angiographically  significant  coronary  stenoses.  

 

Utilising   an   identity   binomial   generalised   estimating   equation,   the   diagnostic  

performance   of   DS-­‐CMR   was   significantly   superior   to   SPECT   imaging   for   the  

detection  of  significant  coronary  stenoses  ≥70%  at  ICA  (p<0.0001).    

 

Assessment  of  Left  Ventricular  Ejection  Fraction  

Assessment   of   cardiac   structure   and   function   was   performed   for   all   DS-­‐CMR  

studies.   SPECT-­‐based   assessment   was   reported   quantitatively   for   18   of   the   19  

SPECT  studies.  No  other  structural  or  functional  information  was  available  from  

the  SPECT  studies.  In  those  subjects  undergoing  both  studies,  mean  LVEF  by  CMR  

was  60.6±15%,  but  mean  LVEF  by  SPECT  was  only  50.2±13%.  This  represents  a  

statistically   and   clinically   significant   10.4±4%  mean   underestimation   by   SPECT  

compared  to  the  internationally-­‐recognised  gold-­‐standard  assessment  of  LVEF  by  

CMR  (p<0.001)  (Figure  29).    

Page 196: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  171  

 

 

Figure  29:   Comparison  of  CMR-­derived  vs.  SPECT-­derived  evaluation  of  LVEF.  

Page 197: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  172  

Discussion  

To   our   knowledge,   the   diagnostic   performance   of   DS-­‐CMR   has   not   previously  

been   evaluated   in   the   detection   of   significant   coronary   artery   disease   in   ESRF  

patients  prior  to  RTx.  In  this  pilot  study,  we  have  demonstrated  a  very  high  level  

of  diagnostic  accuracy  for  this  technique,  with  highly  reassuring  NPV  and  strong  

PPV.   Furthermore,   DS-­‐CMR   clearly   outperformed   the   institutional   standard  

(SPECT)  on  all   fronts,  with  SPECT  concerningly  misdiagnosing   three  patients  as  

having  no  significant  CAD  despite  stenoses  ≥70%  at  ICA.  The  procedure  was  safe  

and  well   tolerated  by  all   subjects  and  CMR   is  additionally  able   to  provide  gold-­‐

standard  evaluation  of   left  and  right  ventricular  structure  and  function,  LVM,  as  

well   as   measures   of   atrial   volumes,   valvular   function   and   thoracic   aorta  

dimensions   and   compliance.   Other   than   LVEF,   SPECT   is   unable   to   reliably  

evaluate  any  of  these  cardiac  parameters,  with  SPECT-­‐based  evaluation  of  gated  

LVEF  proving  systematically  unreliable  in  this  Study.  Given  the  importance  of  this  

measure   in   prognostic   evaluation   of   ESRF   patients,   such   a   clinically   significant  

discrepancy   is   highly   concerning,   and   illustrates   the   unreliability   of   SPECT  

imaging   in   correctly   excluding   significant   coronary   artery  disease  or   accurately  

quantifying  LVEF.  

Death  with   a   functioning   transplant   remains   a   leading   cause   of   long-­‐term  graft  

failure  and  CVD  remains  a  leading  cause  of  post-­‐transplant  mortality.  As  such,  CV  

evaluation   prior   to   RTx   remains   an   important   component   of   determining  

eligibility   for   RTx.   Although   resting   abnormalities   of   LV   structure   and   function  

have   been   shown   to   regress   following   successful   RTx,   in   the   absence   of  

myocardial  ischaemia640,641,  the  presence  of  myocardial  ischaemia  on  myocardial  

perfusion   scintigraphy   or   stress   echocardiography   has   been   shown   to   be  

Page 198: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  173  

associated   with   a   markedly   poorer   prognosis.511,637,642   Previous   authors   have  

suggested   that   all   potential   RTx   recipients   undergo   ICA   for   the   exclusion   of  

significant   CAD,   with   some   studies   demonstrating   ICA   to   provide   superior  

prognostic   value   over   non-­‐invasive   investigations.500   The   optimal   form   of   pre-­‐

RTx  evaluation  remains  to  be  determined  definitively  however.  

DS-­‐CMR   is   a   relatively   new   addition   to   the   non-­‐invasive   armoury   for   the  

exclusion  of   significant  coronary  artery  disease   in  patients  at   intermediate-­‐high  

risk.     Despite   this,   the   technique   has   been   evaluated   in   a   variety   of   non-­‐ESRF  

cohorts,   demonstrating   a   high   level   of   diagnostic   accuracy  with   sensitivity   and  

specificity   generally   ≥80-­‐85%   for   each.638,639   This   compares   very   favourably   to  

studies   evaluating   other   non-­‐invasive   functional   cardiac   imaging   tests.   In   the  

context   of   this   high   level   of   diagnostic   accuracy,   DS-­‐CMR   has   also   recently  

demonstrated  strong  prognostic  value  in  predicting  future  CV  events.540,541,643,644  

Reassuringly,  a  negative  DS-­‐CMR  has  been  shown  to  predict  a  low  rate  of  cardiac  

events   in   subsequent   years   with   previous   large   studies   in   this   field   having  

consistently  demonstrated  a  cardiac  event  rate  of  ~1%  per  year  in  the  2-­‐4  years  

following   a   negative   DS-­‐CMR   study.540,541,645   This   is   similar   to   the   widely  

published   event   rates   for   CV   event-­‐free   survival   following   negative  myocardial  

perfusion   imaging646   and   stress   echocardiography.647   Additionally,   DS-­‐CMR  

benefits   from   a   high   spatial   resolution   and   hence   a   low   rate   of   inter-­‐observer  

variability  with   regards   reporting  of   inducible   ischaemia.648   Such   attributes   are  

highly   desirable   in   a   non-­‐invasive   investigation,   particularly   in   the   screening  

evaluation  of  a  generally  asymptomatic  cohort  at  high  risk  of  future  CV  events.    

Although  previously  demonstrated  to  be  of  prognostic  value  in  the  pre-­‐operative  

assessment  of  patients  undergoing  non-­‐cardiac  surgery,  but  unsuitable  for  stress  

Page 199: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  174  

echocardiography643,   to   our   knowledge,   DS-­‐CMR   has   not   previously   been  

assessed   in   the   evaluation   of   ESRF   patients   prior   to   RTx.   This   population  

provides   unique   challenges   in   the   use   of   DS-­‐CMR,   potentially   adversely  

influencing  diagnostic  accuracy.  Non-­‐ischaemic  resting  wall  motion  abnormalities  

related  to  uraemic  cardiomyopathy  have  the  potential  to  influence  the  detection  

of  myocardial   ischaemia   through   the   false   attribution   of   inducible   ischaemia   to  

such   wall   motion   defects,   or   the   concealment   of   true   adjacent   ischaemia.  

Furthermore,   the  high  prevalence  of  LVH   in   the  ESRF  cohort  may   influence   the  

prognostic  value  of  DS-­‐CMR,  even  in  the  presence  of  a  negative  scan.649,650  Despite  

these   limitations,   all   non-­‐invasive   imaging  modalities   suffer   from   limitations   in  

respect  of  their  accuracy  in  various  cohorts.  More  specifically,  SPECT  is  known  to  

suffer  from  attenuation  artefacts  related  to  the  diaphragm  and  body  habitus  and  

stress  echocardiography  suffers   from  impaired   image  quality   in   the  presence  of  

obesity,   cachexia   and   obstructive   pulmonary   disease.   Though   CMR   is   able   to  

overcome   most   limitations   related   to   body   habitus,   the   detection   of   inducible  

regional   wall   motion   defects   at   very   high   heart   rates   provides   some   technical  

challenges  for  CMR.  The  temporal  resolution  of  CMR  is  generally  lower  than  that  

for  echocardiography,  and  SSFP  imaging  generally  requires  8-­‐12  cardiac  cycles  to  

generate   a   composite   cine   image.   This   may   be   problematic   in   the   context   of  

irregular  cardiac  rhythms  such  as  AF  or  frequent  ventricular  ectopy,  causing  the  

endocardial  margins  on  the  composite  cine  to  become  indistinct.  Such  issues  can  

usually   be   overcome   by   converting   to   a   prospectively-­‐gated   acquisition   and  

altering   the   triggering   delay   time   to   avoid   incorporation   of   cardiac   cycles  with  

shorter   R-­‐R   intervals.   During   dobutamine-­‐stress   imaging,   tachycardia   is   the  

prime  objective  of  the  study  protocol  as  a  surrogate  marker  of  the  achievement  of  

Page 200: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  175  

peak   pharmacological   stress.   The   rate   of   cardiac   contraction   and   relaxation  

during   peak   tachycardia   may   be   associated   with   loss   of   image   quality   due   to  

insufficient   temporal   resolution.   Such   an   issue   sometimes   necessitates   the  

combination  of  standard  ECG-­‐triggered,  retrospectively-­‐gated  SSFP  imaging  with  

real-­‐time,   non-­‐triggered   True-­‐FISP   imaging   –   a   sequence   that   provides   a  

marginally   lower   level   of   spatial   resolution   in   favour   of   increased   temporal  

resolution   during   peak   stress   imaging.   We   have   found   the   combination   to   be  

advantageous  in  the  clinical  reporting  of  DS-­‐CMR  scans.  

Despite   its  high-­‐level  of  diagnostic  accuracy,  DS-­‐CMR  is  not   the  most  commonly  

utilised   stress-­‐CMR   modality   at   our   institution   or   internationally.   Adenosine-­‐

stress   perfusion   CMR   has   received   significantly   greater   attention   for   the  

detection   of   significant   CAD   in   at-­‐risk   individuals.   This   technology   utilises   a  

gradient-­‐echo   sequence,   imaging   during   first-­‐pass   myocardial   perfusion  

following   intravenous  administration  of  a  gadolinium-­‐based  contrast  agent.  The  

spatial   resolution  of   this   technique   is  marginally   lower   than   that  used   for   SSFP  

wall-­‐motion   imaging   (~2.3-­‐2.8mm   in-­‐plane   resolution   for   perfusion   imaging  

sequences   vs.   1.8-­‐2.0mm   in-­‐plane   resolution   for   SSFP),   however   this   level   of  

resolution  allows  for  the  assessment  of  5-­‐8  radial  myocardial  image  pixels  in  the  

presence   of   normal   myocardial   thickness.   This   compares   to   1-­‐2   pixels   for  

conventional  SPECT   imaging.  Thus,   the  detection  of  sub-­‐endocardial  myocardial  

ischaemia   during   vasodilator   stress   is   greatly   enhanced   over   standard   nuclear  

imaging   techniques.651-­‐654   Furthermore,   the   gadolinium-­‐based   contrast   agent  

used   is   biologically   inert   in   its   chelate   form,   excreted   efficiently   via   renal  

clearance  within  24-­‐48  hours  in  the  presence  of  preserved  renal  function  and  is  

Page 201: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  176  

not  associated  with   the  not-­‐insignificant  burden  of   iatrogenic   ionising  radiation  

associated  with  SPECT  imaging.    

Adenosine-­‐stress   perfusion   CMR   additionally   provides   the   capacity   to   evaluate  

the  myocardium  for  evidence  of  fibrosis  indicative  of  prior  myocardial  infarction  

or   non-­‐ischaemic   fibrotic   replacement.655-­‐657   At   our   institution,   a   conventional  

adenosine-­‐stress   cardiac   perfusion   scan   with   standard   evaluation   of   cardiac  

structure  and   function,   stress  and  rest  perfusion   imaging  and  delayed  contrast-­‐

enhancement   imaging   is   generally   completed   within   40-­‐45minutes   of   scan  

commencement.   Thus,   a   wealth   of   information   was   available   from   a   relatively  

short  scan  time,  elegantly  combining  many  of  the  technically  superior  aspects  of  

CMR   imaging   into  a   single   study.  Unfortunately,  however,   the  administration  of  

gadolinium-­‐based   contrast   agents   in   the   presence   of   CKD   has   been   associated  

with   the   development   of   a   potentially   fatal   condition   termed   Nephrogenic  

Systemic   Fibrosis   (NSF).   Such   a   condition   is   believed   to   develop   following   the  

dissociation   of   gadolinium   from   its   chelate   in   the   presence   of   reduced/absent  

renal   excretion   and   hence   more   prolonged   circulation   time.   As   such,   the  

disassociated  gadolinium  may  deposit  in  the  dermis  and  solid  organs  such  as  the  

liver,   causing   an   inflammatory   reaction   that   may   lead   to   local   cell   death   and  

fibrosis.658   As   such,   regulatory   agencies   have   advised   against   the   use   of  

gadolinium-­‐based  contrast  agents  in  the  absence  of  extreme  clinical  need,  largely  

preventing  the  use  of   this   imaging  technique   in  patients  with  ESRF,  particularly  

within   the   confines   of   a   research   study.   CMR   clinicians   therefore   continue   to  

await  a  safe,  approved  contrast  agent  capable  of  providing  comparable  diagnostic  

accuracy  without  the  associated  risk  of  gadolinium-­‐based  chelates  in  individuals  

Page 202: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  177  

with   CKD.   The   capacity   for   higher   Tesla   MRI   scanners   to   detect   alterations   in  

regional  myocardial  oxygen  consumption  also  offers  future  promise.    

Despite   these   issues,   a   recent   head-­‐to-­‐head   study   evaluating   the   diagnostic  

performance  of  adenosine-­‐stress  perfusion  and  dobutamine-­‐stress  CMR  in  a  non-­‐

ESRF  population  demonstrated  almost  identical  results  on  a  per  patient  and  per  

segment  basis.659  Previous  studies  have  suggested  a  marginal  advantage  for  DS-­‐

CMR  in   terms  of  specificity  however,  when  compared  to  anatomical  assessment  

of   coronary   patency   at   ICA,   leading   to   the   recommendation   of   DS-­‐CMR   as   the  

“method   of   choice   for   current   state-­‐of-­‐the-­‐art   treatment   regimens   to   detect  

ischemia   in   patients   with   suspected   or   known   coronary   artery   disease   but   no  

history   of   prior   myocardial   infarction”.539   In   this   regard,   although   small,   our  

Study   has   demonstrated   that   DS-­‐CMR   is   highly   accurate   in   the   detection   of  

angiographically   significant   coronary   artery   disease   in   ESRF,   despite   a   high  

prevalence   of   LVH   and   conventional   CV   risk   factors   in   the   Study   cohort   at  

baseline.    

DS-­‐CMR  has  previously  been  demonstrated  to  be  a  safe  Study  for  the  detection  of  

CAD.660   During   our   Study,   there   were   no   clinically-­‐significant   arrhythmias   or  

haemodynamic   complications.   A   single   subject   experienced   a   significant  

reduction   in   blood   pressure   during   dobutamine   stress,   related   to   the  

development   of   a   large   burden   of   segmental   myocardial   dysfunction   due   to  

inducible  myocardial   ischaemia,   and   the   test   was   promptly   terminated.   Such   a  

result   represents   a   strongly   positive   study   (confirmed   at   ICA)   rather   than   an  

adverse  outcome  per  se,  with  no  other  clinical  sequelae  noted  during  prolonged  

post-­‐scan  monitoring.   Previous   studies   of   dobutamine   stress   echocardiography  

have   demonstrated   a   high   level   of   safety   with   this   technique,   though   serious  

Page 203: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  178  

complications  may  occur.661-­‐663  This  risk  profile  does  not  appear  exaggerated   in  

ESRF   and   although   small,   this   Study   confirms   the   safety   of   Dobutamine   stress  

imaging  in  ESRF  prior  to  RTx.  

At   ICA,   we   prospectively   determined   coronary   stenosis   severity   ≥70%   to   be  

haemodynamically   significant.   This   cut-­‐off   was   determined   based   on   usual  

clinical   practices,   both   at   our   institution   and   more   generally   amongst   the  

international   cardiology   community.   Such   a   cut-­‐off   is   routinely   used   in  

determining,   angiographically,   suitability   for   coronary   revascularisation   in   the  

absence   of   alternative   justifications   (e.g.   classical   exertional   symptoms   in   the  

presence   of   convincing   non-­‐invasive   evidence   of   inducible   ischaemia   in   the  

territory   supplied   by   a   50-­‐69%   stenosis).   All   anatomical   cut-­‐offs   for  

haemodynamic  significance  are  based  on  the  false  presumption  of  the  infallibility  

of  ICA,  and  the  neglect  of  the  numerous  other  lesion  characteristics  important  in  

the  induction  of  downstream  myocardial  ischaemia.  The  Fractional  Flow  Reserve  

versus   Angiography   for   Multivessel   Evaluation   (FAME)   Study   recently  

demonstrated  the  superiority  of  functional  over  purely  anatomical  evaluation  of  

coronary   ischaemia   in   improving   outcomes   in   patients   with   significant  

multivessel  CAD.531  Furthermore,  the  evaluation  of  fractional  flow  reserve  (FFR)  

revealed  striking  findings  regarding  the  diagnostic  accuracy  of  ICA  in  determining  

lesion   significance.   In   this   landmark   study,   80%   of   lesions   of   70-­‐89%   stenotic  

severity  were  haemodynamically   significant   as  determined  by  FFR,   and  96%  of  

lesions   ≥90%   stenosis.   Of   stenoses   50-­‐69%   severity,   35%   were   deemed  

functionally   significant,   despite   conventional   practices   deeming   such   lesions  

angiographically   “moderate”   rather   than   “severe”,   and  generally  undeserving  of  

coronary  revascularisation.532  Thus,  although  a  cut-­‐off  of  70%  stenosis  provides  a  

Page 204: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  179  

high   level  of  diagnostic  accuracy,  comparison  of  a   functional  study  (such  as  DS-­‐

CMR)  evaluating   the  development  of   stress-­‐induced   regional   ischaemia  with   an  

anatomical   but   ultimately   imperfect   “gold-­‐standard”   such   as   ICA,  may   result   in  

anatomical   “false   positive”   and/or   “false   negative”   results   that  may,   in   fact,   be  

correctly   identifying   the   presence/absence   of   myocardial   ischaemia   in   the  

context  of  a  wide  range  of  non-­‐critical  epicardial  coronary  lesions.  Arguably,  the  

FAME   study   provides   the   strongest   available   evidence   for   the   angiographic  

determination  of  the  functional  significance  of  coronary  stenotic  severity  and  the  

prognostic  relevance  of  revascularisation  in  the  presence  of  multivessel  coronary  

disease.     Furthermore,   although   inferior   to   FFR,   this   study   utilised   subjective  

evaluation   of   coronary   stenosis   severity,   rather   than   QCA   to   determine   lesion  

severity   (in   keeping   with   universal   clinical   practice),   we   elected   to   utilise   a  

visually-­‐determined   cut-­‐off   of   70%   stenosis   for   our   Study.   No   such   data   exists  

comparing   QCA   favourably   to   gold-­‐standard   coronary   FFR   to   refute   such   an  

approach.  

As  an  aside,  adenosine-­‐stress  perfusion  CMR  has  been  validated  against  invasive  

FFR   in   a   number   of   studies,   with   sensitivity   and   specificity   approaching   or  

exceeding   90%   in   most   studies   –   values   that   are   generally   superior   to   that  

reported  for  diagnostic  accuracy  based  on  anatomical  coronary  stenotic  severity  

alone.664-­‐668  SPECT,  however,  has  demonstrated  poor  concordance  with  invasive  

FFR  determination  of  myocardial  ischaemia  due  to  epicardial  coronary  disease.533  

At  this  stage,  DS-­‐CMR  has  not  been  evaluated  against  the  invasive  gold-­‐standard,  

though  this  work  is  proceeding  currently.    

It  is  important  to  note  also,  that  there  may  be  a  significant  difference  between  the  

determination   of   haemodynamic   significance   of   single   or   multiple   coronary  

Page 205: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  180  

stenoses,   and   the   clinical   significance   the   presence   of   even   mild-­‐moderate  

epicardial  coronary  atherosclerotic  disease  may  signify.  In  this  regard,  the  2-­‐year  

FAME  study  follow-­‐up  demonstrated  a  risk  of  myocardial  infarction  of  only  0.2%  

for   lesions   where   revascularisation   was   deferred   based   on   an   FFR>0.80  

(haemodynamically  non-­‐significant).534  Furthermore,  such  deferred  lesions  were  

associated  with  disease  progression  necessitating  revascularisation  in  3.2%  at  2-­‐

years.   Whether   such   results   may   be   applied   to   the   dissimilar   pathobiology   of  

coronary   atherosclerosis   in   the   ESRF   and   post-­‐RTX   cohorts   remains   to   be  

determined  however.    

 

Limitations  

Our  Study  suffers  from  a  relatively  small  sample  size,  potentially  leading  to  over-­‐

estimation   of   the   diagnostic   accuracy   of   DS-­‐CMR.   Alternative   manuscripts  

evaluating   stress-­‐echocardiography  and   stress-­‐SPECT   in   similar  patient   cohorts  

were  based  on  the  evaluation  of  40-­‐50  subjects  each,  necessitating  (as  planned)  

continued   recruitment   prior   to   publication.505,513,669   Despite   this,   the   current  

study  provides  the  first  opportunity  to  assess  the  utility  of  DS-­‐CMR  in  this  high-­‐

risk   patient   subset,  with   results   demonstrating   a   high   level   of   accuracy   and   no  

safety   concerns.   The   results   for   the   institutional   standard   (SPECT)   are   highly  

disappointing,  regardless  of  the  Study  sample  size,  and  raise  significant  concerns  

regarding  the  appropriateness  of  continued  use  of  this  modality  at  our  institution.    

A   further   limitation   of   our   Study   is   the   absence   of   an   invasive   functional   gold-­‐

standard  such  as  FFR  to  compare  the  results  of  the  non-­‐invasive  functional  study.  

As  highlighted,  the  comparison  of  anatomical  coronary  stenotic  severity  with  the  

Page 206: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  181  

results  of  a  functional  study  evaluating  the  development  of  myocardial  ischaemia  

in  response  to  dobutamine  stress  may  be  compromised  by  the  imperfect  nature  

of  ICA  lesion  characterisation.  Studies  evaluating  DS-­‐CMR  against  per-­‐vessel  FFR  

are  ongoing.    

Ideally,   to  allow  for  optimal  comparison  of  the  stress  methodologies  studied,  all  

subjects   would   have   undergone   both   DS-­‐CMR   and   SPECT   prior   to   ICA.   In   our  

Study,  two  subjects  did  not  undergo  SPECT  imaging,  but  were  referred  directly  to  

ICA  as   a   component  of   the   clinical   pathway,  due   to   the  perception  of   very-­‐high  

pre-­‐test   risk.   Interestingly,   neither   of   these   subjects   had   ischaemia   detected   at  

DS-­‐CMR,  nor  significant  CAD  detected  at  ICA.  It  is  uncertain  whether  performance  

of  SPECT  in  these  subjects  would  have  led  to  an  improved  measure  of  specificity  

for  SPECT,  in  light  of  the  poor  specificity  demonstrated  in  the  subjects  evaluated.  

Although   relatively   small,   DS-­‐CMR  demonstrated   an   unequivocal   statistical   and  

clinical   superiority   in   the   subjects   evaluated   in   this   Study,   though   further  

research   is   required   to  ensure  our   initial   results   remain   robust   in  a   larger,   less  

highly  selected  ESRF  patient  cohort.    

 

Conclusion  

In  this  pilot  study,  we  have  demonstrated  a  high  level  of  diagnostic  accuracy  for  

DS-­‐CMR   in   the   detection   of   angiographically   significant   CAD   in   ESRF   subjects  

undergoing  CV  risk  assessment  prior  to  RTx.  Furthermore,  DS-­‐CMR  significantly  

out-­‐performed  the  institutional  standard  –  SPECT  myocardial  perfusion  imaging.  

In  this  high-­‐risk  cohort,  DS-­‐CMR  was  safe,  highly  accurate  and  provided  a  wealth  

of  prognostically  significant  structural  and  functional  cardiac  data  to  the  referring  

Page 207: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  182  

clinician.  Although  further  work  in  this  area  is  necessary,  we  propose  DS-­‐CMR  as  

a  new  standard  of  care  in  ESRF  patients  undergoing  evaluation  prior  to  RTx.    

Page 208: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  183  

Study  4:  Evaluation  of  Dynamic  Coronary  Endothelial  Function  in  

End-­Stage  Renal  Failure  

 

Introduction  

CVD   is   a   leading   cause   of   morbidity   and   mortality   in   ESRF   and   following  

successful  RTx.  A  significant  component  of   this  burden  relates   to   the  end-­‐organ  

injury   resulting   from   impaired   oxygen   delivery   due   to   atherosclerotic   stenotic  

disease   in   subtending   vessels.   Atherosclerosis   represents   a   final   common  

pathway   resulting   from   myriad   causes   of   endothelial   injury   and   subsequent  

endothelial   dysfunction.   Systemic   endothelial   dysfunction   is   highly  prevalent   in  

the  presence  of  CKD,  with  numerous  studies  demonstrating  a  strong  link  between  

systemic  endothelial  dysfunction  and  future  CV  events.  In  fact,  a  substantial  body  

of   literature   has   focused   on   the   evaluation   of   systemic   endothelial   function   in  

ESRF,   with   numerous   methodologies   claiming   superiority   in   predicting   future  

coronary   and   cerebrovascular   events.   Remarkably,   little   (if   any)   work   has  

focused   on   the   evaluation   of   coronary   endothelial   function   in   this   condition  

however.  

Coronary   endothelial   dysfunction   has   previously   been   associated   with   a  

significantly  increased  burden  of  future  cardiac  events.262,670  Research  evaluating  

the   link   between   coronary   and   peripheral   endothelial   function   has   revealed  

varying  results  however,   suggesting   that  coronary  endothelial   function  may  not  

be  directly  predicted  by  evaluating  peripheral  artery  function.270,671-­‐674  We  sought  

to  invasively  evaluate  coronary  endothelial  function  in  the  presence  of  advanced  

CKD   in   subjects   undergoing   clinically-­‐indicated   ICA   prior   to   potential   RTx.  

Page 209: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  184  

Furthermore,   we   sought   to   compare   indices   of   coronary   macrovascular   and  

microvascular   function   in   RTx   candidates   with   values   for   coronary   vascular  

function  for  subjects  with  normal  renal  function  and  minimal  CAD.  

 

Page 210: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  185  

Methods  

Study  Methods  have  been  detailed  previously  (p107).  

In  brief,  CKD  subjects  were  enrolled  following  referral  for  ICA  prior  to  listing  for  

RTx  for  the  treatment  of  advanced  CKD  /  ESRF  by  the  South  Australia  RTx  Team.  

Non-­‐CKD   subjects   were   enrolled   from   patients   with   eGFR>60mL/min/1.73m2  

undergoing   clinically-­‐driven   ICA   for   exclusion   of   significant   CAD.   Subjects   from  

both  cohorts  were  excluded  if  significant  CAD  was  identified  within  the  epicardial  

coronary   arteries   at   ICA.   Standard   exclusion   criteria   for   the   performance   of  

coronary  endothelial  function  assessment  were  applied.  

At   ICA,   if   coronary   anatomy   was   suitable,   coronary   endothelial   function   was  

evaluated   utilizing   a   0.014-­‐inch   coronary   Doppler   Flo-­‐wire   (Volcano  

Therapeutics,  CA,  USA)  advanced   into   the  Study  vessel  via  an   infusion  catheter.  

Following  achievement  of  stable  Doppler  Flow  velocity  signals,  resting  coronary  

flow   velocities   were   determined,   with   determination   of   epicardial   coronary  

diameter  by  standardized  quantitative  angiography  with  offline  analysis.    

Coronary  endothelial  function  was  then  evaluated  by  validated  protocol602,603,  

consisting  of  the  following  interventions:  

  -­‐  5%  dextrose  control  infusion  for  2-­‐minutes  (Control  1)  

  -­‐  Acetylcholine  (3-­‐minute  infusions  of  Ach  10-­‐7M  [1.6mcg/min],  then  10-­‐6M  

[16mcg/min)  

  -­‐  5%  dextrose  control  infusion  for  5-­‐minutes  (Control  2)  

  -­‐  bolus  dose  of  GTN  (50mcg)  

  -­‐  bolus  dose  of  Adenosine  (48mcg)  

Page 211: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  186  

At   the  completion  of  each   infusion,  a   coronary  angiogram  was  performed  using  

9mL  of  non-­‐ionic  contrast  (Omnipaque,  GE  Healthcare,  Waukesha,  USA)  injected  

through  a  Medrad  infusion  pump  at  5mL/s,  with  images  saved  for  offline  analysis.  

Doppler   indices,   haemodynamic   data   (systemic   blood   pressure   and   heart   rate)  

and  ECG  rhythm  strip  were  recorded  continuously  throughout  the  study  for  off-­‐

line  analysis.    

 

Quantitative  Coronary  Angiography  

Following   acquisition   of   standardised   coronary   angiography   during   the   Study  

protocol,   offline   analysis   was   performed   using   proprietary   edge-­‐detection  

software   (QCA-­‐CMSTM,   Medis   Medical   Imaging   Systems,   Leiden,   Netherlands).  

Mean   coronary   diameter   was   assessed   5mm   distal   to   the   tip   of   the   Doppler  

guidewire  over  a  5mm  segment.    

 

Coronary  Blood  Flow    

Coronary   velocity  measurements  were   analysed   by   a   technician   blinded   to   the  

results   of   the  QCA   analysis.   Coronary   blood   flow   (CBF)  was   then   calculated   by  

validated  formula.275    

[π  x  0.125  x  (Coronary  Diameter)2  x  (Coronary  Blood  Flow  APV)]  x  60    

Coronary   flow   velocity   reserve   (CFR)   was   then   determined   as   a   ratio   of:  

  APV  (post-­‐adenosine)  /  APV  (baseline)      

A  normal  response  is  considered  to  have  occurred  if  endothelial-­‐dependent  CBF  

increases  by  more  than  50%  in  response  to  Ach,  and  the  coronary   flow  reserve  

(CFR)   –   the   ratio   of   maximal   to   baseline   CBF   -­‐   is   greater   than   2.5   following  

adenosine.275  

Page 212: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  187  

Statistical  Analysis  

As  previously  described  (Statistical  Methods,  p111)  

 

Power  Calculation  

The  outlined  Study  was  a  Pilot  Study  performed  to  evaluate  the  scope  of  coronary  

endothelial  dysfunction  in  the  presence  of  advanced  CKD,  as  compared  to  a  non-­‐

CKD  cohort.  As  such,  a  formal  Power  calculation  was  not  performed.    

 

Page 213: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  188  

Results  

Following   determination   of   coronary   artery   suitability   at   ICA,   coronary  

endothelial   function  was   invasively  evaluated   in  eight   (8)  pre-­‐RTx   subjects   and  

thirteen  (13)  non-­‐CKD  subjects.  Baseline  characteristics  are  described  in  Table  7.    

 

Characteristic   CKD  

(n=8)  

Controls  

(n=13)  

p  

Age  (years)   52.5±10   53.9±14   0.72  

Gender  (male)   63%   62%   p=0.69  

Hypertension   100%   45%   p=0.006  

Hyperlipidaemia   63%   36%   p=0.17  

Type  II  Diabetes  Mellitus   63%   18%   p=0.04  

Smoking  

-­‐ current  

-­‐ former  

-­‐ non-­‐smoker  

 

13%  

25%  

62%  

 

18%  

22%  

60%  

 

 

 

p=0.86  

Prior  Coronary  Artery  Disease   13%   54%   p=0.07  

Receiving  Dialysis   88%   0%   p<0.0001  

Baseline  Creatinine  (μmol/L)   709±140   68±21   p=0.0002  

Baseline  Haemoglobin  (g/dL)   108±10   138±13   p=0.0004  

Medications  

-­‐ Aspirin  

-­‐ Statin  

-­‐ Beta-­‐blocker  

-­‐ ACEI  /  ARB  

-­‐ Diuretic  

-­‐ Calcium  Channel  Blocker  

-­‐ Insulin  

 

25%  

63%  

75%  

88%  

0%  

63%  

13%  

 

45%  

36%  

36%  

27%  

18%  

18%  

9%  

 

p=0.87  

p=0.17  

p=0.06  

p=0.006  

p=0.37  

p=0.04  

p=0.50  

Table  7:   Subject  Baseline  Characteristics  –  Study  4    

ACEI  =  Angiotensin  Converting  Enzyme  Inhibitor;  ARB  =  Angiotensin  Receptor  Blocker  

Page 214: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  189  

There  was  no  difference   in  the  mean  age  of   the  subjects  within  the  two  cohorts  

(52.5±10   vs.   53.9±14,   p=0.72).   All   subjects   had   only   minor   coronary   artery  

disease  within  the  study  vessel  (≤20%  epicardial  coronary  stenoses)[LAD=100%]  

and   subjects   with   diffuse   atherosclerosis   were   specifically   excluded.   Constant  

haemodynamic  monitoring  was  performed   throughout   the   Study.   Baseline   SBP,  

DBP   and   HR   were   not   statistically   dissimilar   between   the   cohorts   (SBP:  

142±24mmHg   vs.   125±24mmHg,   p=0.13;   DBP:   82±14mmHg   vs.   80±10mmHg,  

p=0.76;   HR:   79±23bpm   vs.   67±14bpm,   p=0.26).   There   was   no   statistically  

significant   alteration   in   HR   or   blood   pressure   detected   during   endothelial  

function  assessment  within  the  cohorts.  

 

Endothelium-­Dependent  Coronary  Function  

There  was  no  difference  between  the  CKD  and  normal  cohorts  with  respect  to  the  

maximum   change   in   CBF   following   Ach   10-­‐6M   administration   (81.0±68%   vs.  

89.8±71%,  p=0.79).  Notably,  study  vessel  diameter  at  the  site  of  assessment  was  

greater   in   the  non-­‐CKD   cohort   at   baseline   (2.7±0.5mm  vs.   3.6±1.0mm,  p=0.02),  

with   this   difference   persisting   during   high-­‐dose   Ach   infusion   (2.8±0.7mm   vs.  

3.6±1.0mm,   p=0.048).   Despite   this,   there   was   no   statistically   significant  

difference   in   either   baseline   (48.4±20mL/min   vs.   64.7±23mL/min,   p=0.12),   or  

peak   (88.2±46mL/min   vs.   113.8±35mL/min,   p=0.17)  CBF  between   the   cohorts,  

although  the  CKD  cohorts  CBF  was  numerically  lower  at  both  time-­‐points  (in  the  

presence  of  significantly  smaller  Study  vessels).  Change  in  CBF  following  Ach  was  

also   not   significantly   different   between   the   cohorts   (81.0±68%   vs.   89.8±71%,  

p=0.97).  There  was  no  significant  difference  between  the  cohorts  in  the  change  in  

vessel  diameter  in  response  to  high-­‐dose  Ach  (2.2±10.3%  vs.  1.2±5.7%,  p=0.80).  

Page 215: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  190  

No   subject   in   either   cohort   had   a   significant   epicardial   coronary   constriction  

response   to  Ach  10-­‐6M   (defined   as   a   >50%  reduction   in   cross-­‐sectional   area   as  

derived  from  QCA).276      

 

Endothelium-­Independent  Macrovascular  Coronary  Function  

There  was  no   statistically   significant   difference  between   the  CKD  and  non-­‐CKD  

cohorts  with   respect   to   endothelium-­‐independent   conduit   vessel   vasodilatation  

in  response  to  intracoronary  GTN  (Vessel  QCA:  10.9±12%  vs.  9.7±21%,  p=0.73).    

 

Endothelium-­Independent  Microvascular  Function  

There  was  a  highly  significant  difference   in  microvascular   function  between  the  

CKD  and  non-­‐CKD  cohorts,  as  measured  by  CFR.  CFR  was  significantly  reduced  in  

the   CKD   cohort,   but   preserved   in   the   non-­‐CKD   cohort   (1.9±0.4   vs.   3.0±1.1,  

p=0.01).   Despite   the   potentially   greater   prevalence   of   anaemia   and   LVH   in   the  

CKD   cohort,   there   was   no   significant   difference   in   baseline   APV   between   the  

cohorts   (27.0±5.4cm/s   vs.   24.1±11.5cm/s,   p=0.44)   to   explain   the  differences   in  

CFR,  as  has  been  proposed  by  other  authors.277    

 

Page 216: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  191  

Discussion  

We  have  found  a  significant  difference  in  coronary  flow  reserve  (CFR)  following  

adenosine   administration  between   subjects  with   advanced  CKD  and   those  with  

preserved   renal   function,   in   the   presence   of   only   minor   epicardial   coronary  

disease   at   ICA.   This   finding   is   striking,   in   that   adenosine   is   an   endothelium-­‐

independent  vasodilator675,  acting  directly  via  activation  of   the  A2  receptors  on  

vascular   smooth   muscle   of   resistance   vessels   ≤100μm   in   diameter.676  

Preservation  of  microvascular  function  has  previously  been  defined  as  a  CFR>2.5  

in  response  to  adenosine  administration.276  The  results  of  our  Study  demonstrate  

impaired   augmentation   of   coronary   microvascular   dilatation   in   response   to   a  

potent  microvascular   dilatory   stimulus   in   the   CKD   cohort,   strongly   implicating  

coronary  microvascular  dysfunction  in  the  presence  of  CKD.  

Previous   studies   in   this   area   have   demonstrated   conflicting   results.   In   2004,  

Ragosta  et   al   published   a   Study   evaluating   invasive  CFR   amongst   subjects  with  

TIIDM  evaluating  differences  in  the  presence  and  absence  of  associated  ESRF.  In  

their   Study,   the   presence   of   advanced   CKD  was   associated  with   a   reduction   in  

CFR,   predominantly   mediated   via   an   increase   in   basal   coronary   average   peak  

velocity   (APV),   rather   than   a   failure   of   APV   augmentation   in   response   to  

intravenous   adenosine.277   The   authors   hypothesised   this   impairment   in   CFR   in  

CKD  to  potentially  result   from  the  greater  prevalence  of  LVH  in  that  cohort  and  

the  possible  presence  of  otherwise  unidentified  circulating  vasodilatory  humoral  

factors   specific   to   renal   failure   directly   mediating   the   elevated   baseline   APV.  

Furthermore,   they   refute   the   potential   contribution   of   anaemia   to   the   elevated  

baseline   APV   in   their   CKD   cohort   due   to   the   absence   of   statistically   significant  

Page 217: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  192  

difference   in   haematocrit   between   subjects   with   normal   vs.   abnormal   CFR.   Of  

course,  the  absence  of  a  statistically  significant  difference  in  this  sub-­‐analysis  may  

simply   reflect   Type   II   statistical   error,   rather   than   the   true   absence   of   an  

association.      

This   finding   of   elevated   basal   CBF   has   recently   been   affirmed   non-­‐invasively  

utilising   PET.278   Published   in  Circulation   in   2009,   the   Study   by   Koivuviita   et   al  

evaluated   basal   and   hyperaemic   (post-­‐dipyridamole)   myocardial   perfusion   in  

twenty-­‐two   patients   with   moderate   to   severe   CKD   (divided   into   three   cohorts  

according   to   eGFR),   and   compared   these   results   to   ten  healthy   control   subjects  

with  preserved  renal  function.  Although  this  Study  found  preserved  CFR  amongst  

the   CKD  patients   (as   distinct   from   the   previously   discussed   invasive   study   and  

our  own  results),  basal  myocardial  blood  flow  was  significantly  elevated  amongst  

the  CKD  patients  vs.  the  non-­‐CKD  controls  (p<0.001),  with  a  negative  correlation  

between   eGFR   and   myocardial   blood   flow   seen   (Spearman   correlation  

coefficient=0.63,   p=0.0001).278   An   ultrasound-­‐based   FMD   protocol   was   also  

undertaken   in   this   Study,   with   FMD   (%   change   in   brachial   artery   diameter)  

significantly   reduced   amongst   the   CKD   cohorts   compared   to   controls   (p<0.03).  

The   authors   conclude   that   “coronary   and   peripheral   vascular   function   are  

disturbed   by   different   mechanisms   in   patients   with   CKD”,   although   direct  

comparison  of   the  two  methodologies  utilised   in  this  Study   is  questionable.  The  

evaluation  of  large-­‐vessel  endothelial-­‐dependent  function  in  the  brachial  artery  is  

distinct   from   the   evaluation   of   coronary   endothelium-­‐independent,  

microvascular   function   evaluated   by   the   administration   of   intravenous  

dipyridamole   in  this  study.  Although  previous  studies  have  demonstrated  a   link  

between   peripheral   microvascular   function   (as   assessed   by   ‘gold-­‐standard’  

Page 218: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  193  

venous   occlusion   plethysmography)   and   peripheral   arterial   FMD   responses280,  

the  two  are  not  equivalent  and  comparison  of  coronary  microvascular  responses  

to   dipyridamole   with   FMD   as   a   surrogate   marker   of   peripheral   microvascular  

function  is  somewhat  disingenuous.281    

A  further  Study  by  Chade  et  al  published  in  2006  evaluated  invasive  CFR  amongst  

124  patients  with  milder  renal  dysfunction  (GFR<60mL/min/1.73m2),  compared  

to  482  control  subjects  with  preserved  renal  function  (GFR>60mL/min/1.73m2),  

finding   reduced   GFR   to   be   predictive   of   impaired   CFR   by   univariate,   but   not  

multivariate,   analysis.282   Although   the  mean   CFR  was   reduced   in   subjects  with  

mildly   impaired   renal   function   (compared   to   controls),   only   increasing   age,  

female   gender,   rising   BMI   and   co-­‐existent   hypertension   were   significantly  

associated  with  impairment  of  CFR  by  multivariate  analysis.282  No  comment  was  

made  on  differences  in  basal  APV  values  between  the  two  cohorts  in  this  Study.  

In  our  Study,  the  baseline  APV  was  not  significantly  different  between  the  cohorts  

and   coronary   angiography   failed   to   demonstrate   the   presence   of   diffuse  

atherosclerosis   as   a   contributor   to   a   falsely   impaired   CFR.   The   difference  

between   cohorts   derived   almost   entirely   from   the   failure   of   vasodilatory  

augmentation   of   coronary   flow   velocity,   strongly   implicating   microvascular  

dysfunction   as   the  primary   aetiology.   This   finding   is   significant,   as   no  previous  

Study  has  demonstrated   such   a   finding   in  ESRF,   although   the  phenomenon  has  

been   strongly   suspected   by   clinicians.   Importantly,   the   demonstration   of  

microvascular  dysfunction  in  advanced  CKD  provides  a  sound  biological  basis  for  

published   work   demonstrating   angina   to   occur   in   the   absence   of   obstructive  

epicardial  coronary  disease  in  up  to  50%  of  ESRF  patients  undergoing  ICA.456-­‐458  

In   this   regard,   a   recent   publication   by   Sicari   et   al   in   a   non-­‐CKD   cohort  

Page 219: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  194  

demonstrated  a  significant  prognostic  disadvantage  for  patients  presenting  with  

chest  pain,  but   in  whom  ICA  revealed  normal  or  near-­‐normal  coronary  arteries.  

In   this  Study,  patients  with  a  CFR<3.0   (as  assessed  by  echocardiography)  had  a  

markedly   lower   infarct-­‐free   survival   out   to   4-­‐years   follow-­‐up   (55%   vs.   96%,  

p<0.0001).   In   our   Study,   the   finding   of   reduced   CFR   may   be   impacted   by   the  

presence  of  factors  such  as  anaemia  and  supply-­‐demand  mismatch  in  the  context  

of  LVH487,  the  presence  of  microvascular  disease  must  certainly  be  considered  a  

significant  component  of  the  milieu  in  CKD,  and  may  contribute  to  the  adverse  CV  

outcomes  seen  in  CKD  patients.    

The   documentation   of   impaired   CFR   in   CKD   is   particularly   significant   in  

considering   the   non-­‐invasive   evaluation   of   possible   myocardial   ischaemia  

affecting   CKD   and  ESRF   patients   in   clinical   practice.   Vasodilator   stress   imaging  

(particularly  SPECT-­‐based  imaging)  provides  a  cornerstone  for  the  non-­‐invasive  

evaluation  of  possible  myocardial  ischaemia  in  most  developed  nations.  Whether  

in   the   evaluation   of   CV   risk   prior   to   possible   RTx,   or   in   the   assessment   of  

clinically  suggestive  symptoms  in  CKD/ESRF  patients,  vasodilator  stress  imaging  

predominantly   depends   upon   the   demonstration   of   differential   regional   blood  

flow   induced   by   maximal   hyperaemia   following   vasodilator   (e.g.   adenosine)  

administration.  Myocardial   territories   subtended  by  epicardial   coronary  vessels  

with   haemodynamically   significant   stenoses   already   have   maximal   or   near-­‐

maximal   microvascular   vasodilatation   as   a   component   of   the   intrinsic   auto-­‐

regulatory  mechanisms  within  the  coronary  microcirculation.677  Thus,  at  rest,   in  

the   absence   of   active   ischaemia,   microvascular   auto-­‐regulation   maintains  

sufficient   (relatively   homogenous)   blood   flow   to   the  myocardium,   even   within  

territories   supplied   by   epicardial   coronary   stenoses.   During   vasodilator  

Page 220: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  195  

administration,  the  microvasculature  subtended  by  normal  or  minimally  diseased  

epicardial   arteries   undergoes   substantial   vasodilatation   leading   to   a   3-­‐5-­‐fold  

increase  in  regional  blood  flow.  Due  to  the  near-­‐maximal  microvascular  dilatation  

at   rest   in   stenosed   territories,   further   microvascular   dilatation   may   not   be  

possible,   leading   to   the   development   of   a   relative   hypoperfusion   of   the  

“ischaemic”   territory.   In   the   presence   of   global   coronary   microvascular  

dysfunction,   as  may  be   seen   in  CKD/ESRF,   the  augmentation  of  blood   flow   into  

“non-­‐ischaemic”   territories   appears   to   be   blunted,   potentially   reducing   the  

capacity   for   relative   hyper-­‐perfusion   to   these   myocardial   segments.   Thus,   the  

capacity  to  detect  perfusion  inhomogeneity  during  vasodilator  administration  in  

the   presence   of   significant   epicardial   coronary   disease   is   impaired,   potentially  

reducing   the   sensitivity   of   the   non-­‐invasive   imaging   study.678   Furthermore,   the  

capacity   of   the   CKD/ESRF   microvasculature   subtended   by   stenosed   coronary  

arteries   to   maximally   vasodilate   may   also   be   blunted,   potentially   leading   to  

myocardial  ischaemia  in  the  presence  of  less  severe  epicardial  disease.  

This   theory  concurs  with   the  available  body  of   literature  evaluating  vasodilator  

stress   imaging  against   ICA  in  ESRF.669,679  Marwick  et  al   reported  an  exceedingly  

low  sensitivity  for  dipyridamole  SPECT  in  their  prospective  Study  –  29%  for  the  

detection  of  coronary  stenoses  ≥70%  at  ICA.669  Although  numerically  superior  to  

that   published   by   Marwick   et   al,   the   results   from   Vandenberg’s   retrospective  

Study  in  Transplantation  revealed  a  sensitivity  of  only  62%  -­‐  a  result  that  fails  to  

inspire  confidence  in  the  technique  for  the  accurate  exclusion  of  significant  CAD  

in  this  high-­‐risk  condition.679  Boudreau  et  al  published  more  reassuring  results  in  

1990680,  however  concerns  remain  regarding  the  use  of  this  technique  in  clinical  

practice.   In   light   of   the   biological   theory   regarding   the   prevalence   of  

Page 221: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  196  

microvascular  dysfunction   in  CKD,  previous  authors  have  proposed   tachycardia  

stress  as  a  more  appropriate  stress-­‐modality  in  this  condition,  whether  utilising  

echocardiographic   or   SPECT   imaging.505,513   Published   results   for   tachycardia  

stress   in  this  condition  appear  to  provide  a  greater   level  of  diagnostic  accuracy,  

though   head-­‐to-­‐head   studies   are   lacking.513   The   inherent   limitations   of   the  

imaging   technology   may   also   play   a   significant   role   in   determining   diagnostic  

accuracy,   as   demonstrated   by   the   poor   results   achieved   for   tachycardia-­‐stress  

SPECT  reported  in  the  previous  Chapter  of  this  Thesis.    

 

Endothelium-­dependent  Coronary  Function  

Perhaps  surprisingly,  our  Study   failed   to  demonstrate  a  significant  difference   in  

endothelium-­‐dependent  epicardial   coronary  vasodilatation  between   the  cohorts  

in  response  to  intra-­‐coronary  Ach  infusion.  While  the  standard  deviations  around  

the  cohort  means  were  wide,  the  numerical  difference  between  the  cohorts  was  

small,  suggesting  the  absence  of  a  clinically  significant  difference  that  was  simply  

underestimated   due   to   the   small   sample   sizes.   Both   cohorts   demonstrated   a  

>50%   increase   in   CBF   in   response   to   Ach,   indicating   preservation   of  

endothelium-­‐dependent   coronary   vascular   function,   even   in   the   presence   of  

advanced  CKD   in   this   Study.276  Despite   this,   it   is   also  notable   that   the  non-­‐CKD  

cohort   failed   to   demonstrate   a   significant   increase   in   epicardial   coronary  

diameter   in   response   to   the   endothelium-­‐dependent   vasodilator   Ach   and   the  

resultant   increase   in  CBF  detected.  One   subject   in   the  non-­‐CKD  cohort   and   two  

subjects  in  the  CKD  cohort  demonstrated  a  >5%  reduction  in  vessel  diameter  in  

response   to   Ach   10-­‐6M,   however   there   was   no   other   evidence   of   significant  

endothelial  dysfunction  detected  during  Ach  administration.    

Page 222: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  197  

Such   findings   run   counter   to   the   commonly   held   belief   that   CKD   must   be  

associated   with   significant   epicardial   coronary   endothelial   dysfunction,   as   an  

extension   of   the   numerous   studies   demonstrating   impairment   of   endothelial  

function   in   the   peripheral   circulation.   The   absence   of   significant   endothelial  

dysfunction   in   this   pre-­‐RTx   cohort   is   also   notable   as   the   increased   burden   of  

peripheral   endothelial   dysfunction   has   commonly   been   used   to   infer   a   similar  

pattern   of   dysfunction   in   the   coronary   beds,   predisposing   to   the   accelerated  

coronary   atherosclerosis   commonly   encountered   in   this   condition.   The  

explanation   for   our   findings   may   lay   in   the   highly   selective   nature   of   the  

population   studied,   rather   than   truly   reflecting   the   absence   of   coronary  

endothelial  dysfunction  as   a   component  of  CVD   in  ESRF  and/or  a   small   sample  

size.   In   this   regard,   the   CKD   subjects   studied   represented   a   group,   albeit   with  

coronary   risk   factors,   at   lower   risk   than   standard  dialysis  patients  who  are  not  

considered  ‘potential’  renal  transplant  candidates.  ESRF  patients  on  dialysis  who  

are  not  being  considered  for  RTx  generally  represent  the  CKD  cohort  at  greatest  

risk  of  CV  morbidity  and  mortality.451  Mortality  for  this  group  is  exceedingly  high,  

relating  often   to   the  presence  of  prior  CVD  and/or  advanced  age.   Such  patients  

were   not   considered   for   this   Study,   and   the   study   population  was   further   sub-­‐

selected   by   excluding   pre-­‐RTx   patients   with   anything   more   than   minor  

angiographically  apparent   coronary  disease.   It  might   therefore  be  hypothesised  

that   the  subjects  enrolled  and  evaluated   in   this  Study  were  specifically  enrolled  

on   the   basis   of   an   absence   of   indirect   markers   of   coronary   endothelial  

dysfunction,  by  virtue  of  the  absence  of  significant  resultant  end-­‐organ  vascular  

disease.  Whether   such  coronary  endothelial   findings  are   truly   representative  of  

the  wider  ESRF  population  remains  to  be  determined.  

Page 223: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  198  

Endothelium-­Independent  Macrovascular  Coronary  Function  

There  was   no   significant   difference   between   the   cohorts   in   vessel   diameter   by  

QCA  following  administration  of  intracoronary  GTN  in  this  Study.  Such  a  finding  

confirms   the   presence   of   intact   epicardial   endothelium-­‐independent  

vasodilatation  in  the  two  cohorts,  consistent  with  the  absence  of  fixed  epicardial  

coronary   disease   preventing   vascular   smooth   muscle   dilatation   in   response   to  

GTN.  Although  ESRF  may  be  associated  with  a  significant  burden  of  both  intimal  

and  medial   vascular   calcification,   the   CKD   cohort   in   this   Study  was   specifically  

selected  based  on  the  absence  of  significant  angiographically-­‐apparent  coronary  

disease.   Hence,   given   the   less   severely   diseased   ESRF   cohort   studied,   it   is   not  

surprising  that  the  response  to  GTN  was  similar  between  the  cohorts.    

 

Limitations  

There   are   a   number   of   important   limitations   of   the   current   Study.   The   sample  

size  of  the  two  cohorts  was  small,  potentially  affecting  our  statistical  power  in  the  

detection  of  a  significant  difference  between  the  groups  studied  for  endothelium-­‐

dependent  function.  In  this  regard,  the  Study  was  powered  to  detect  a  statistically  

significant  difference  with  80%  power  for  an  effect  size  (d)  of  1.22.  The  effect  size  

of   the   current   study   was   only   0.14,   potentially   necessitating   a   substantially  

greater  sample  size  to  detect  any  statistically  significant  difference.  Despite  this,  

our   Study   failed   to   demonstrate   a   numerical   trend   towards   endothelial  

dysfunction   (%change   in   CBF   <50%)   in   the   CKD   cohort   as   would   indicate   the  

presence   of   a   clinically   significant   difference   in   coronary   endothelial   function  

between  the  CKD  and  non-­‐CKD  cohorts.    

Page 224: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  199  

Subjects   were   specifically   selected   based   on   the   absence   of   angiographically  

significant   coronary   atherosclerosis   within   the   epicardial   coronary   vessels,  

however   in   the   absence   of   IVUS,   diffuse   epicardial   atherosclerosis   cannot   be  

entirely   excluded.   Moreover   the   presence   of   diffuse   microvascular  

atherosclerosis  was  unable  to  be  excluded  by  the  Study  protocol.  The  presence  of  

such  disease  could  certainly  have  led  to  diminution  of  both  basal  and  peak  APV  in  

response  to  adenosine,  resulting  in  the  findings  described.  Every  effort  was  made  

to   exclude   this   potential   confounder,   and   all   of   the   CKD   subjects   studied  were  

asymptomatic   with   regards   clinical   features   of   haemodynamically   significant  

CAD.   Furthermore,   each   of   the   CKD   subjects   studied   had   participated   in   the  

previously  reported  Study  of  DS-­‐CMR,  with  all  those  included  in  this  Study  having  

no  inducible  ischaemia  detected  using  this  highly  sensitive  and  accurate  modality.    

With  regards  the  accuracy  of  our  results,  microvascular  function  was  assessed  in  

this   Study  utilising  CFR   as   assessed  by   the  Volcano  Flow-­‐wire   system   (Volcano  

Therapeutics,   CA,   USA).   It   is   recognised   that   CFR   may   be   influenced   by   the  

concurrent  haemodynamic  state,  with  elevation  of  HR  and   increased  contractile  

state   potentially   influencing   CFR  measurements.681  More   recently,   the   index   of  

microvascular   resistance   (IMR)   has   been   proposed   as   a   more   specific   and  

reproducible   measure   of   microvascular   function.681-­‐685   IMR   is   derived   by  

determination  of   the  distal  coronary  pressure  (derived   from  the  pressure  wire)  

divided  by  coronary  blood  flow  during  maximal  hyperaemia.  CBF  in  this  instance  

is   derived   by   a   thermodilution   method   for   evaluating   coronary   transit   time  

utilising   a   thermistor   at   the   distal   end   of   an   alternative   commercially   available  

pressure   wire   system.   Importantly,   IMR   has   been   demonstrated   to   be   less  

affected  by  epicardial  coronary  stenosis  or  haemodynamic  state  of  the  patient.681  

Page 225: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  200  

In   this   regard,   IMR   may   provide   a   more   specific   evaluation   of   microvascular  

function  than  CFR,  although  to  date  the  Doppler  flo-­‐wire  derived  CBF  assessment  

remains   the   ‘gold-­‐standard’   and   most   widely   published   invasive   evaluation   of  

coronary  blood  flow.    

Selection  bias  may  have  played  a  role   in  the  results  of   this  Study,   in   light  of   the  

markedly   different   indications   for   ICA   between   the   two   cohorts.   Although   the  

CKD  cohort  was  evaluated   to  exclude  asymptomatic  CAD  prior   to  RTx,   the  non-­‐

CKD   cohort   were   referred   for   ICA   following   suggestive   symptoms   or  

demonstration   of   myocardial   ischaemia   by   non-­‐invasive   evaluation.   Previous  

studies   have   demonstrated   reduced   endothelial   function   in   patents   presenting  

with  chest-­‐pain  syndromes,  even  in  the  absence  of  significant  epicardial  coronary  

disease  at   ICA.  Despite  such  differences   in  clinical   indication  for   ICA,   the  CFR  of  

the   non-­‐CKD   cohort   was   within   the   normal   range,   largely   excluding   diffuse  

microvascular  disease  as  a  consistent  finding  in  this  cohort.    

Finally,   we   administered   adenosine   via   an   intracoronary   route,   in   line   with  

recommended  protocols  for  invasive  assessment  of  coronary  vascular  function.254  

It  remains  to  be  determined  whether  48mcg  of  adenosine  is  sub-­‐maximal  in  the  

context  of  advanced  CKD,  but   regardless,   such   findings   indicate   the  presence  of  

objective   microvascular   dysfunction.   Moreover,   whether   alternative   findings  

would  have  been  obtained  with  intravenous  adenosine  administration,  or  the  use  

of  other  vasodilatory  agents  (e.g.  substance  P),  remains  to  be  determined.    

 

Page 226: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  201  

Conclusion  

In   this   Study,   we   have   documented   the   presence   of   significant   coronary  

microvascular   dysfunction   in   the   presence   of   advanced   CKD,   as   compared   to  

subjects  with  minimal  coronary  artery  disease  and  preserved  renal  function.  This  

finding   related   to   the  blunting   of  microvascular   dilatation   in   response   to   intra-­‐

coronary   adenosine,   rather   than   elevation  of   basal  APV  as  had  previously  been  

reported.   We   found   no   significant   difference   in   endothelium-­‐dependent   or   –

independent   epicardial   coronary   function   in   response   to   Ach   and   GTN  

respectively.   Although   surprising,   such   a   finding   occurred   in   the   context   of   a  

highly   selected   CKD   population,   with   minimal   epicardial   coronary  

atherosclerosis.  Our   findings  are  particularly  significant   in  regards  the  potential  

implications   for   the   investigation   and   management   of   CKD   patients   where  

microvascular   dilatation   in   expected   following   administration   of   adenosine  

analogues.   Vasodilator-­‐stress   SPECT   may   be   particularly   inappropriate   for   the  

exclusion   of   significant   CAD   in   this   cohort,   and   alternative   stress   modalities  

should  be  considered  in  the  presence  of  significant  renal  dysfunction  to  avoid  an  

unacceptable   prevalence   of   false   negative   studies   that   may   result   from   the  

reduced  sensitivity  implied  by  our  results.  

 

Page 227: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  202  

 

CONCLUSION  

Page 228: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  203  

Thesis  Summary  

The  primary  aims  of  this  Thesis  were  directed  to  the  evaluation  of  alterations  in  

CV  structure  and  function  in  ESRF,  and  more  specifically  to  the  evaluation  of:  the  

CV   impact   of   AVF   creation   prior   to   dialysis   commencement;   the   CV   impact   of  

elective  AVF  ligation  following  successful,  stable  RTx;  the  diagnostic  performance  

of  DS-­‐CMR   in  excluding   significant  CAD  prior   to  RTx,   and;   coronary  endothelial  

and  microvascular  function  in  advanced  CKD/ESRF.    

As   detailed   in   the   Background   section   of   this   Thesis,   the   prevalence   of   CKD   is  

rising  progressively   in  developed  countries,   in  tandem  with  the  rising   incidence  

of   obesity   and   TIIDM.   The   CV   sequelae   of   advancing   CKD   are   significant,   and  

ultimately   lead  to  a  markedly  elevated  incidence  of  CV  morbidity  and  mortality,  

with   associated   increases   in   personal   and   societal   health   care   costs.   Despite  

substantial  advances  in  the  care  of  CV  disease  in  the  general  community  over  the  

last   three   decades,   CKD   and   ESRF   continue   to   confer   a   markedly   shortened  

lifespan   on   affected   individuals,   regardless   of   age.   Significant   markers   for  

particularly   elevated   risk   included   increases   in   LVH,   increased   atrial   and  

ventricular   dimensions,   the   presence   of   peripheral   endothelial   dysfunction   and  

increased   vascular   stiffness.   In   light   of   the   appallingly   high   mortality   rates   of  

ESRF,   greater   efforts   are   clearly   required   to   better   identify   and   direct   specific  

care  to  the  prevention  and  management  of  CVD  in  this  condition.  

In  Study  1,  we  demonstrated  the  utility  of  CMR  in  the  evaluation  of  CV  structure  

and   function   in   ESRF,   and   further   demonstrated   the   significant   cardiac   and  

vascular  alterations  associated  with   the  elective   formation  of  an   iatrogenic  AVF  

prior  to  the  commencement  of  dialysis.  Although  prognostically  superior  to  large-­‐

Page 229: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  204  

bore   central   venous   catheters,   the   creation   of   AVF   was   associated   with  

substantial   alterations   in   CV   structure   and   function   including   substantial  

increases  in  CO,  atrial  and  ventricular  chamber  dimensions,  and  LVM  at  6-­‐month  

follow-­‐up   imaging.   Furthermore,   we   identified   a   significant   reduction   in  

endothelium-­‐dependent  brachial  artery  vasodilatation  contralateral  to  the  AVF  at  

follow-­‐up,  occurring   in   the  absence  of  any  alteration   in  baseline  brachial  artery  

blood-­‐flow.   Notably,   there   was   no   detectable   change   in   aortic   distensibility  

during  the  Study  period,  potentially  indicating  this  parameter  to  be  a  less  acutely  

adaptable   component   of   the   vascular   system.   This   Study   demonstrated   the  

medium-­‐term   impact   on   prognostically   significant   structural   and   functional   CV  

parameters,  and  the  need  to  consider  therapeutic  options  that  may  help  to  offset  

such  disadvantageous  CV  adaptation  to  AVF  formation.    

In  Study  2,  we  demonstrated  the  utility  of  CMR  in  the  evaluation  of  CV  structure  

and   function   following   successful  RTx.   CMR  again  demonstrated   a   high   level   of  

spatial  and  temporal  resolution,  in  the  absence  of  ionizing  radiation  or  exogenous  

contrast   agents,   and   provided   for   the   detection   of   significant   alterations   in   CV  

structure  and  function  with  a  high  level  of  statistical  significance  despite  modest  

sample   sizes.  This   Study  demonstrated   the  potential   for  dramatic   alterations   in  

prognostically-­‐sensitive  CV  structural  and  functional  parameters  associated  with  

the  elective   ligation  of   clinically  unnecessary,  but  persistent  AVF   following  RTx.  

Remarkably,   despite   the   disparate   clinical   characteristics   of   the   cohorts,   the  

response  to  AVF  ligation  closely  mirrored  those  findings  demonstrated  in  Study  

1,   with   Study   2   demonstrating   a   “reversal”   of   many   of   the   disadvantageous  

alterations  identified  in  the  subjects  evaluated  in  Study  1.    

Page 230: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  205  

Study   3   focused   on   the   evaluation   of   DS-­‐CMR   in   the   detection   of  

haemodynamically  significant  CAD  in  a  cohort  of  advanced  CKD  /  ESRF  subjects  

referred   for  coronary  angiography  prior   to  consideration  of  RTx.  Many  of   these  

subjects   had   also   been   investigated   utilising   the   institutional   standard,   SPECT-­‐

imaging   –   as   a   component   of   the   routine   clinical   pathway   evaluating   potential  

RTx  recipients.  This  Study  demonstrated  a  dramatic   improvement   in  diagnostic  

accuracy   associated   with   DS-­‐CMR   imaging,   as   compared   to   SPECT,   with   100%  

sensitivity   and   diagnostic   accuracy   approaching   100%   for   the   CMR   technique.  

Furthermore,   it  was  demonstrated  that  SPECT   imaging  performed  poorly   in   the  

accurate   quantification   of   LVEF   in   this   condition,   as   compared   to   the   “gold  

standard”  evaluation  provided  by  CMR.  Such  results  demonstrated  the  diagnostic  

superiority  of  DS-­‐CMR  in  the  routine  evaluation  of  ESRF  patients  with  suspected  

CAD,  potentially  opening  an  avenue  for  prognostic  assessment  of  high-­‐risk  ESRF  

patients  in  alternative  clinical  scenarios.  

In   Study   4,  we   undertook   to   invasively   assess   coronary   endothelial   function   in  

advanced   CKD/ESRF   and   compare   these   findings   with   findings   of   coronary  

endothelial   function  within   a  non-­‐CKD  cohort.  The  most   striking   finding  of   this  

Study  was  the  failure  of  microcirculatory  vasodilatation  in  response  to  adenosine  

in   the  CKD  cohort,  and  the   inference  of  significant  microvascular  dysfunction   in  

this   condition.   This   finding   was   particularly   notable   in   the   absence   of   any  

detectable   dysfunction   of   coronary   endothelium-­‐dependent   function   as   might  

have   been   expected   to   be   present   in   an   ESRF   cohort.   Such   findings   of  

microvascular   dysfunction   support   a   physiological   basis   for   previous   research  

demonstrating   impaired   diagnostic   accuracy   associated   with   vasodilator-­‐

dependent  stress-­‐imaging  techniques  (notably  SPECT).  The  absence  of  significant  

Page 231: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  206  

endothelial  dysfunction  in  this  ESRF  cohort  was  somewhat  surprising,  but  may  be  

more  reflective  of  the  highly  selected  Study  population,  than  of  the  true  absence  

of   significant   endothelial   dysfunction   in   ESRF  more   generally.   Further   work   is  

clearly  necessary  in  this  area.    

 

Future  Directions  

The  demonstration  of  diagnostic  utility  provided  by  CMR  in  the  Studies  outlined  

opens   a   plethora   of   potential   research   avenues.   The   high   diagnostic  

reproducibility  of  CMR  has  previously  been  shown  to  allow   for   the  detection  of  

highly   significant   alterations   in   cardiac   and   vascular   structure   without   the  

requirement   for   large   sample   populations.   Hence   CMR   provides   a   potentially  

superior   imaging   modality   for   future   studies   evaluating   the   CV   impact   of  

alternative   therapeutic   interventions   in   this   condition.   More   specifically,   CMR  

provides   an   outstanding   opportunity   to   accurately   detect   potential   CV   benefits  

associated  with   lifestyle   (e.g.   exercise)   and  pharmaco-­‐therapeutic   interventions  

(e.g.  alternative  phosphate  binders)  in  CKD,  ESRF  and  following  RTx.  

Following  the  results  of  the  AVF-­‐ligation  Study,  we  are  progressing  with  a  larger  

randomised   Study   of   systematic   AVF   ligation   following   successful   RTx.   Such   a  

Study   would   focus   on   the   evaluation   of   the   prognostic   benefits   that   might   be  

expected   to   arise   from   the   advantageous   structural   and   functional   alterations  

seen  in  this  initial  Study.    

The  documentation  of  superior  diagnostic  accuracy  associated  with  the  use  of  DS-­‐

CMR  in  the  exclusion  of  significant  CAD  in  a  relatively  healthy  ESRF  cohort  being  

assessed   for   suitability  prior   to  RTx  provides   the  basis   for  extending   the  use  of  

Page 232: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  207  

this   imaging   modality   further   in   ESRF.   Specifically,   in   light   of   the   markedly  

elevated   risk   of   MI   in   ESRF,   and   the   abysmal   prognosis   of   affected   patients,  

prevention   of   such   events   is   of   paramount   importance.   It   remains   to   be  

determined   whether   a   diagnostic   technique   of   high   accuracy   may   be   able   to  

provide   prognostic   information   regarding   the   future   likelihood   of   coronary  

events  in  this  condition.  By  direct  extension,  such  a  modality  may  then  allow  for  

the  identification  of  ESRF  patients  at  particularly  high-­‐risk  who  may  benefit  from  

“prophylactic”   revascularisation   prior   to   a   fatal   cardiac   event.   Such   a   premise  

remains   to  be  proven  however,  despite   the   therapeutic  attractiveness  of   such  a  

concept.    

Finally,   the   demonstration   of   intact   coronary   endothelial   function   in   a   small  

group  of  pre-­‐RTx  patients,  where  endothelial  dysfunction  might  reasonably  have  

been   expected,   raises   the   potential   for   research   aimed   at   the   identification   of  

specific  clinical  /  genetic  characteristics   that  may  provide  relative  protection   to  

the  endothelium  despite  the  presence  a  uraemic  milieu.  We  are  progressing  with  

this   study   to   increase   our   numbers,   and   hence   certainty   that   endothelial  

dependent   vasodilation   is   truly   unaffected   in   our   pre-­‐renal   transplantation  

cohort.   Further   studies   however   evaluating   coronary   endothelial   function   in   a  

variety  of  higher-­‐risk  ESRF  subjects  may  better  illustrate  the  burden  of  coronary  

endothelial   function  and  dysfunction   in   this  condition,  although  the  presence  of  

significant   CAD   will   remain   a   technical   limitation   to   the   use   of   the   invasive  

techniques  described  herein.    

Renal   dysfunction   is   associated   with   myriad   alterations   to   CV   structure   and  

function,   many   of   which   may   not   be   recognised   utilising   standard   clinical  

investigations.  CMR  provides  a  novel  avenue  for  the  more  comprehensive  clinical  

Page 233: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  208  

and   investigational   assessment   of   ESRF  patients   in   the  detection  of   sub-­‐clinical  

cardiac  and  vascular  disease  and  the   impact  of   therapeutic   interventions   in   this  

condition.  Although  limited  by  cost  and  availability,  the  increased  penetration  of  

CMR  into  routine  clinical  practice  more  generally,  and  in  ESRF  more  specifically,  

provides   an   exciting   opportunity   to   advance   our   understanding   of   the   CV  

sequelae  of  this  condition,  and  to  progress  towards  more  effective  preventive  CV  

care  for  these  high-­‐risk  patients.  

 

 

Page 234: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  209  

 

BIBLIOGRAPHY  

Page 235: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  210  

1.   K/DOQI   clinical   practice   guidelines   for   chronic   kidney   disease:   evaluation,  

classification,  and  stratification.  Am  J  Kidney  Dis  2002;39:S1-­‐266.  

2.   Silkensen   JR,   Kasiske   BL.   Laboratory   assessment   of   renal   disease:   clearance,  

urinalysis,   and   renal   biopsy.   In:   Brenner   BM,   ed.   Brenner   and   Rector's   The  

Kidney,  7th  ed.  Philadelphia:  Saunders,  2004:1107-­‐1150.  

3.  Brenner  BM.  Brenner  &  Rector's  The  Kidney:  Saunders  Elsevier,  2006.  

4.  Mitch  WE,  Collier  VU,  Walser  M.  Creatinine  metabolism  in  chronic  renal  failure.  

Clin  Sci  (Lond)  1980;58:327-­‐35.  

5.   Levey   AS,   Berg   RL,   Gassman   JJ,   Hall   PM,   Walker   WG.   Creatinine   filtration,  

secretion  and  excretion  during  progressive  renal  disease.  Modification  of  Diet  in  

Renal  Disease  (MDRD)  Study  Group.  Kidney  Int  Suppl  1989;27:S73-­‐80.  

6.   Shemesh   O,   Golbetz   H,   Kriss   JP,   Myers   BD.   Limitations   of   creatinine   as   a  

filtration  marker  in  glomerulopathic  patients.  Kidney  Int  1985;28:830-­‐8.  

7.   Levey   AS,   Bosch   JP,   Lewis   JB,   Greene   T,   Rogers   N,   Roth   D.   A  more   accurate  

method   to   estimate   glomerular   filtration   rate   from   serum   creatinine:   a   new  

prediction   equation.   Modification   of   Diet   in   Renal   Disease   Study   Group.   Ann  

Intern  Med  1999;130:461-­‐70.  

8.   McDonald   S,   Excell   L,   Jose   M.   End-­‐Stage   Kidney   Disease   Among   Indigenous  

Peoples  of  Australia  and  New  Zealand.  ANZDATA  Registry  Report  2011;12.  

9.  Rule  AD,  Larson  TS,  Bergstralh  EJ,  Slezak  JM,  Jacobsen  SJ,  Cosio  FG.  Using  serum  

creatinine   to  estimate  glomerular   filtration  rate:  accuracy   in  good  health  and   in  

chronic  kidney  disease.  Ann  Intern  Med  2004;141:929-­‐37.  

10.  Levey  AS,  Coresh  J,  Greene  T,  Stevens  LA,  Zhang  YL,  Hendriksen  S,  Kusek  JW,  

Van  Lente  F.  Using   standardized   serum  creatinine  values   in   the  modification  of  

Page 236: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  211  

diet  in  renal  disease  study  equation  for  estimating  glomerular  filtration  rate.  Ann  

Intern  Med  2006;145:247-­‐54.  

11.   Cockcroft   DW,   Gault   MH.   Prediction   of   creatinine   clearance   from   serum  

creatinine.  Nephron  1976;16:31-­‐41.  

12.   Chadban   SJ,   Briganti   EM,   Kerr   PG,   Dunstan   DW,   Welborn   TA,   Zimmet   PZ,  

Atkins  RC.  Prevalence  of  kidney  damage  in  Australian  adults:  The  AusDiab  kidney  

study.  J  Am  Soc  Nephrol  2003;14:S131-­‐8.  

13.   AIHW.   Chronic   Kidney   Disease   in   Australia,   2005.   In:   AIHW,   ed.   Canberra:  

Australian  Institute  of  Health  and  Welfare,  2005:AIHW  Cat.No.PHE  68.  

14.  McDonald  S,  Chang  S,  Excell  L.  ANZDATA  Registry  Report  Australia  and  New  

Zealand  Dialysis  and  Transplant  Registry.  Adelaide,  South  Australia:  Australia  and  

New  Zealand  Dialysis  and  Transplant    Registry,  2006.  

15.   Cass  A,   Chadban   S,   Craig   J,  Howard  H,  McDonald   S,   Salkeld  G,  White   S.   The  

Economic   Impact   of   End-­‐Stage   Kidney   Disease   in   Australia.  Melbourne:   Kidney  

Health  Australia,  2006.  

16.   AIHW.   Health   care   expenditure   on   chronic   kidney   disease   in   Australia.   In:  

AIHW,   ed.   Canberra:   Australian   Institute   of   Health   and   Welfare,   2009:AIHW  

Cat.No.PHE  117.  

17.  McDonald  S,  Excell  L,   Jose  M.  ANZDATA  Registry  Report  Australia  and  New  

Zealand  Dialysis  and  Transplant  Registry.  Adelaide,  South  Australia:  Australia  and  

New  Zealand  Dialysis  and  Transplant  Registry,  2010.  

18.  Grace  B,  Excell  L,  Dent  H,  McDonald  S.  New  Patients  Commencing  Treatment  

in  2009  ANZDATA  Registry  Report.  Adelaide,  South  Australia:  Australia  and  New  

Zealand  Dialysis  and  Transplant  Registry,  2010.  

Page 237: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  212  

19.  AIHW.  Australia's  Health,  2008.   In:  AIHW,  ed.  Canberra:  Australian  Institute  

of  Health  and  Welfare,  2008:Cat.  No.  AUS  99.  

20.  McDonald  S,  Excell  L,  Livingston  B.  ANZDATA  Registry  Report  Australia  and  

New   Zealand   Dialysis   and   Transplant   Registry.   Adelaide,   South   Australia:  

Australia  and  New  Zealand  Dialysis  and  Transplant    Registry,  2008.  

21.  McDonald  S,  Excell  L.  ANZDATA  Registry  Report  Australia  and  New  Zealand  

Dialysis   and   Transplant   Registry.   Adelaide,   South   Australia:   Australia   and   New  

Zealand  Dialysis  and  Transplant    Registry,  2005.  

22.   Cheung   AK,   Sarnak  MJ,   Yan   G,   Dwyer   JT,   Heyka   RJ,   Rocco  MV,   Teehan   BP,  

Levey   AS.   Atherosclerotic   cardiovascular   disease   risks   in   chronic   hemodialysis  

patients.  Kidney  Int  2000;58:353-­‐62.  

23.  Tapp  RJ,  Shaw  JE,  Zimmet  PZ,  Balkau  B,  Chadban  SJ,  Tonkin  AM,  Welborn  TA,  

Atkins   RC.   Albuminuria   is   evident   in   the   early   stages   of   diabetes   onset:   results  

from  the  Australian  Diabetes,  Obesity,  and  Lifestyle  Study  (AusDiab).  Am  J  Kidney  

Dis  2004;44:792-­‐8.  

24.  O'Seaghdha  CM,  Perkovic  V,  Lam  TH,  McGinn  S,  Barzi  F,  Gu  DF,  Cass  A,  Suh  I,  

Muntner   P,   Giles   GG,   Ueshima   H,  Woodward  M,   Huxley   R.   Blood   pressure   is   a  

major   risk   factor   for   renal   death:   an   analysis   of   560   352   participants   from   the  

Asia-­‐Pacific  region.  Hypertension  2009;54:509-­‐15.  

25.  Briganti  EM,  Branley  P,  Chadban  SJ,   Shaw   JE,  McNeil   JJ,  Welborn  TA,  Atkins  

RC.  Smoking   is  associated  with  renal   impairment  and  proteinuria   in   the  normal  

population:  the  AusDiab  kidney  study.  Australian  Diabetes,  Obesity  and  Lifestyle  

Study.  Am  J  Kidney  Dis  2002;40:704-­‐12.  

26.  AIHW.  Australia's  Health,  2006.   In:  AIHW,  ed.  Canberra:  Australian  Institute  

of  Health  and  Welfare,  2006:Cat.  No.  AUS  73.  

Page 238: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  213  

27.   Wanner   C.   Importance   of   hyperlipidaemia   and   therapy   in   renal   patients.  

Nephrol  Dial  Transplant  2000;15  Suppl  5:92-­‐6.  

28.  Shepherd  J,  Cobbe  SM,  Ford  I,  Isles  CG,  Lorimer  AR,  MacFarlane  PW,  McKillop  

JH,  Packard  CJ.  Prevention  of  coronary  heart  disease  with  pravastatin  in  men  with  

hypercholesterolemia.  West  of  Scotland  Coronary  Prevention  Study  Group.  N  Engl  

J  Med  1995;333:1301-­‐7.  

29.   Randomised   trial   of   cholesterol   lowering   in   4444   patients   with   coronary  

heart   disease:   the   Scandinavian   Simvastatin   Survival   Study   (4S).   Lancet  

1994;344:1383-­‐9.  

30.  Schwartz  GG,  Olsson  AG,  Ezekowitz  MD,  Ganz  P,  Oliver  MF,  Waters  D,  Zeiher  

A,   Chaitman   BR,   Leslie   S,   Stern   T.   Effects   of   atorvastatin   on   early   recurrent  

ischemic  events   in  acute  coronary  syndromes:  the  MIRACL  study:  a  randomized  

controlled  trial.  JAMA  2001;285:1711-­‐8.  

31.  Waters  DD,  Guyton   JR,  Herrington  DM,  McGowan  MP,  Wenger  NK,   Shear   C.  

Treating   to   New   Targets   (TNT)   Study:   does   lowering   low-­‐density   lipoprotein  

cholesterol   levels   below   currently   recommended   guidelines   yield   incremental  

clinical  benefit?  Am  J  Cardiol  2004;93:154-­‐8.  

32.   Deedwania   P,   Barter   P,   Carmena   R,   Fruchart   JC,   Grundy   SM,   Haffner   S,  

Kastelein   JJ,   LaRosa   JC,   Schachner  H,   Shepherd   J,  Waters  DD.  Reduction  of   low-­‐

density   lipoprotein   cholesterol   in   patients   with   coronary   heart   disease   and  

metabolic   syndrome:   analysis   of   the   Treating   to   New   Targets   study.   Lancet  

2006;368:919-­‐28.  

33.   Ridker   PM,   Danielson   E,   Fonseca   FA,   Genest   J,   Gotto   AM,   Jr.,   Kastelein   JJ,  

Koenig  W,   Libby   P,   Lorenzatti   AJ,  MacFadyen   JG,   Nordestgaard   BG,   Shepherd   J,  

Page 239: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  214  

Willerson   JT,   Glynn   RJ.   Rosuvastatin   to   prevent   vascular   events   in   men   and  

women  with  elevated  C-­‐reactive  protein.  N  Engl  J  Med  2008;359:2195-­‐207.  

34.   Fellstrom  BC,   Jardine   AG,   Schmieder   RE,   Holdaas  H,   Bannister   K,   Beutler   J,  

Chae  DW,  Chevaile  A,  Cobbe  SM,  Gronhagen-­‐Riska  C,  De  Lima  JJ,  Lins  R,  Mayer  G,  

McMahon   AW,   Parving   HH,   Remuzzi   G,   Samuelsson   O,   Sonkodi   S,   Sci   D,  

Suleymanlar  G,  Tsakiris  D,  Tesar  V,  Todorov  V,  Wiecek  A,  Wuthrich  RP,  Gottlow  

M,   Johnsson   E,   Zannad   F.   Rosuvastatin   and   cardiovascular   events   in   patients  

undergoing  hemodialysis.  N  Engl  J  Med  2009;360:1395-­‐407.  

35.   Wanner   C,   Krane   V,   Marz   W,   Olschewski   M,   Mann   JF,   Ruf   G,   Ritz   E.  

Atorvastatin  in  patients  with  type  2  diabetes  mellitus  undergoing  hemodialysis.  N  

Engl  J  Med  2005;353:238-­‐48.  

36.  Baigent  C,  Landray  M,  Leaper  C,  Altmann  P,  Armitage  J,  Baxter  A,  Cairns  HS,  

Collins   R,   Foley   RN,   Frighi   V,   Kourellias   K,   Ratcliffe   PJ,   Rogerson   M,   Scoble   JE,  

Tomson   CR,   Warwick   G,   Wheeler   DC.   First   United   Kingdom   Heart   and   Renal  

Protection  (UK-­‐HARP-­‐I)  study:  biochemical  efficacy  and  safety  of  simvastatin  and  

safety   of   low-­‐dose   aspirin   in   chronic   kidney   disease.   Am   J   Kidney   Dis  

2005;45:473-­‐84.  

37.  van  den  Akker  JM,  Bredie  SJ,  Diepenveen  SH,  van  Tits  LJ,  Stalenhoef  AF,  van  

Leusen   R.   Atorvastatin   and   simvastatin   in   patients   on   hemodialysis:   effects   on  

lipoproteins,  C-­‐reactive  protein  and  in  vivo  oxidized  LDL.  J  Nephrol  2003;16:238-­‐

44.  

38.   Wanner   C,   Horl   WH,   Luley   CH,   Wieland   H.   Effects   of   HMG-­‐CoA   reductase  

inhibitors   in   hypercholesterolemic   patients   on   hemodialysis.   Kidney   Int  

1991;39:754-­‐60.  

Page 240: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  215  

39.   Saltissi   D,   Morgan   C,   Rigby   RJ,   Westhuyzen   J.   Safety   and   efficacy   of  

simvastatin   in   hypercholesterolemic  patients   undergoing   chronic   renal   dialysis.  

Am  J  Kidney  Dis  2002;39:283-­‐90.  

40.   Navaneethan   SD,   Palmer   SC,   Craig   JC,   Elder   GJ,   Strippoli   GF.   Benefits   and  

harms   of   phosphate   binders   in   CKD:   a   systematic   review   of   randomized  

controlled  trials.  Am  J  Kidney  Dis  2009;54:619-­‐37.  

41.   Baigent   C,   Burbury   K,   Wheeler   D.   Premature   cardiovascular   disease   in  

chronic  renal  failure.  Lancet  2000;356:147-­‐52.  

42.  Baigent  C,  Landray  MJ,  Reith  C,  Emberson  J,  Wheeler  DC,  Tomson  C,  Wanner  C,  

Krane  V,  Cass  A,  Craig   J,  Neal  B,   Jiang  L,  Hooi  LS,  Levin  A,  Agodoa  L,  Gaziano  M,  

Kasiske   B,   Walker   R,   Massy   ZA,   Feldt-­‐Rasmussen   B,   Krairittichai   U,  

Ophascharoensuk  V,   Fellstrom  B,  Holdaas  H,   Tesar   V,  Wiecek  A,   Grobbee  D,   de  

Zeeuw   D,   Gronhagen-­‐Riska   C,   Dasgupta   T,   Lewis   D,   Herrington  W,   Mafham  M,  

Majoni  W,  Wallendszus  K,  Grimm  R,  Pedersen  T,  Tobert   J,  Armitage   J,  Baxter  A,  

Bray  C,  Chen  Y,  Chen  Z,  Hill  M,  Knott  C,  Parish  S,  Simpson  D,  Sleight  P,  Young  A,  

Collins  R.  The  effects  of  lowering  LDL  cholesterol  with  simvastatin  plus  ezetimibe  

in  patients  with  chronic  kidney  disease  (Study  of  Heart  and  Renal  Protection):  a  

randomised  placebo-­‐controlled  trial.  Lancet  2011;377:2181-­‐92.  

43.  Cameron  AJ,  Welborn  TA,  Zimmet  PZ,  Dunstan  DW,  Owen  N,  Salmon  J,  Dalton  

M,   Jolley   D,   Shaw   JE.   Overweight   and   obesity   in   Australia:   the   1999-­‐2000  

Australian   Diabetes,   Obesity   and   Lifestyle   Study   (AusDiab).   Med   J   Aust  

2003;178:427-­‐32.  

44.   Barbosa   JA,   Rodrigues   AB,   Mota   CC,   Barbosa   MM,   Simoes   e   Silva   AC.  

Cardiovascular   dysfunction   in   obesity   and   new   diagnostic   imaging   techniques:  

the  role  of  noninvasive  image  methods.  Vasc  Health  Risk  Manag  2011;7:287-­‐95.  

Page 241: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  216  

45.   Reisin   E,   Jack   AV.   Obesity   and   hypertension:   mechanisms,   cardio-­‐renal  

consequences,  and  therapeutic  approaches.  Med  Clin  North  Am  2009;93:733-­‐51.  

46.  Bogaert  YE,  Linas  S.  The  role  of  obesity  in  the  pathogenesis  of  hypertension.  

Nat  Clin  Pract  Nephrol  2009;5:101-­‐11.  

47.  Burke  GL,  Bertoni  AG,  Shea  S,  Tracy  R,  Watson  KE,  Blumenthal  RS,  Chung  H,  

Carnethon  MR.  The   impact  of  obesity  on  cardiovascular  disease  risk  factors  and  

subclinical   vascular   disease:   the   Multi-­‐Ethnic   Study   of   Atherosclerosis.   Arch  

Intern  Med  2008;168:928-­‐35.  

48.  Lowrie  EG,  Lew  NL.  Death  risk  in  hemodialysis  patients:  the  predictive  value  

of   commonly   measured   variables   and   an   evaluation   of   death   rate   differences  

between  facilities.  Am  J  Kidney  Dis  1990;15:458-­‐82.  

49.  Goldwasser  P,  Mittman  N,  Antignani  A,  Burrell  D,  Michel  MA,  Collier  J,  Avram  

MM.   Predictors   of   mortality   in   hemodialysis   patients.   J   Am   Soc   Nephrol  

1993;3:1613-­‐22.  

50.  Postorino  M,  Marino  C,  Tripepi  G,  Zoccali  C.  Abdominal  obesity  and  all-­‐cause  

and   cardiovascular   mortality   in   end-­‐stage   renal   disease.   J   Am   Coll   Cardiol  

2009;53:1265-­‐72.  

51.   Weiner   DE,   Tighiouart   H,   Vlagopoulos   PT,   Griffith   JL,   Salem   DN,   Levey   AS,  

Sarnak  MJ.  Effects  of  anemia  and   left  ventricular  hypertrophy  on  cardiovascular  

disease  in  patients  with  chronic  kidney  disease.  J  Am  Soc  Nephrol  2005;16:1803-­‐

10.  

52.  Regidor  DL,  Kopple  JD,  Kovesdy  CP,  Kilpatrick  RD,  McAllister  CJ,  Aronovitz  J,  

Greenland  S,  Kalantar-­‐Zadeh  K.  Associations  between  changes  in  hemoglobin  and  

administered   erythropoiesis-­‐stimulating   agent   and   survival   in   hemodialysis  

patients.  J  Am  Soc  Nephrol  2006;17:1181-­‐91.  

Page 242: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  217  

53.  Marsden  PA.  Treatment  of  anemia  in  chronic  kidney  disease-­‐-­‐strategies  based  

on  evidence.  N  Engl  J  Med  2009;361:2089-­‐90.  

54.  KDOQI  Clinical  Practice  Guideline  and  Clinical  Practice  Recommendations  for  

anemia  in  chronic  kidney  disease:  2007  update  of  hemoglobin  target.  Am  J  Kidney  

Dis  2007;50:471-­‐530.  

55.  Ma  JZ,  Ebben  J,  Xia  H,  Collins  AJ.  Hematocrit  level  and  associated  mortality  in  

hemodialysis  patients.  J  Am  Soc  Nephrol  1999;10:610-­‐9.  

56.  Madore  F,  Lowrie  EG,  Brugnara  C,  Lew  NL,  Lazarus  JM,  Bridges  K,  Owen  WF.  

Anemia  in  hemodialysis  patients:  variables  affecting  this  outcome  predictor.  J  Am  

Soc  Nephrol  1997;8:1921-­‐9.  

57.   Collins  AJ.   Anaemia  management   prior   to   dialysis:   cardiovascular   and   cost-­‐

benefit  observations.  Nephrol  Dial  Transplant  2003;18  Suppl  2:ii2-­‐6.  

58.  Ofsthun  N,  Labrecque  J,  Lacson  E,  Keen  M,  Lazarus   JM.  The  effects  of  higher  

hemoglobin   levels   on   mortality   and   hospitalization   in   hemodialysis   patients.  

Kidney  Int  2003;63:1908-­‐14.  

59.   Mocks   J.   Cardiovascular   mortality   in   haemodialysis   patients   treated   with  

epoetin  beta  -­‐  a  retrospective  study.  Nephron  2000;86:455-­‐62.  

60.   Locatelli   F,  Aljama  P,  Barany  P,   Canaud  B,   Carrera  F,   Eckardt  KU,  Horl  WH,  

Macdougal  IC,  Macleod  A,  Wiecek  A,  Cameron  S.  Revised  European  best  practice  

guidelines  for  the  management  of  anaemia  in  patients  with  chronic  renal  failure.  

Nephrol  Dial  Transplant  2004;19  Suppl  2:ii1-­‐47.  

61.   Pisoni   RL,   Bragg-­‐Gresham   JL,   Young   EW,   Akizawa   T,   Asano   Y,   Locatelli   F,  

Bommer   J,   Cruz   JM,   Kerr   PG,   Mendelssohn   DC,   Held   PJ,   Port   FK.   Anemia  

management   and   outcomes   from   12   countries   in   the   Dialysis   Outcomes   and  

Practice  Patterns  Study  (DOPPS).  Am  J  Kidney  Dis  2004;44:94-­‐111.  

Page 243: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  218  

62.  Foley  RN,  Parfrey  PS,  Morgan  J,  Barre  PE,  Campbell  P,  Cartier  P,  Coyle  D,  Fine  

A,  Handa  P,  Kingma   I,   Lau  CY,  Levin  A,  Mendelssohn  D,  Muirhead  N,  Murphy  B,  

Plante  RK,  Posen  G,  Wells  GA.  Effect  of  hemoglobin  levels  in  hemodialysis  patients  

with  asymptomatic  cardiomyopathy.  Kidney  Int  2000;58:1325-­‐35.  

63.   Parfrey   PS,   Foley   RN,  Wittreich   BH,   Sullivan   DJ,   Zagari  MJ,   Frei   D.   Double-­‐

blind  comparison  of   full   and  partial   anemia  correction   in   incident  hemodialysis  

patients  without  symptomatic  heart  disease.  J  Am  Soc  Nephrol  2005;16:2180-­‐9.  

64.   Besarab   A,   Bolton   WK,   Browne   JK,   Egrie   JC,   Nissenson   AR,   Okamoto   DM,  

Schwab  SJ,  Goodkin  DA.  The  effects  of  normal  as  compared  with  low  hematocrit  

values   in   patients   with   cardiac   disease   who   are   receiving   hemodialysis   and  

epoetin.  N  Engl  J  Med  1998;339:584-­‐90.  

65.  Drueke  TB,  Locatelli  F,  Clyne  N,  Eckardt  KU,  Macdougall  IC,  Tsakiris  D,  Burger  

HU,   Scherhag   A.   Normalization   of   hemoglobin   level   in   patients   with   chronic  

kidney  disease  and  anemia.  N  Engl  J  Med  2006;355:2071-­‐84.  

66.   Pfeffer   MA,   Burdmann   EA,   Chen   CY,   Cooper   ME,   de   Zeeuw   D,   Eckardt   KU,  

Feyzi  JM,  Ivanovich  P,  Kewalramani  R,  Levey  AS,  Lewis  EF,  McGill  JB,  McMurray  JJ,  

Parfrey   P,   Parving   HH,   Remuzzi   G,   Singh   AK,   Solomon   SD,   Toto   R.   A   Trial   of  

Darbepoetin  Alfa   in  Type  2  Diabetes   and  Chronic  Kidney  Disease.  N  Engl   J  Med  

2009.  

67.   Singh   AK,   Szczech   L,   Tang   KL,   Barnhart   H,   Sapp   S,   Wolfson   M,   Reddan   D.  

Correction   of   anemia  with   epoetin   alfa   in   chronic   kidney  disease.  N  Engl   J  Med  

2006;355:2085-­‐98.  

68.   Clement   FM,   Klarenbach   S,   Tonelli  M,   Johnson   JA,  Manns   BJ.   The   impact   of  

selecting   a   high   hemoglobin   target   level   on   health-­‐related   quality   of   life   for  

Page 244: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  219  

patients   with   chronic   kidney   disease:   a   systematic   review   and   meta-­‐analysis.  

Arch  Intern  Med  2009;169:1104-­‐12.  

69.   KDOQI   Clinical   Practice   Guidelines   and   Clinical   Practice   Recommendations  

for  Anemia  in  Chronic  Kidney  Disease.  Am  J  Kidney  Dis  2006;47:S11-­‐145.  

70.  Elliott  J,  Mishler  D,  Agarwal  R.  Hyporesponsiveness  to  erythropoietin:  causes  

and  management.  Adv  Chronic  Kidney  Dis  2009;16:94-­‐100.  

71.   Rozen-­‐Zvi   B,   Gafter-­‐Gvili   A,   Paul   M,   Leibovici   L,   Shpilberg   O,   Gafter   U.  

Intravenous   versus   oral   iron   supplementation   for   the   treatment   of   anemia   in  

CKD:  systematic  review  and  meta-­‐analysis.  Am  J  Kidney  Dis  2008;52:897-­‐906.  

72.   Taylor   JG,  Bushinsky  DA.  Calcium  and  phosphorus  homeostasis.  Blood  Purif  

2009;27:387-­‐94.  

73.  Holick  MF,  Krane  SM.  Endocrinology  and  Metabolism.  In:  Braunwald  E,  Fauci  

AS,   Kasper   DL,   Hauser   SL,   Longo   DL,   Jameson   JL,   eds.   Harrison's   Principles   of  

Internal  Medicine.  Sydney:  McGraw-­‐Hill,  2001:2192-­‐2205.  

74.  Block  GA,  Klassen  PS,  Lazarus  JM,  Ofsthun  N,  Lowrie  EG,  Chertow  GM.  Mineral  

metabolism,   mortality,   and   morbidity   in   maintenance   hemodialysis.   J   Am   Soc  

Nephrol  2004;15:2208-­‐18.  

75.  Messa  P,   Cerutti  R,  Brezzi  B,  Alfieri   C,   Cozzolino  M.   Calcium  and  phosphate  

control  by  dialysis  treatments.  Blood  Purif  2009;27:360-­‐8.  

76.  Spasovski  G,  Massy  Z,  Vanholder  R.  Phosphate  metabolism  in  chronic  kidney  

disease:  from  pathophysiology  to  clinical  management.  Semin  Dial  2009;22:357-­‐

62.  

77.   Chertow   GM,   Burke   SK,   Raggi   P.   Sevelamer   attenuates   the   progression   of  

coronary   and   aortic   calcification   in   hemodialysis   patients.   Kidney   Int  

2002;62:245-­‐52.  

Page 245: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  220  

78.   Raggi   P,   Bommer   J,   Chertow   GM.   Valvular   calcification   in   hemodialysis  

patients  randomized  to  calcium-­‐based  phosphorus  binders  or  sevelamer.  J  Heart  

Valve  Dis  2004;13:134-­‐41.  

79.  Block  GA,  Spiegel  DM,  Ehrlich   J,  Mehta  R,  Lindbergh   J,  Dreisbach  A,  Raggi  P.  

Effects  of  sevelamer  and  calcium  on  coronary  artery  calcification  in  patients  new  

to  hemodialysis.  Kidney  Int  2005;68:1815-­‐24.  

80.   Tonelli   M,   Wiebe   N,   Culleton   B,   Lee   H,   Klarenbach   S,   Shrive   F,   Manns   B.  

Systematic   review   of   the   clinical   efficacy   and   safety   of   sevelamer   in   dialysis  

patients.  Nephrol  Dial  Transplant  2007;22:2856-­‐66.  

81.  Meyer  TW,  Hostetter  TH.  Uremia.  N  Engl  J  Med  2007;357:1316-­‐25.  

82.   Tziomalos   K,   Athyros   VG,   Karagiannis   A,   Mikhailidis   DP.   Endothelial  

dysfunction   in  metabolic  syndrome:  prevalence,  pathogenesis  and  management.  

Nutr  Metab  Cardiovasc  Dis  2010;20:140-­‐6.  

83.  Hu  G,  Qiao  Q,  Tuomilehto  J.  The  metabolic  syndrome  and  cardiovascular  risk.  

Curr  Diabetes  Rev  2005;1:137-­‐43.  

84.   Shinohara   K,   Shoji   T,   Emoto   M,   Tahara   H,   Koyama   H,   Ishimura   E,   Miki   T,  

Tabata   T,   Nishizawa   Y.   Insulin   resistance   as   an   independent   predictor   of  

cardiovascular   mortality   in   patients   with   end-­‐stage   renal   disease.   J   Am   Soc  

Nephrol  2002;13:1894-­‐900.  

85.  DeFronzo  RA,  Alvestrand  A,  Smith  D,  Hendler  R,  Hendler  E,  Wahren  J.  Insulin  

resistance  in  uremia.  J  Clin  Invest  1981;67:563-­‐8.  

86.   Kobayashi   S,  Maesato   K,  Moriya  H,   Ohtake   T,   Ikeda   T.   Insulin   resistance   in  

patients  with  chronic  kidney  disease.  Am  J  Kidney  Dis  2005;45:275-­‐80.  

Page 246: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  221  

87.  Fliser  D,  Pacini  G,  Engelleiter  R,  Kautzky-­‐Willer  A,  Prager  R,  Franek  E,  Ritz  E.  

Insulin   resistance   and   hyperinsulinemia   are   already   present   in   patients   with  

incipient  renal  disease.  Kidney  Int  1998;53:1343-­‐7.  

88.  Westervelt  FB.  Insulin  effect  in  uremia.  J  Lab  Clin  Med  1969;74:79-­‐84.  

89.  Hager  SR.  Insulin  resistance  of  uremia.  Am  J  Kidney  Dis  1989;14:272-­‐6.  

90.  Mak  RH,  DeFronzo  RA.  Glucose   and   insulin  metabolism   in  uremia.  Nephron  

1992;61:377-­‐82.  

91.   Lee   SW,  Park  GH,   Song   JH,  Hong  KC,  Kim  MJ.   Insulin   resistance   and  muscle  

wasting  in  non-­‐diabetic  end-­‐stage  renal  disease  patients.  Nephrol  Dial  Transplant  

2007;22:2554-­‐62.  

92.  Siew  ED,  Pupim  LB,  Majchrzak  KM,  Shintani  A,  Flakoll  PJ,   Ikizler  TA.   Insulin  

resistance  is  associated  with  skeletal  muscle  protein  breakdown  in  non-­‐diabetic  

chronic  hemodialysis  patients.  Kidney  Int  2007;71:146-­‐52.  

93.   Cheema   BS.   Review   article:   Tackling   the   survival   issue   in   end-­‐stage   renal  

disease:   time   to   get   physical   on   haemodialysis.   Nephrology   (Carlton)  

2008;13:560-­‐9.  

94.  Hassan  AA,  Kroll  MH.  Acquired  disorders  of  platelet  function.  Hematology  Am  

Soc  Hematol  Educ  Program  2005:403-­‐8.  

95.   Galbusera   M,   Remuzzi   G,   Boccardo   P.   Treatment   of   bleeding   in   dialysis  

patients.  Semin  Dial  2009;22:279-­‐86.  

96.  Di  Minno  G,  Martinez  J,  McKean  ML,  De  La  Rosa  J,  Burke  JF,  Murphy  S.  Platelet  

dysfunction   in   uremia.   Multifaceted   defect   partially   corrected   by   dialysis.  Am   J  

Med  1985;79:552-­‐9.  

Page 247: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  222  

97.  Herbelin  A,  Nguyen  AT,  Zingraff  J,  Urena  P,  Descamps-­‐Latscha  B.  Influence  of  

uremia  and  hemodialysis  on  circulating   interleukin-­‐1  and  tumor  necrosis   factor  

alpha.  Kidney  Int  1990;37:116-­‐25.  

98.   Smith   MC,   Dunn   MJ.   Impaired   platelet   thromboxane   production   in   renal  

failure.  Nephron  1981;29:133-­‐7.  

99.  Remuzzi  G,  Benigni  A,  Dodesini  P,  Schieppati  A,  Livio  M,  De  Gaetano  G,  Day  SS,  

Smith   WL,   Pinca   E,   Patrignani   P,   Patrono   C.   Reduced   platelet   thromboxane  

formation  in  uremia.  Evidence  for  a  functional  cyclooxygenase  defect.  J  Clin  Invest  

1983;71:762-­‐8.  

100.  Macconi  D,  Vigano  G,  Bisogno  G,  Galbusera  M,  Orisio  S,  Remuzzi  G,  Livio  M.  

Defective  platelet  aggregation  in  response  to  platelet-­‐activating  factor  in  uremia  

associated   with   low   platelet   thromboxane   A2   generation.   Am   J   Kidney   Dis  

1992;19:318-­‐25.  

101.   Castillo   R,   Lozano   T,   Escolar   G,   Revert   L,   Lopez   J,   Ordinas   A.   Defective  

platelet   adhesion   on   vessel   subendothelium   in   uremic   patients.   Blood  

1986;68:337-­‐42.  

102.  Zwaginga  JJ,  Ijsseldijk  MJ,  Beeser-­‐Visser  N,  de  Groot  PG,  Vos  J,  Sixma  JJ.  High  

von  Willebrand   factor   concentration   compensates   a   relative   adhesion   defect   in  

uremic  blood.  Blood  1990;75:1498-­‐508.  

103.  Escolar  G,  Cases  A,  Bastida  E,  Garrido  M,  Lopez  J,  Revert  L,  Castillo  R,  Ordinas  

A.   Uremic   platelets   have   a   functional   defect   affecting   the   interaction   of   von  

Willebrand  factor  with  glycoprotein  IIb-­‐IIIa.  Blood  1990;76:1336-­‐40.  

104.   Livio  M,   Gotti   E,  Marchesi   D,  Mecca   G,   Remuzzi   G,   de   Gaetano  G.   Uraemic  

bleeding:   role   of   anaemia   and   beneficial   effect   of   red   cell   transfusions.   Lancet  

1982;2:1013-­‐5.  

Page 248: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  223  

105.   Moia   M,   Mannucci   PM,   Vizzotto   L,   Casati   S,   Cattaneo   M,   Ponticelli   C.  

Improvement   in   the   haemostatic   defect   of   uraemia   after   treatment   with  

recombinant  human  erythropoietin.  Lancet  1987;2:1227-­‐9.  

106.   Vigano   G,   Benigni   A,   Mendogni   D,   Mingardi   G,   Mecca   G,   Remuzzi   G.  

Recombinant  human  erythropoietin   to  correct  uremic  bleeding.  Am  J  Kidney  Dis  

1991;18:44-­‐9.  

107.  Gaarder  A,  Jonsen  J,  Laland  S,  Hellem  A,  Owren  PA.  Adenosine  diphosphate  

in   red   cells   as   a   factor   in   the   adhesiveness   of   human   blood   platelets.   Nature  

1961;192:531-­‐2.  

108.   Noris  M,   Remuzzi   G.   Uremic   bleeding:   closing   the   circle   after   30   years   of  

controversies?  Blood  1999;94:2569-­‐74.  

109.   Rabiner   SF,   Molinas   F.   The   role   of   phenol   and   phenolic   acids   on   the  

thrombocytopathy   and   defective   platelet   aggregation   of   patients   with   renal  

failure.  Am  J  Med  1970;49:346-­‐51.  

110.  Horowitz  HI,  Stein  IM,  Cohen  BD,  White  JG.  Further  studies  on  the  platelet-­‐

inhibitory   effect   of   guanidinosuccinic   acid   and   its   role   in  uremic  bleeding.  Am   J  

Med  1970;49:336-­‐45.  

111.  Remuzzi  G,  Livio  M,  Marchiaro  G,  Mecca  G,  de  Gaetano  G.  Bleeding  in  renal  

failure:   altered   platelet   function   in   chronic   uraemia   only   partially   corrected   by  

haemodialysis.  Nephron  1978;22:347-­‐53.  

112.  Nenci  GG,  Berrettini  M,  Agnelli  G,  Parise  P,  Buoncristiani  U,  Ballatori  E.  Effect  

of  peritoneal  dialysis,  haemodialysis  and  kidney  transplantation  on  blood  platelet  

function.   I.  Platelet  aggregation  by  ADP  and  epinephrine.  Nephron  1979;23:287-­‐

92.  

Page 249: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  224  

113.  Gaspari  F,  Vigano  G,  Orisio  S,  Bonati  M,  Livio  M,  Remuzzi  G.  Aspirin  prolongs  

bleeding   time   in   uremia   by   a  mechanism   distinct   from   platelet   cyclooxygenase  

inhibition.  J  Clin  Invest  1987;79:1788-­‐97.  

114.  Boyle   JM,   Johnston  B.  Acute  upper  gastrointestinal  hemorrhage   in  patients  

with  chronic  renal  disease.  Am  J  Med  1983;75:409-­‐12.  

115.   Escolar   G,   Diaz-­‐Ricart   M,   Cases   A.   Uremic   platelet   dysfunction:   past   and  

present.  Curr  Hematol  Rep  2005;4:359-­‐67.  

116.  Himmelfarb  J,  Stenvinkel  P,   Ikizler  TA,  Hakim  RM.  The  elephant   in  uremia:  

oxidant  stress  as  a  unifying  concept  of  cardiovascular  disease   in  uremia.  Kidney  

Int  2002;62:1524-­‐38.  

117.  Papa  S,  Skulachev  VP.  Reactive  oxygen  species,  mitochondria,  apoptosis  and  

aging.  Mol  Cell  Biochem  1997;174:305-­‐19.  

118.  Rigatto  C,  Singal  PK.  Oxidative  Stress  in  Uremia:  Impact  on  Cardiac  Disease  

in  Dialysis  Patients.  Seminars  in  Dialysis  1999;12:91-­‐96.  

119.  Massy  ZA,  Stenvinkel  P,  Drueke  TB.  The  role  of  oxidative  stress   in  chronic  

kidney  disease.  Semin  Dial  2009;22:405-­‐8.  

120.  Siegel-­‐Axel  D,  Daub  K,  Seizer  P,  Lindemann  S,  Gawaz  M.  Platelet  lipoprotein  

interplay:  trigger  of  foam  cell  formation  and  driver  of  atherosclerosis.  Cardiovasc  

Res  2008;78:8-­‐17.  

121.   Ross   R.   Atherosclerosis-­‐-­‐an   inflammatory   disease.   N   Engl   J   Med  

1999;340:115-­‐26.  

122.  Lusis  AJ.  Atherosclerosis.  Nature  2000;407:233-­‐41.  

123.   Torzewski   M,   Lackner   KJ.   Initiation   and   progression   of   atherosclerosis-­‐-­‐

enzymatic   or   oxidative  modification   of   low-­‐density   lipoprotein?   Clin   Chem   Lab  

Med  2006;44:1389-­‐94.  

Page 250: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  225  

124.   Verhoye   E,   Langlois   MR.   Circulating   oxidized   low-­‐density   lipoprotein:   a  

biomarker   of   atherosclerosis   and   cardiovascular   risk?   Clin   Chem   Lab   Med  

2009;47:128-­‐37.  

125.   Berneis   KK,   Krauss   RM.  Metabolic   origins   and   clinical   significance   of   LDL  

heterogeneity.  J  Lipid  Res  2002;43:1363-­‐79.  

126.  Matsuura   E,   Kobayashi   K,   Tabuchi  M,   Lopez   LR.   Oxidative  modification   of  

low-­‐density  lipoprotein  and  immune  regulation  of  atherosclerosis.  Prog  Lipid  Res  

2006;45:466-­‐86.  

127.   Moore   KJ,   Freeman   MW.   Scavenger   receptors   in   atherosclerosis:   beyond  

lipid  uptake.  Arterioscler  Thromb  Vasc  Biol  2006;26:1702-­‐11.  

128.  Uchida  K.  Role   of   reactive   aldehyde   in   cardiovascular  diseases.  Free  Radic  

Biol  Med  2000;28:1685-­‐96.  

129.  Weiss  MF,  Erhard  P,  Kader-­‐Attia  FA,  Wu  YC,  Deoreo  PB,  Araki  A,  Glomb  MA,  

Monnier   VM.   Mechanisms   for   the   formation   of   glycoxidation   products   in   end-­‐

stage  renal  disease.  Kidney  Int  2000;57:2571-­‐85.  

130.  Miyata  T,  van  Ypersele  de  Strihou  C,  Kurokawa  K,  Baynes  JW.  Alterations  in  

nonenzymatic   biochemistry   in   uremia:   origin   and   significance   of   "carbonyl  

stress"  in  long-­‐term  uremic  complications.  Kidney  Int  1999;55:389-­‐99.  

131.  Miyata  T,   Sugiyama  S,   Saito  A,  Kurokawa  K.  Reactive   carbonyl   compounds  

related  uremic  toxicity  ("carbonyl  stress").  Kidney  Int  Suppl  2001;78:S25-­‐31.  

132.  Sakata  N,  Imanaga  Y,  Meng  J,  Tachikawa  Y,  Takebayashi  S,  Nagai  R,  Horiuchi  

S.   Increased   advanced   glycation   end   products   in   atherosclerotic   lesions   of  

patients  with  end-­‐stage  renal  disease.  Atherosclerosis  1999;142:67-­‐77.  

Page 251: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  226  

133.   Berliner   JA,   Navab   M,   Fogelman   AM,   Frank   JS,   Demer   LL,   Edwards   PA,  

Watson  AD,  Lusis  AJ.  Atherosclerosis:  basic  mechanisms.  Oxidation,  inflammation,  

and  genetics.  Circulation  1995;91:2488-­‐96.  

134.  Wang   Y,  Marshall   SM,   Thompson  MG,   Hoenich   NA.   Cardiovascular   risk   in  

patients  with  end-­‐stage  renal  disease:  a  potential  role  for  advanced  glycation  end  

products.  Contrib  Nephrol  2005;149:168-­‐74.  

135.   Descamps-­‐Latscha   B,   Jungers   P,   Witko-­‐Sarsat   V.   Immune   system  

dysregulation  in  uremia:  role  of  oxidative  stress.  Blood  Purif  2002;20:481-­‐4.  

136.   Horl   WH.   Hemodialysis   membranes:   interleukins,   biocompatibility,   and  

middle  molecules.  J  Am  Soc  Nephrol  2002;13  Suppl  1:S62-­‐71.  

137.   Chawla   LS,   Krishnan   M.   Causes   and   consequences   of   inflammation   on  

anemia  management  in  hemodialysis  patients.  Hemodial  Int  2009;13:222-­‐34.  

138.  Foley  RN,  Parfrey  PS,  Sarnak  MJ.  Epidemiology  of  cardiovascular  disease  in  

chronic  renal  disease.  J  Am  Soc  Nephrol  1998;9:S16-­‐23.  

139.  Tonelli  M,  Wiebe  N,  Culleton  B,  House  A,  Rabbat  C,  Fok  M,  McAlister  F,  Garg  

AX.   Chronic   kidney   disease   and   mortality   risk:   a   systematic   review.   J   Am   Soc  

Nephrol  2006;17:2034-­‐47.  

140.   Foley   RN,   Parfrey   PS,   Sarnak   MJ.   Clinical   epidemiology   of   cardiovascular  

disease  in  chronic  renal  disease.  Am  J  Kidney  Dis  1998;32:S112-­‐9.  

141.   US   Renal   Data   System,  USRDS   2007   Annual   Data   Report:   Atlas   of   Chronic  

Kidney   Disease   and   End-­Stage   Renal   Disease   in   the   United   States,   National  

Institutes   of   Health,   National   Institute   of   Diabetes   and   Digestive   and   Kidney  

Diseases  Bethesda,  MD,  2007.  

142.   Sarnak   MJ,   Levey   AS,   Schoolwerth   AC,   Coresh   J,   Culleton   B,   Hamm   LL,  

McCullough   PA,   Kasiske   BL,   Kelepouris   E,   Klag  MJ,   Parfrey   P,   Pfeffer  M,   Raij   L,  

Page 252: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  227  

Spinosa   DJ,   Wilson   PW.   Kidney   disease   as   a   risk   factor   for   development   of  

cardiovascular   disease:   a   statement   from   the   American   Heart   Association  

Councils   on   Kidney   in   Cardiovascular   Disease,   High   Blood   Pressure   Research,  

Clinical   Cardiology,   and   Epidemiology   and   Prevention.   Hypertension  

2003;42:1050-­‐65.  

143.  Go  AS,  Chertow  GM,  Fan  D,  McCulloch  CE,  Hsu  CY.  Chronic  kidney  disease  

and   the   risks   of   death,   cardiovascular   events,   and  hospitalization.  N  Engl   J  Med  

2004;351:1296-­‐305.  

144.  Foley  RN,  Murray  AM,  Li  S,  Herzog  CA,  McBean  AM,  Eggers  PW,  Collins  AJ.  

Chronic   kidney   disease   and   the   risk   for   cardiovascular   disease,   renal  

replacement,  and  death  in  the  United  States  Medicare  population,  1998  to  1999.  J  

Am  Soc  Nephrol  2005;16:489-­‐95.  

145.  Parfrey  PS,  Foley  RN,  Harnett   JD,  Kent  GM,  Murray  DC,  Barre  PE.  Outcome  

and   risk   factors   for   left   ventricular   disorders   in   chronic   uraemia.  Nephrol   Dial  

Transplant  1996;11:1277-­‐85.  

146.   Silberberg   JS,   Barre   PE,   Prichard   SS,   Sniderman   AD.   Impact   of   left  

ventricular   hypertrophy   on   survival   in   end-­‐stage   renal   disease.   Kidney   Int  

1989;36:286-­‐90.  

147.   Edwards   NC,   Ferro   CJ,   Townend   JN,   Steeds   RP.   Aortic   distensibility   and  

arterial-­‐ventricular   coupling   in   early   chronic   kidney   disease:   a   pattern  

resembling   heart   failure  with   preserved   ejection   fraction.  Heart   2008;94:1038-­‐

43.  

148.   Paoletti   E,   Bellino   D,   Cassottana   P,   Rolla   D,   Cannella   G.   Left   ventricular  

hypertrophy  in  nondiabetic  predialysis  CKD.  Am  J  Kidney  Dis  2005;46:320-­‐7.  

Page 253: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  228  

149.   Zoccali   C,   Benedetto   FA,  Mallamaci   F,   Tripepi   G,   Giacone   G,   Stancanelli   B,  

Cataliotti   A,   Malatino   LS.   Left   ventricular   mass   monitoring   in   the   follow-­‐up   of  

dialysis   patients:   prognostic   value   of   left   ventricular   hypertrophy   progression.  

Kidney  Int  2004;65:1492-­‐8.  

150.   Foley   RN,   Parfrey   PS,   Kent   GM,   Harnett   JD,   Murray   DC,   Barre   PE.   Serial  

change   in   echocardiographic   parameters   and   cardiac   failure   in   end-­‐stage   renal  

disease.  J  Am  Soc  Nephrol  2000;11:912-­‐6.  

151.  Chan  CT,  Greene  T,  Chertow  GM,  Kliger  AS,  Stokes  JB,  Beck  GJ,  Daugirdas  JT,  

Kotanko  P,  Larive  B,  Levin  NW,  Mehta  RL,  Rocco  M,  Sanz  J,  Schiller  BM,  Yang  PC,  

Rajagopalan  S.  Determinants  of  left  ventricular  mass  in  patients  on  hemodialysis:  

Frequent   Hemodialysis   Network   (FHN)   Trials.   Circ   Cardiovasc   Imaging  

2012;5:251-­‐61.  

152.  London  GM.  Left  ventricular  hypertrophy:  why  does  it  happen?  Nephrol  Dial  

Transplant  2003;18  Suppl  8:viii2-­‐6.  

153.  Levin  A,  Thompson  CR,  Ethier  J,  Carlisle  EJ,  Tobe  S,  Mendelssohn  D,  Burgess  

E,  Jindal  K,  Barrett  B,  Singer  J,  Djurdjev  O.  Left  ventricular  mass  index  increase  in  

early   renal   disease:   impact   of   decline   in   hemoglobin.   Am   J   Kidney   Dis  

1999;34:125-­‐34.  

154.   London   GM.   Cardiovascular   disease   in   chronic   renal   failure:  

pathophysiologic  aspects.  Semin  Dial  2003;16:85-­‐94.  

155.  Cuspidi  C,  Ciulla  M,  Zanchetti  A.  Hypertensive  myocardial   fibrosis.  Nephrol  

Dial  Transplant  2006;21:20-­‐3.  

156.   Amann   K,   Wiest   G,   Zimmer   G,   Gretz   N,   Ritz   E,   Mall   G.   Reduced   capillary  

density   in   the   myocardium   of   uremic   rats-­‐-­‐a   stereological   study.   Kidney   Int  

1992;42:1079-­‐85.  

Page 254: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  229  

157.  Middleton  RJ,  Parfrey  PS,  Foley  RN.  Left  ventricular  hypertrophy  in  the  renal  

patient.  J  Am  Soc  Nephrol  2001;12:1079-­‐84.  

158.   Levin   A,   Djurdjev   O,   Thompson   C,   Barrett   B,   Ethier   J,   Carlisle   E,   Barre   P,  

Magner  P,  Muirhead  N,  Tobe  S,  Tam  P,  Wadgymar  JA,  Kappel  J,  Holland  D,  Pichette  

V,   Shoker   A,   Soltys   G,   Verrelli   M,   Singer   J.   Canadian   randomized   trial   of  

hemoglobin   maintenance   to   prevent   or   delay   left   ventricular   mass   growth   in  

patients  with  CKD.  Am  J  Kidney  Dis  2005;46:799-­‐811.  

159.   Cianciaruso   B,   Ravani   P,   Barrett   BJ,   Levin   A.   Italian   randomized   trial   of  

hemoglobin   maintenance   to   prevent   or   delay   left   ventricular   hypertrophy   in  

chronic  kidney  disease.  J  Nephrol  2008;21:861-­‐70.  

160.  London  GM,  Pannier  B,  Guerin  AP,  Blacher  J,  Marchais  SJ,  Darne  B,  Metivier  

F,  Adda  H,  Safar  ME.  Alterations  of  left  ventricular  hypertrophy  in  and  survival  of  

patients   receiving   hemodialysis:   follow-­‐up   of   an   interventional   study.   J   Am   Soc  

Nephrol  2001;12:2759-­‐67.  

161.   Bossola   M,   Tazza   L,   Vulpio   C,   Luciani   G.   Is   regression   of   left   ventricular  

hypertrophy   in   maintenance   hemodialysis   patients   possible?   Semin   Dial  

2008;21:422-­‐30.  

162.   Levin   A.   The   role   of   anaemia   in   the   genesis   of   cardiac   abnormalities   in  

patients  with  chronic  kidney  disease.  Nephrol  Dial  Transplant  2002;17:207-­‐10.  

163.   Levy   D,   Salomon   M,   D'Agostino   RB,   Belanger   AJ,   Kannel   WB.   Prognostic  

implications  of  baseline  electrocardiographic  features  and  their  serial  changes  in  

subjects  with  left  ventricular  hypertrophy.  Circulation  1994;90:1786-­‐93.  

164.  Zhang  R,  Crump  J,  Reisin  E.  Regression  of   left  ventricular  hypertrophy   is  a  

key  goal  of  hypertension  management.  Curr  Hypertens  Rep  2003;5:301-­‐8.  

Page 255: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  230  

165.  Verdecchia  P,  Schillaci  G,  Borgioni  C,  Ciucci  A,  Gattobigio  R,  Zampi  I,  Reboldi  

G,  Porcellati  C.  Prognostic  significance  of  serial  changes  in  left  ventricular  mass  in  

essential  hypertension.  Circulation  1998;97:48-­‐54.  

166.  Hunt  SA,  Abraham  WT,  Chin  MH,  Feldman  AM,  Francis  GS,  Ganiats  TG,  Jessup  

M,  Konstam  MA,  Mancini  DM,  Michl  K,  Oates  JA,  Rahko  PS,  Silver  MA,  Stevenson  

LW,   Yancy   CW,   Antman   EM,   Smith   SC,   Jr.,   Adams   CD,   Anderson   JL,   Faxon   DP,  

Fuster  V,  Halperin   JL,  Hiratzka  LF,   Jacobs  AK,  Nishimura  R,  Ornato   JP,   Page  RL,  

Riegel  B.  ACC/AHA  2005  Guideline  Update  for  the  Diagnosis  and  Management  of  

Chronic   Heart   Failure   in   the   Adult:   a   report   of   the   American   College   of  

Cardiology/American   Heart   Association   Task   Force   on   Practice   Guidelines  

(Writing   Committee   to   Update   the   2001   Guidelines   for   the   Evaluation   and  

Management   of   Heart   Failure):   developed   in   collaboration   with   the   American  

College   of   Chest   Physicians   and   the   International   Society   for   Heart   and   Lung  

Transplantation:   endorsed   by   the   Heart   Rhythm   Society.   Circulation  

2005;112:e154-­‐235.  

167.   Remme  WJ,   Swedberg   K.   Comprehensive   guidelines   for   the   diagnosis   and  

treatment  of  chronic  heart  failure.  Task  force  for  the  diagnosis  and  treatment  of  

chronic   heart   failure   of   the   European   Society   of   Cardiology.   Eur   J   Heart   Fail  

2002;4:11-­‐22.  

168.  Hillege  HL,  Nitsch  D,  Pfeffer  MA,  Swedberg  K,  McMurray  JJ,  Yusuf  S,  Granger  

CB,  Michelson  EL,  Ostergren  J,  Cornel   JH,  de  Zeeuw  D,  Pocock  S,  van  Veldhuisen  

DJ.  Renal  function  as  a  predictor  of  outcome  in  a  broad  spectrum  of  patients  with  

heart  failure.  Circulation  2006;113:671-­‐8.  

Page 256: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  231  

169.  Parfrey  PS.  Cardiac  disease  in  dialysis  patients:  diagnosis,  burden  of  disease,  

prognosis,  risk  factors  and  management.  Nephrol  Dial  Transplant  2000;15  Suppl  

5:58-­‐68.  

170.  MacRae  JM,  Levin  A,  Belenkie  I.  The  cardiovascular  effects  of  arteriovenous  

fistulas  in  chronic  kidney  disease:  a  cause  for  concern?  Semin  Dial  2006;19:349-­‐

52.  

171.   Kunz   K,   Dimitrov   Y,   Muller   S,   Chantrel   F,   Hannedouche   T.   Uraemic  

cardiomyopathy.  Nephrol  Dial  Transplant  1998;13  Suppl  4:39-­‐43.  

172.  Harnett  JD,  Foley  RN,  Kent  GM,  Barre  PE,  Murray  D,  Parfrey  PS.  Congestive  

heart   failure   in   dialysis   patients:   prevalence,   incidence,   prognosis   and   risk  

factors.  Kidney  Int  1995;47:884-­‐90.  

173.   Parfrey   PS,   Griffiths   SM,   Harnett   JD,   Taylor   R,   King   A,   Hand   J,   Barre   PE.  

Outcome   of   congestive   heart   failure,   dilated   cardiomyopathy,   hypertrophic  

hyperkinetic  disease,  and  ischemic  heart  disease  in  dialysis  patients.  Am  J  Nephrol  

1990;10:213-­‐21.  

174.   Banerjee   D,   Ma   JZ,   Collins   AJ,   Herzog   CA.   Long-­‐term   survival   of   incident  

hemodialysis   patients   who   are   hospitalized   for   congestive   heart   failure,  

pulmonary  edema,  or  fluid  overload.  Clin  J  Am  Soc  Nephrol  2007;2:1186-­‐90.  

175.   Postorino  M,  Marino   C,   Tripepi   G,   Zoccali   C.   Prognostic   value   of   the   New  

York   Heart   Association   classification   in   end-­‐stage   renal   disease.   Nephrol   Dial  

Transplant  2007;22:1377-­‐82.  

176.   Burton   JO,   Jefferies   HJ,   Selby   NM,   McIntyre   CW.   Hemodialysis-­‐induced  

cardiac   injury:   determinants   and   associated   outcomes.   Clin   J   Am   Soc   Nephrol  

2009;4:914-­‐20.  

Page 257: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  232  

177.   McIntyre   CW,   Burton   JO,   Selby   NM,   Leccisotti   L,   Korsheed   S,   Baker   CS,  

Camici  PG.  Hemodialysis-­‐induced  cardiac  dysfunction  is  associated  with  an  acute  

reduction   in  global  and  segmental  myocardial  blood   flow.  Clin   J  Am  Soc  Nephrol  

2008;3:19-­‐26.  

178.   Burton   JO,   Jefferies   HJ,   Selby   NM,   McIntyre   CW.   Hemodialysis-­‐induced  

repetitive  myocardial  injury  results  in  global  and  segmental  reduction  in  systolic  

cardiac  function.  Clin  J  Am  Soc  Nephrol  2009;4:1925-­‐31.  

179.  Gotloib  L,  Fudin  R.  The  impact  of  peritoneal  dialysis  upon  quality  of  life  and  

mortality   of   patients   with   end-­‐stage   congestive   heart   failure.   Contrib   Nephrol  

2006;150:247-­‐53.  

180.   Kalantar-­‐Zadeh   K,   Regidor   DL,   Kovesdy   CP,   Van  Wyck   D,   Bunnapradist   S,  

Horwich   TB,   Fonarow   GC.   Fluid   retention   is   associated   with   cardiovascular  

mortality   in   patients   undergoing   long-­‐term   hemodialysis.   Circulation  

2009;119:671-­‐9.  

181.   Fuster   V,   Ryden   LE,   Cannom   DS,   Crijns   HJ,   Curtis   AB,   Ellenbogen   KA,  

Halperin  JL,  Le  Heuzey  JY,  Kay  GN,  Lowe  JE,  Olsson  SB,  Prystowsky  EN,  Tamargo  

JL,  Wann  S,  Smith  SC,  Jr.,  Jacobs  AK,  Adams  CD,  Anderson  JL,  Antman  EM,  Hunt  SA,  

Nishimura  R,  Ornato  JP,  Page  RL,  Riegel  B,  Priori  SG,  Blanc  JJ,  Budaj  A,  Camm  AJ,  

Dean   V,   Deckers   JW,   Despres   C,   Dickstein   K,   Lekakis   J,   McGregor   K,   Metra   M,  

Morais   J,   Osterspey   A,   Zamorano   JL.   ACC/AHA/ESC   2006   Guidelines   for   the  

Management  of  Patients  with  Atrial  Fibrillation:  a  report  of  the  American  College  

of  Cardiology/American  Heart  Association  Task  Force  on  Practice  Guidelines  and  

the  European   Society   of   Cardiology  Committee   for   Practice  Guidelines   (Writing  

Committee   to  Revise   the  2001  Guidelines   for   the  Management  of  Patients  With  

Page 258: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  233  

Atrial  Fibrillation):  developed  in  collaboration  with  the  European  Heart  Rhythm  

Association  and  the  Heart  Rhythm  Society.  Circulation  2006;114:e257-­‐354.  

182.   Abbott   KC,   Trespalacios   FC,   Taylor   AJ,   Agodoa   LY.   Atrial   fibrillation   in  

chronic  dialysis  patients  in  the  United  States:  risk  factors  for  hospitalization  and  

mortality.  BMC  Nephrol  2003;4:1.  

183.  Genovesi  S,  Vincenti  A,  Rossi  E,  Pogliani  D,  Acquistapace  I,  Stella  A,  Valsecchi  

MG.   Atrial   fibrillation   and   morbidity   and   mortality   in   a   cohort   of   long-­‐term  

hemodialysis  patients.  Am  J  Kidney  Dis  2008;51:255-­‐62.  

184.   Vazquez  E,   Sanchez-­‐Perales   C,   Garcia-­‐Garcia   F,   Castellano  P,   Garcia-­‐Cortes  

MJ,  Liebana  A,  Lozano  C.  Atrial  fibrillation  in  incident  dialysis  patients.  Kidney  Int  

2009;76:324-­‐30.  

185.   Korantzopoulos   P,   Kokkoris   S,   Liu   T,   Protopsaltis   I,   Li   G,   Goudevenos   JA.  

Atrial   fibrillation   in   end-­‐stage   renal   disease.   Pacing   Clin   Electrophysiol  

2007;30:1391-­‐7.  

186.  Genovesi  S,  Pogliani  D,  Faini  A,  Valsecchi  MG,  Riva  A,  Stefani  F,  Acquistapace  

I,   Stella   A,   Bonforte   G,   DeVecchi   A,   DeCristofaro   V,   Buccianti   G,   Vincenti   A.  

Prevalence   of   atrial   fibrillation   and   associated   factors   in   a   population   of   long-­‐

term  hemodialysis  patients.  Am  J  Kidney  Dis  2005;46:897-­‐902.  

187.   Liu   T,   Li   GP.   Potential   mechanisms   between   atrial   dilatation   and   atrial  

fibrillation.  Am  Heart  J  2006;151:e1;  author  reply  e3.  

188.   Shiroshita-­‐Takeshita   A,   Brundel   BJ,   Nattel   S.   Atrial   fibrillation:   basic  

mechanisms,   remodeling  and   triggers.   J   Interv  Card  Electrophysiol  2005;13:181-­‐

93.  

Page 259: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  234  

189.  Tripepi  G,  Benedetto  FA,  Mallamaci  F,  Tripepi  R,  Malatino  L,  Zoccali  C.  Left  

atrial  volume  in  end-­‐stage  renal  disease:  a  prospective  cohort  study.  J  Hypertens  

2006;24:1173-­‐80.  

190.  Liu  T,  Li  G.  Pulmonary  vein  dilatation:  another  possible  crosslink  between  

left  atrial  enlargement  and  atrial  fibrillation?  Int  J  Cardiol  2008;123:193-­‐4.  

191.  Knackstedt  C,  Visser  L,  Plisiene   J,   Zarse  M,  Waldmann  M,  Mischke  K,  Koch  

KC,  Hoffmann  R,  Franke  A,  Hanrath  P,   Schauerte  P.  Dilatation  of   the  pulmonary  

veins   in   atrial   fibrillation:   a   transesophageal   echocardiographic   evaluation.  

Pacing  Clin  Electrophysiol  2003;26:1371-­‐8.  

192.   Yamane   T,   Shah   DC,   Jais   P,   Hocini   M,   Peng   JT,   Deisenhofer   I,   Clementy   J,  

Haissaguerre   M.   Dilatation   as   a   marker   of   pulmonary   veins   initiating   atrial  

fibrillation.  J  Interv  Card  Electrophysiol  2002;6:245-­‐9.  

193.   Mathew   ST,   Patel   J,   Joseph   S.   Atrial   fibrillation:   mechanistic   insights   and  

treatment  options.  Eur  J  Intern  Med  2009;20:672-­‐81.  

194.   Rao   AK,   Djamali   A,   Korcarz   CE,   Aeschlimann   SE,  Wolff   MR,   Stein   JH.   Left  

atrial   volume   is   associated   with   inflammation   and   atherosclerosis   in   patients  

with  kidney  disease.  Echocardiography  2008;25:264-­‐9.  

195.   Atar   I,   Konas   D,   Acikel   S,   Kulah   E,   Atar   A,   Bozbas   H,   Gulmez   O,   Sezer   S,  

Yildirir  A,  Ozdemir  N,  Muderrisoglu  H,  Ozin  B.  Frequency  of  atrial  fibrillation  and  

factors  related  to  its  development  in  dialysis  patients.  Int  J  Cardiol  2006;106:47-­‐

51.  

196.   Patel   RK,   Jardine   AG,   Mark   PB,   Cunningham   AF,   Steedman   T,   Powell   JR,  

McQuarrie   EP,   Stevens   KK,   Dargie   HJ.   Association   of   left   atrial   volume   with  

mortality   among   ESRD   patients   with   left   ventricular   hypertrophy   referred   for  

kidney  transplantation.  Am  J  Kidney  Dis  2010;55:1088-­‐96.  

Page 260: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  235  

197.   Artham   SM,   Lavie   CJ,   Milani   RV,   Patel   DA,   Verma   A,   Ventura   HO.   Clinical  

impact   of   left   ventricular   hypertrophy   and   implications   for   regression.   Prog  

Cardiovasc  Dis  2009;52:153-­‐67.  

198.  Okin  PM,  Wachtell  K,  Devereux  RB,  Harris  KE,   Jern  S,  Kjeldsen  SE,   Julius  S,  

Lindholm   LH,   Nieminen   MS,   Edelman   JM,   Hille   DA,   Dahlof   B.   Regression   of  

electrocardiographic   left   ventricular   hypertrophy   and   decreased   incidence   of  

new-­‐onset  atrial  fibrillation  in  patients  with  hypertension.  JAMA  2006;296:1242-­‐

8.  

199.  Covic  A,  Mardare  NG,  Ardeleanu  S,  Prisada  O,  Gusbeth-­‐Tatomir  P,  Goldsmith  

DJ.  Serial  echocardiographic  changes   in  patients  on  hemodialysis:  an  evaluation  

of  guideline  implementation.  J  Nephrol  2006;19:783-­‐93.  

200.   London   GM,   Pannier   B,  Marchais   SJ,   Guerin   AP.   Calcification   of   the   aortic  

valve  in  the  dialyzed  patient.  J  Am  Soc  Nephrol  2000;11:778-­‐83.  

201.  Otto  CM,  Lind  BK,  Kitzman  DW,  Gersh  BJ,  Siscovick  DS.  Association  of  aortic-­‐

valve  sclerosis  with  cardiovascular  mortality  and  morbidity  in  the  elderly.  N  Engl  

J  Med  1999;341:142-­‐7.  

202.   Stewart   BF,   Siscovick   D,   Lind   BK,   Gardin   JM,   Gottdiener   JS,   Smith   VE,  

Kitzman  DW,  Otto  CM.  Clinical  factors  associated  with  calcific  aortic  valve  disease.  

Cardiovascular  Health  Study.  J  Am  Coll  Cardiol  1997;29:630-­‐4.  

203.   Lindroos   M,   Kupari   M,   Heikkila   J,   Tilvis   R.   Prevalence   of   aortic   valve  

abnormalities  in  the  elderly:  an  echocardiographic  study  of  a  random  population  

sample.  J  Am  Coll  Cardiol  1993;21:1220-­‐5.  

204.   Braun   J,   Oldendorf   M,   Moshage  W,   Heidler   R,   Zeitler   E,   Luft   FC.   Electron  

beam  computed  tomography  in  the  evaluation  of  cardiac  calcification  in  chronic  

dialysis  patients.  Am  J  Kidney  Dis  1996;27:394-­‐401.  

Page 261: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  236  

205.  Maher  ER,  Pazianas  M,  Curtis   JR.  Calcific  aortic   stenosis:   a   complication  of  

chronic  uraemia.  Nephron  1987;47:119-­‐22.  

206.  Baglin  A,  Hanslik  T,  Vaillant  JN,  Boulard  JC,  Moulonguet-­‐Doleris  L,  Prinseau  J.  

Severe   valvular   heart   disease   in   patients   on   chronic   dialysis.   A   five-­‐year  

multicenter  French  survey.  Ann  Med  Interne  (Paris)  1997;148:521-­‐6.  

207.  Fox  CS,  Larson  MG,  Vasan  RS,  Guo  CY,  Parise  H,  Levy  D,  Leip  EP,  O'Donnell  C  

J,  D'Agostino  RB,  Sr.,  Benjamin  EJ.  Cross-­‐sectional  association  of  kidney  function  

with   valvular   and   annular   calcification:   the   Framingham   heart   study.   J   Am   Soc  

Nephrol  2006;17:521-­‐7.  

208.  Asselbergs  FW,  Mozaffarian  D,  Katz  R,  Kestenbaum  B,  Fried  LF,  Gottdiener  

JS,   Shlipak   MG,   Siscovick   DS.   Association   of   renal   function   with   cardiac  

calcifications   in   older   adults:   the   cardiovascular   health   study.   Nephrol   Dial  

Transplant  2009;24:834-­‐40.  

209.  Sharma  R,  Pellerin  D,  Gaze  DC,  Mehta  RL,  Gregson  H,  Streather  CP,  Collinson  

PO,  Brecker  SJ.  Mitral  annular  calcification  predicts  mortality  and  coronary  artery  

disease  in  end  stage  renal  disease.  Atherosclerosis  2007;191:348-­‐54.  

210.  Wang  AY,  Ho  SS,  Wang  M,  Liu  EK,  Ho  S,  Li  PK,  Lui  SF,  Sanderson  JE.  Cardiac  

valvular   calcification   as   a  marker   of   atherosclerosis   and   arterial   calcification   in  

end-­‐stage  renal  disease.  Arch  Intern  Med  2005;165:327-­‐32.  

211.   Al-­‐Absi  AI,  Wall   BM,  Aslam  N,  Mangold  TA,   Lamar  KD,  Wan   JY,  D'Cruz   IA.  

Predictors   of  mortality   in   end-­‐stage   renal   disease   patients  with  mitral   annulus  

calcification.  Am  J  Med  Sci  2006;331:124-­‐30.  

212.  Huting  J.  Predictive  value  of  mitral  and  aortic  valve  sclerosis  for  survival  in  

end-­‐stage   renal   disease   on   continuous   ambulatory   peritoneal   dialysis.  Nephron  

1993;64:63-­‐8.  

Page 262: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  237  

213.   Mazzaferro   S,   Coen   G,   Bandini   S,   Borgatti   PP,   Ciaccheri   M,   Diacinti   D,  

Ferranti  E,  Lusenti  T,  Mancini  G,  Monducci   I,   et  al.  Role  of  ageing,  chronic   renal  

failure  and  dialysis  in  the  calcification  of  mitral  annulus.  Nephrol  Dial  Transplant  

1993;8:335-­‐40.  

214.  Urena  P,  Malergue  MC,  Goldfarb  B,  Prieur  P,  Guedon-­‐Rapoud  C,  Petrover  M.  

Evolutive   aortic   stenosis   in   hemodialysis   patients:   analysis   of   risk   factors.  

Nephrologie  1999;20:217-­‐25.  

215.  Rufino  M,  Garcia  S,   Jimenez  A,  Alvarez  A,  Miquel  R,  Delgado  P,  Marrero  D,  

Torres   A,   Hernandez   D,   Lorenzo   V.   Heart   valve   calcification   and   calcium   x  

phosphorus  product  in  hemodialysis  patients:  analysis  of  optimum  values  for  its  

prevention.  Kidney  Int  Suppl  2003:S115-­‐8.  

216.  Lezaic  V,  Tirmenstajn-­‐Jankovic  B,  Bukvic  D,  Vujisic  B,  Perovic  M,  Novakovic  

N,  Dopsaj  V,  Maric  I,  Djukanovic  L.  Efficacy  of  hyperphosphatemia  control  in  the  

progression   of   chronic   renal   failure   and   the   prevalence   of   cardiovascular  

calcification.  Clin  Nephrol  2009;71:21-­‐9.  

217.  Ribeiro  S,  Ramos  A,  Brandao  A,  Rebelo  JR,  Guerra  A,  Resina  C,  Vila-­‐Lobos  A,  

Carvalho   F,   Remedio   F,   Ribeiro   F.   Cardiac   valve   calcification   in   haemodialysis  

patients:   role   of   calcium-­‐phosphate   metabolism.   Nephrol   Dial   Transplant  

1998;13:2037-­‐40.  

218.  Kajbaf  S,  Veinot  JP,  Ha  A,  Zimmerman  D.  Comparison  of  surgically  removed  

cardiac  valves  of  patients  with  ESRD  with   those  of   the  general  population.  Am  J  

Kidney  Dis  2005;46:86-­‐93.  

219.  Gultekin  B,  Ozkan  S,  Uguz  E,  Atalay  H,  Akay  T,  Arslan  A,  Sezgin  A,  Ozdemir  N,  

Tasdelen   A,   Aslamaci   S.   Valve   replacement   surgery   in   patients   with   end-­‐stage  

renal  disease:  long-­‐term  results.  Artif  Organs  2005;29:972-­‐5.  

Page 263: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  238  

220.  Deleuze  PH,  Mazzucotelli  JP,  Maillet  JM,  Le  Besnerais  P,  Mourtada  A,  Hillion  

ML,  Loisance  DY,  Cachera  JP.  [Cardiac  surgery  in  chronic  hemodialysed  patients:  

immediate  and  long-­‐term  results].  Arch  Mal  Coeur  Vaiss  1995;88:43-­‐8.  In:  London  

GM,   Pannier   B,   Marchais   SJ,   Guerin   AP.   Calcification   of   the   aortic   valve   in   the  

dialyzed  patient.  J  Am  Soc  Nephrol  2000;11(4):778-­‐83.  

221.  Kaplon  RJ,  Cosgrove  DM,  3rd,  Gillinov  AM,  Lytle  BW,  Blackstone  EH,  Smedira  

NG.  Cardiac  valve  replacement  in  patients  on  dialysis:  influence  of  prosthesis  on  

survival.  Ann  Thorac  Surg  2000;70:438-­‐41.  

222.  Herzog  CA,  Ma   JZ,  Collins  AJ.  Long-­‐term  survival  of  dialysis  patients   in   the  

United  States  with  prosthetic  heart  valves:   should  ACC/AHA  practice  guidelines  

on  valve  selection  be  modified?  Circulation  2002;105:1336-­‐41.  

223.  Chang  JP,  Kao  CL.  Mitral  valve  repair  in  uremic  congestive  cardiomyopathy.  

Ann  Thorac  Surg  2003;76:694-­‐7.  

224.  Bonow  RO,  Carabello  B,  de  Leon  AC,  Jr.,  Edmunds  LH,  Jr.,  Fedderly  BJ,  Freed  

MD,  Gaasch  WH,  McKay  CR,  Nishimura  RA,  O'Gara  PT,  O'Rourke  RA,  Rahimtoola  

SH,  Ritchie  JL,  Cheitlin  MD,  Eagle  KA,  Gardner  TJ,  Garson  A,  Jr.,  Gibbons  RJ,  Russell  

RO,  Ryan  TJ,  Smith  SC,  Jr.  Guidelines  for  the  management  of  patients  with  valvular  

heart   disease:   executive   summary.   A   report   of   the   American   College   of  

Cardiology/American   Heart   Association   Task   Force   on   Practice   Guidelines  

(Committee  on  Management  of  Patients  with  Valvular  Heart  Disease).  Circulation  

1998;98:1949-­‐84.  

225.   Brinkman   WT,   Williams   WH,   Guyton   RA,   Jones   EL,   Craver   JM.   Valve  

replacement   in   patients   on   chronic   renal   dialysis:   implications   for   valve  

prosthesis  selection.  Ann  Thorac  Surg  2002;74:37-­‐42;  discussion  42.  

Page 264: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  239  

226.   Sharma   A,   Gilbertson   DT,   Herzog   CA.   Survival   of   kidney   transplantation  

patients   in   the   United   States   after   cardiac   valve   replacement.   Circulation  

2010;121:2733-­‐9.  

227.   Vahanian   A,   Alfieri   O,   Andreotti   F,   Antunes   MJ,   Baron-­‐Esquivias   G,  

Baumgartner  H,  Borger  MA,  Carrel  TP,  De  Bonis  M,  Evangelista  A,  Falk  V,  Iung  B,  

Lancellotti  P,  Pierard  L,  Price  S,  Schafers  HJ,  Schuler  G,  Stepinska  J,  Swedberg  K,  

Takkenberg   J,   Von   Oppell   UO,   Windecker   S,   Zamorano   JL,   Zembala   M,   Bax   JJ,  

Ceconi   C,   Dean   V,   Deaton   C,   Fagard   R,   Funck-­‐Brentano   C,   Hasdai   D,   Hoes   A,  

Kirchhof   P,   Knuuti   J,   Kolh   P,   McDonagh   T,   Moulin   C,   Popescu   BA,   Reiner   Z,  

Sechtem  U,  Sirnes  PA,  Tendera  M,  Torbicki  A,  Von  Segesser  L,  Badano  LP,  Bunc  M,  

Claeys  MJ,   Drinkovic   N,   Filippatos   G,   Habib   G,   Kappetein   AP,   Kassab   R,   Lip   GY,  

Moat  N,  Nickenig  G,  Otto  CM,  Pepper  J,  Piazza  N,  Pieper  PG,  Rosenhek  R,  Shuka  N,  

Schwammenthal  E,  Schwitter  J,  Mas  PT,  Trindade  PT,  Walther  T.  Guidelines  on  the  

management   of   valvular   heart   disease   (version  2012):   The   Joint  Task   Force   on  

the  Management  of  Valvular  Heart  Disease  of  the  European  Society  of  Cardiology  

(ESC)   and   the   European   Association   for   Cardio-­‐Thoracic   Surgery   (EACTS).   Eur  

Heart  J  2012.  

228.   Ross   R.   The   pathogenesis   of   atherosclerosis:   a   perspective   for   the   1990s.  

Nature  1993;362:801-­‐9.  

229.   Lerman   A,   Burnett   JC,   Jr.   Intact   and   altered   endothelium   in   regulation   of  

vasomotion.  Circulation  1992;86:III12-­‐19.  

230.   Bonetti   PO,   Lerman   LO,   Lerman   A.   Endothelial   dysfunction:   a   marker   of  

atherosclerotic  risk.  Arterioscler  Thromb  Vasc  Biol  2003;23:168-­‐75.  

231.   Gossl   M,   Lerman   LO,   Lerman   A.   Frontiers   in   nephrology:   early  

atherosclerosis-­‐-­‐a  view  beyond  the  lumen.  J  Am  Soc  Nephrol  2007;18:2836-­‐42.  

Page 265: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  240  

232.   Lerman   A,   Zeiher   AM.   Endothelial   function:   cardiac   events.   Circulation  

2005;111:363-­‐8.  

233.   Galle   J,   Quaschning   T,   Seibold   S,   Wanner   C.   Endothelial   dysfunction   and  

inflammation:  what  is  the  link?  Kidney  Int  Suppl  2003:S45-­‐9.  

234.   Schiffrin   EL.   A   critical   review   of   the   role   of   endothelial   factors   in   the  

pathogenesis  of  hypertension.  J  Cardiovasc  Pharmacol  2001;38  Suppl  2:S3-­‐6.  

235.   Davignon   J,   Ganz   P.   Role   of   endothelial   dysfunction   in   atherosclerosis.  

Circulation  2004;109:III27-­‐32.  

236.  Halliwell  B,  Zhao  K,  Whiteman  M.  Nitric  oxide  and  peroxynitrite.  The  ugly,  

the  uglier  and  the  not  so  good:  a  personal  view  of  recent  controversies.  Free  Radic  

Res  1999;31:651-­‐69.  

237.  Babior  BM.  Phagocytes  and  oxidative  stress.  Am  J  Med  2000;109:33-­‐44.  

238.  Schmidt  RJ,  Yokota  S,  Tracy  TS,  Sorkin  MI,  Baylis  C.  Nitric  oxide  production  

is   low   in   end-­‐stage   renal   disease   patients   on   peritoneal   dialysis.   Am   J   Physiol  

1999;276:F794-­‐7.  

239.   Schmidt   RJ,   Baylis   C.   Total   nitric   oxide   production   is   low   in   patients  with  

chronic  renal  disease.  Kidney  Int  2000;58:1261-­‐6.  

240.  Cross  J.  Endothelial  dysfunction  in  uraemia.  Blood  Purif  2002;20:459-­‐61.  

241.  Kielstein   JT,  Zoccali  C.  Asymmetric  dimethylarginine:  a  cardiovascular  risk  

factor  and  a  uremic  toxin  coming  of  age?  Am  J  Kidney  Dis  2005;46:186-­‐202.  

242.   Vallance   P,   Leone   A,   Calver   A,   Collier   J,   Moncada   S.   Accumulation   of   an  

endogenous   inhibitor   of   nitric   oxide   synthesis   in   chronic   renal   failure.   Lancet  

1992;339:572-­‐5.  

243.  Juonala  M,  Viikari  JS,  Alfthan  G,  Marniemi  J,  Kahonen  M,  Taittonen  L,  Laitinen  

T,   Raitakari   OT.   Brachial   artery   flow-­‐mediated   dilation   and   asymmetrical  

Page 266: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  241  

dimethylarginine   in   the   cardiovascular   risk   in   young   Finns   study.   Circulation  

2007;116:1367-­‐73.  

244.   Meinitzer   A,   Seelhorst   U,   Wellnitz   B,   Halwachs-­‐Baumann   G,   Boehm   BO,  

Winkelmann  BR,  Marz  W.  Asymmetrical  dimethylarginine  independently  predicts  

total   and   cardiovascular   mortality   in   individuals   with   angiographic   coronary  

artery   disease   (the   Ludwigshafen   Risk   and   Cardiovascular   Health   study).   Clin  

Chem  2007;53:273-­‐83.  

245.   Zoccali   C,   Bode-­‐Boger   S,   Mallamaci   F,   Benedetto   F,   Tripepi   G,  Malatino   L,  

Cataliotti   A,   Bellanuova   I,   Fermo   I,   Frolich   J,   Boger   R.   Plasma   concentration   of  

asymmetrical   dimethylarginine   and   mortality   in   patients   with   end-­‐stage   renal  

disease:  a  prospective  study.  Lancet  2001;358:2113-­‐7.  

246.  Kielstein  JT,  Bode-­‐Boger  SM,  Frolich  JC,  Haller  H,  Boger  RH.  Relationship  of  

asymmetric   dimethylarginine   to   dialysis   treatment   and   atherosclerotic   disease.  

Kidney  Int  Suppl  2001;78:S9-­‐13.  

247.  Cross   JM,  Donald  A,  Vallance  PJ,  Deanfield   JE,  Woolfson  RG,  MacAllister  RJ.  

Dialysis   improves   endothelial   function   in   humans.   Nephrol   Dial   Transplant  

2001;16:1823-­‐9.  

248.  Covic  A,  Goldsmith  DJ,  Gusbeth-­‐Tatomir  P,  Covic  M.  Haemodialysis  acutely  

improves   endothelium-­‐independent   vasomotor   function   without   significantly  

influencing   the   endothelium-­‐mediated   abnormal   response   to   a   beta   2-­‐agonist.  

Nephrol  Dial  Transplant  2004;19:637-­‐43.  

249.   Kosch   M,   Levers   A,   Fobker   M,   Barenbrock   M,   Schaefer   RM,   Rahn   KH,  

Hausberg  M.  Dialysis   filter  type  determines  the  acute  effect  of  haemodialysis  on  

endothelial  function  and  oxidative  stress.  Nephrol  Dial  Transplant  2003;18:1370-­‐

5.  

Page 267: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  242  

250.   Lilien   MR,   Koomans   HA,   Schroder   CH.   Hemodialysis   acutely   impairs  

endothelial  function  in  children.  Pediatr  Nephrol  2005;20:200-­‐4.  

251.  Meyer  C,  Heiss  C,  Drexhage  C,  Kehmeier  ES,  Balzer  J,  Muhlfeld  A,  Merx  MW,  

Lauer   T,   Kuhl   H,   Floege   J,   Kelm   M,   Rassaf   T.   Hemodialysis-­‐Induced   Release   of  

Hemoglobin  Limits  Nitric  Oxide  Bioavailability  and   Impairs  Vascular  Function.   J  

Am  Coll  Cardiol  2010;55:454-­‐459.  

252.   Fliser   D,   Kielstein   JT,   Haller   H,   Bode-­‐Boger   SM.   Asymmetric  

dimethylarginine:  a  cardiovascular  risk   factor   in  renal  disease?  Kidney   Int  Suppl  

2003:S37-­‐40.  

253.  Lindner  A,  Charra  B,  Sherrard  DJ,  Scribner  BH.  Accelerated  atherosclerosis  

in  prolonged  maintenance  hemodialysis.  N  Engl  J  Med  1974;290:697-­‐701.  

254.  Deanfield  J,  Donald  A,  Ferri  C,  Giannattasio  C,  Halcox  J,  Halligan  S,  Lerman  A,  

Mancia  G,  Oliver  JJ,  Pessina  AC,  Rizzoni  D,  Rossi  GP,  Salvetti  A,  Schiffrin  EL,  Taddei  

S,  Webb  DJ.   Endothelial   function   and  dysfunction.   Part   I:  Methodological   issues  

for  assessment  in  the  different  vascular  beds:  a  statement  by  the  Working  Group  

on  Endothelin  and  Endothelial  Factors  of  the  European  Society  of  Hypertension.  J  

Hypertens  2005;23:7-­‐17.  

255.  Mallamaci  F,  Tripepi  G,  Cutrupi  S,  Malatino  LS,  Zoccali  C.  Prognostic  value  of  

combined   use   of   biomarkers   of   inflammation,   endothelial   dysfunction,   and  

myocardiopathy  in  patients  with  ESRD.  Kidney  Int  2005;67:2330-­‐7.  

256.   Stenvinkel  P,  Pecoits-­‐Filho  R,  Lindholm  B.  Coronary  artery  disease   in  end-­‐

stage   renal   disease:   no   longer   a   simple   plumbing   problem.   J   Am   Soc   Nephrol  

2003;14:1927-­‐39.  

Page 268: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  243  

257.  Celermajer  DS,  Sorensen  KE,  Gooch  VM,  Spiegelhalter  DJ,  Miller  OI,  Sullivan  

ID,   Lloyd   JK,   Deanfield   JE.   Non-­‐invasive   detection   of   endothelial   dysfunction   in  

children  and  adults  at  risk  of  atherosclerosis.  Lancet  1992;340:1111-­‐5.  

258.   Corretti   MC,   Anderson   TJ,   Benjamin   EJ,   Celermajer   D,   Charbonneau   F,  

Creager  MA,  Deanfield  J,  Drexler  H,  Gerhard-­‐Herman  M,  Herrington  D,  Vallance  P,  

Vita   J,   Vogel   R.   Guidelines   for   the   ultrasound   assessment   of   endothelial-­‐

dependent   flow-­‐mediated   vasodilation   of   the   brachial   artery:   a   report   of   the  

International   Brachial   Artery   Reactivity   Task   Force.   J   Am   Coll   Cardiol  

2002;39:257-­‐65.  

259.   Wiesmann   F,   Petersen   SE,   Leeson   PM,   Francis   JM,   Robson   MD,   Wang   Q,  

Choudhury  R,  Channon  KM,  Neubauer  S.  Global   impairment  of  brachial,   carotid,  

and   aortic   vascular   function   in   young   smokers:   direct   quantification   by   high-­‐

resolution  magnetic  resonance  imaging.  J  Am  Coll  Cardiol  2004;44:2056-­‐64.  

260.  Bisoendial  RJ,  Hovingh  GK,  de  Groot  E,  Kastelein   JJ,  Lansberg  PJ,  Stroes  ES.  

Measurement  of  subclinical  atherosclerosis:  beyond  risk  factor  assessment.  Curr  

Opin  Lipidol  2002;13:595-­‐603.  

261.  Joannides  R,  Haefeli  WE,  Linder  L,  Richard  V,  Bakkali  EH,  Thuillez  C,  Luscher  

TF.  Nitric  oxide  is  responsible  for  flow-­‐dependent  dilatation  of  human  peripheral  

conduit  arteries  in  vivo.  Circulation  1995;91:1314-­‐9.  

262.  Suwaidi  JA,  Hamasaki  S,  Higano  ST,  Nishimura  RA,  Holmes  DR,  Jr.,  Lerman  A.  

Long-­‐term   follow-­‐up   of   patients   with   mild   coronary   artery   disease   and  

endothelial  dysfunction.  Circulation  2000;101:948-­‐54.  

263.  Widlansky  ME,  Gokce  N,  Keaney   JF,   Jr.,  Vita   JA.  The  clinical   implications  of  

endothelial  dysfunction.  J  Am  Coll  Cardiol  2003;42:1149-­‐60.  

Page 269: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  244  

264.   Schindler   TH,   Cadenas   J,   Facta   AD,   Li   Y,   Olschewski   M,   Sayre   J,   Goldin   J,  

Schelbert   HR.   Improvement   in   coronary   endothelial   function   is   independently  

associated  with   a   slowed   progression   of   coronary   artery   calcification   in   type   2  

diabetes  mellitus.  Eur  Heart  J  2009;30:3064-­‐73.  

265.   London   GM,   Pannier   B,   Agharazii  M,   Guerin   AP,   Verbeke   FH,  Marchais   SJ.  

Forearm  reactive  hyperemia  and  mortality  in  end-­‐stage  renal  disease.  Kidney  Int  

2004;65:700-­‐4.  

266.  Kuvin  JT,  Patel  AR,  Sliney  KA,  Pandian  NG,  Rand  WM,  Udelson  JE,  Karas  RH.  

Peripheral   vascular   endothelial   function   testing   as   a   noninvasive   indicator   of  

coronary  artery  disease.  J  Am  Coll  Cardiol  2001;38:1843-­‐9.  

267.   Brunner   H,   Cockcroft   JR,   Deanfield   J,   Donald   A,   Ferrannini   E,   Halcox   J,  

Kiowski  W,  Luscher  TF,  Mancia  G,  Natali  A,  Oliver  JJ,  Pessina  AC,  Rizzoni  D,  Rossi  

GP,   Salvetti   A,   Spieker   LE,   Taddei   S,   Webb   DJ.   Endothelial   function   and  

dysfunction.  Part  II:  Association  with  cardiovascular  risk  factors  and  diseases.  A  

statement  by   the  Working  Group  on  Endothelins  and  Endothelial  Factors  of   the  

European  Society  of  Hypertension.  J  Hypertens  2005;23:233-­‐46.  

268.   Pannier   B,   Guerin   AP,   Marchais   SJ,   Metivier   F,   Safar   ME,   London   GM.  

Postischemic  vasodilation,  endothelial  activation,  and  cardiovascular  remodeling  

in  end-­‐stage  renal  disease.  Kidney  Int  2000;57:1091-­‐9.  

269.   Halcox   JP,   Schenke  WH,   Zalos   G,  Mincemoyer   R,   Prasad  A,  Waclawiw  MA,  

Nour   KR,   Quyyumi   AA.   Prognostic   value   of   coronary   vascular   endothelial  

dysfunction.  Circulation  2002;106:653-­‐8.  

270.   Anderson   TJ,   Uehata   A,   Gerhard   MD,   Meredith   IT,   Knab   S,   Delagrange   D,  

Lieberman  EH,  Ganz  P,  Creager  MA,  Yeung  AC,  et  al.  Close  relation  of  endothelial  

Page 270: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  245  

function   in   the   human   coronary   and   peripheral   circulations.   J   Am   Coll   Cardiol  

1995;26:1235-­‐41.  

271.  Nabel  EG,  Ganz  P,  Gordon  JB,  Alexander  RW,  Selwyn  AP.  Dilation  of  normal  

and  constriction  of  atherosclerotic  coronary  arteries  caused  by  the  cold  pressor  

test.  Circulation  1988;77:43-­‐52.  

272.  Puri  R,  Liew  GY,  Nicholls  SJ,  Nelson  AJ,  Leong  DP,  Carbone  A,  Copus  B,  Wong  

DT,  Beltrame  JF,  Worthley  SG,  Worthley  MI.  Intracoronary  Salbutamol,  Segmental  

Plaque   Burden   and   Focal   Coronary   Endothelial   Function:   Novel   Mechanistic  

Insights   from   an   In   Vivo   Intravacular   Ultrasound   Study.   .   J   Am   Coll   Cardiol  

2011;57:410-­‐08.  

273.   Ludmer   PL,   Selwyn   AP,   Shook   TL,  Wayne   RR,   Mudge   GH,   Alexander   RW,  

Ganz  P.  Paradoxical  vasoconstriction  induced  by  acetylcholine  in  atherosclerotic  

coronary  arteries.  N  Engl  J  Med  1986;315:1046-­‐51.  

274.  Yeung  AC,  Vekshtein  VI,  Krantz  DS,  Vita  JA,  Ryan  TJ,  Jr.,  Ganz  P,  Selwyn  AP.  

The  effect  of  atherosclerosis  on   the  vasomotor  response  of  coronary  arteries   to  

mental  stress.  N  Engl  J  Med  1991;325:1551-­‐6.  

275.   Doucette   JW,   Corl   PD,   Payne   HM,   Flynn   AE,   Goto   M,   Nassi   M,   Segal   J.  

Validation   of   a   Doppler   guide  wire   for   intravascular  measurement   of   coronary  

artery  flow  velocity.  Circulation  1992;85:1899-­‐911.  

276.  Hasdai  D,  Lerman  A.  The  assessment  of  endothelial   function   in  the  cardiac  

catheterization   laboratory   in   patients   with   risk   factors   for   atherosclerotic  

coronary  artery  disease.  Herz  1999;24:544-­‐7.  

277.   Ragosta   M,   Samady   H,   Isaacs   RB,   Gimple   LW,   Sarembock   IJ,   Powers   ER.  

Coronary  flow  reserve  abnormalities  in  patients  with  diabetes  mellitus  who  have  

Page 271: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  246  

end-­‐stage   renal   disease   and   normal   epicardial   coronary   arteries.   Am   Heart   J  

2004;147:1017-­‐23.  

278.   Koivuviita   N,   Tertti   R,   Jarvisalo   M,   Pietila   M,   Hannukainen   J,   Sundell   J,  

Nuutila   P,   Knuuti   J,   Metsarinne   K.   Increased   basal   myocardial   perfusion   in  

patients   with   chronic   kidney   disease   without   symptomatic   coronary   artery  

disease.  Nephrol  Dial  Transplant  2009;24:2773-­‐9.  

279.  Sorensen  KE,  Celermajer  DS,  Spiegelhalter  DJ,  Georgakopoulos  D,  Robinson  J,  

Thomas   O,   Deanfield   JE.   Non-­‐invasive   measurement   of   human   endothelium  

dependent   arterial   responses:   accuracy   and   reproducibility.   Br   Heart   J  

1995;74:247-­‐53.  

280.   Wu   HD,   Katz   SD,   Beniaminovitz   A,   Khan   T,   DiTullio   MR,   Homma   S.  

Assessment   of   endothelium-­‐mediated   vasodilation   of   the   peripheral   circulation  

by   transcutaneous   ultrasonography   and   venous   occlusion   plethysmography.  

Heart  Vessels  1999;14:143-­‐8.  

281.   Bottcher   M,   Madsen   MM,   Refsgaard   J,   Buus   NH,   Dorup   I,   Nielsen   TT,  

Sorensen  K.  Peripheral  flow  response  to  transient  arterial  forearm  occlusion  does  

not  reflect  myocardial  perfusion  reserve.  Circulation  2001;103:1109-­‐14.  

282.  Chade  AR,  Brosh  D,  Higano  ST,  Lennon  RJ,  Lerman  LO,  Lerman  A.  Mild  renal  

insufficiency   is   associated   with   reduced   coronary   flow   in   patients   with   non-­‐

obstructive  coronary  artery  disease.  Kidney  Int  2006;69:266-­‐71.  

283.  Erdogan  D,  Yildirim  I,  Ciftci  O,  Ozer  I,  Caliskan  M,  Gullu  H,  Muderrisoglu  H.  

Effects  of  normal  blood  pressure,  prehypertension,  and  hypertension  on  coronary  

microvascular  function.  Circulation  2007;115:593-­‐9.  

284.  Galderisi  M,  Capaldo  B,  Sidiropulos  M,  D'Errico  A,  Ferrara  L,  Turco  A,  Guarini  

P,  Riccardi  G,  de  Divitiis  O.  Determinants  of  reduction  of  coronary  flow  reserve  in  

Page 272: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  247  

patients   with   type   2   diabetes   mellitus   or   arterial   hypertension   without  

angiographically   determined   epicardial   coronary   stenosis.   Am   J   Hypertens  

2007;20:1283-­‐90.  

285.  Galderisi  M,  Cicala  S,  Caso  P,  De  Simone  L,  D'Errico  A,  Petrocelli  A,  de  Divitiis  

O.   Coronary   flow   reserve   and   myocardial   diastolic   dysfunction   in   arterial  

hypertension.  Am  J  Cardiol  2002;90:860-­‐4.  

286.   Le   Feuvre   C,   Raoux   F,   Beygui   F,   Helft   G,   Mogenet   A,   Dubois-­‐Laforgue   D,  

Timsit   J,   Metzger   JP.   Cumulative   adverse   effects   of   diabetes   mellitus   and  

hypertension   on   coronary   flow   velocity   reserve.   Arch   Mal   Coeur   Vaiss  

2004;97:849-­‐54.  

287.   Pirat   B,   Bozbas  H,   Simsek   V,   Yildirir   A,   Sade   LE,   Gursoy   Y,   Altin   C,   Atar   I,  

Muderrisoglu   H.   Impaired   coronary   flow   reserve   in   patients   with   metabolic  

syndrome.  Atherosclerosis  2008;201:112-­‐6.  

288.   Vogt  M,  Motz  W,   Schwartzkopff   B,   Strauer   BE.   Coronary  microangiopathy  

and  cardiac  hypertrophy.  Eur  Heart  J  1990;11  Suppl  B:133-­‐8.  

289.  Palombo  C,  Kozakova  M,  Magagna  A,  Bigalli  G,  Morizzo  C,  Ghiadoni  L,  Virdis  

A,  Emdin  M,  Taddei  S,  L'Abbate  A,  Salvetti  A.  Early  impairment  of  coronary  flow  

reserve  and  increase  in  minimum  coronary  resistance  in  borderline  hypertensive  

patients.  J  Hypertens  2000;18:453-­‐9.  

290.  Laine  H,  Raitakari  OT,  Niinikoski  H,  Pitkanen  OP,  Iida  H,  Viikari  J,  Nuutila  P,  

Knuuti   J.   Early   impairment   of   coronary   flow   reserve   in   young   men   with  

borderline  hypertension.  J  Am  Coll  Cardiol  1998;32:147-­‐53.  

291.   Kozakova   M,   Palombo   C,   Pratali   L,   Pittella   G,   Galetta   F,   L'Abbate   A.  

Mechanisms   of   coronary   flow   reserve   impairment   in   human   hypertension.   An  

Page 273: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  248  

integrated   approach   by   transthoracic   and   transesophageal   echocardiography.  

Hypertension  1997;29:551-­‐9.  

292.  Kozakova  M,  Galetta  F,  Gregorini  L,  Bigalli  G,  Franzoni  F,  Giusti  C,  Palombo  C.  

Coronary  vasodilator  capacity  and  epicardial  vessel   remodeling   in  physiological  

and  hypertensive  hypertrophy.  Hypertension  2000;36:343-­‐9.  

293.   Choudhury  L,  Rosen  SD,  Patel  D,  Nihoyannopoulos  P,  Camici  PG.  Coronary  

vasodilator   reserve   in   primary   and   secondary   left   ventricular   hypertrophy.   A  

study  with  positron  emission  tomography.  Eur  Heart  J  1997;18:108-­‐16.  

294.  Hamasaki  S,  Al  Suwaidi  J,  Higano  ST,  Miyauchi  K,  Holmes  DR,  Jr.,  Lerman  A.  

Attenuated   coronary   flow   reserve   and   vascular   remodeling   in   patients   with  

hypertension  and   left   ventricular  hypertrophy.   J  Am  Coll   Cardiol   2000;35:1654-­‐

60.  

295.   Anderson  HV,   Stokes  MJ,   Leon  M,   Abu-­‐Halawa   SA,   Stuart   Y,   Kirkeeide   RL.  

Coronary   artery   flow   velocity   is   related   to   lumen   area   and   regional   left  

ventricular  mass.  Circulation  2000;102:48-­‐54.  

296.  Houghton  JL,  Carr  AA,  Prisant  LM,  Rogers  WB,  von  Dohlen  TW,  Flowers  NC,  

Frank  MJ.  Morphologic,  hemodynamic  and  coronary  perfusion  characteristics   in  

severe   left   ventricular   hypertrophy   secondary   to   systemic   hypertension   and  

evidence  for  nonatherosclerotic  myocardial  ischemia.  Am  J  Cardiol  1992;69:219-­‐

24.  

297.   Bozbas   H,   Pirat   B,   Yildirir   A,   Simsek   V,   Sade   E,   Eroglu   S,   Atar   I,   Altin   C,  

Demirtas  S,  Ozin  B,  Muderrisoglu  H.  Coronary  flow  reserve  is  impaired  in  patients  

with  aortic  valve  calcification.  Atherosclerosis  2008;197:846-­‐52.  

Page 274: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  249  

298.  Bozbas  H,  Pirat  B,  Yildirir  A,  Simsek  V,  Sade  E,  Altin  C,  Muderrisoglu  H.  Mitral  

annular   calcification  associated  with   impaired  coronary  microvascular   function.  

Atherosclerosis  2008;198:115-­‐21.  

299.   Recio-­‐Mayoral   A,   Mason   JC,   Kaski   JC,   Rubens   MB,   Harari   OA,   Camici   PG.  

Chronic   inflammation   and   coronary   microvascular   dysfunction   in   patients  

without  risk  factors  for  coronary  artery  disease.  Eur  Heart  J  2009;30:1837-­‐43.  

300.   Ansari   A,   Kaupke   CJ,   Vaziri   ND,   Miller   R,   Barbari   A.   Cardiac   pathology   in  

patients   with   end-­‐stage   renal   disease   maintained   on   hemodialysis.   Int   J   Artif  

Organs  1993;16:31-­‐6.  

301.  Rostand  SG,  Kirk  KA,  Rutsky  EA.  Dialysis-­‐associated  ischemic  heart  disease:  

insights  from  coronary  angiography.  Kidney  Int  1984;25:653-­‐9.  

302.   Schwarz  U,  Buzello  M,  Ritz  E,   Stein  G,  Raabe  G,  Wiest  G,  Mall  G,  Amann  K.  

Morphology  of  coronary  atherosclerotic   lesions   in  patients  with  end-­‐stage  renal  

failure.  Nephrol  Dial  Transplant  2000;15:218-­‐23.  

303.  Goodman  WG,  Goldin  J,  Kuizon  BD,  Yoon  C,  Gales  B,  Sider  D,  Wang  Y,  Chung  J,  

Emerick   A,   Greaser   L,   Elashoff   RM,   Salusky   IB.   Coronary-­‐artery   calcification   in  

young  adults  with  end-­‐stage  renal  disease  who  are  undergoing  dialysis.  N  Engl  J  

Med  2000;342:1478-­‐83.  

304.  McCullough  PA,  Sandberg  KR,  Dumler  F,  Yanez  JE.  Determinants  of  coronary  

vascular  calcification  in  patients  with  chronic  kidney  disease  and  end-­‐stage  renal  

disease:  a  systematic  review.  J  Nephrol  2004;17:205-­‐15.  

305.  Gradaus  F,  Ivens  K,  Peters  AJ,  Heering  P,  Schoebel  FC,  Grabensee  B,  Strauer  

BE.   Angiographic   progression   of   coronary   artery   disease   in   patients   with   end-­‐

stage  renal  disease.  Nephrol  Dial  Transplant  2001;16:1198-­‐202.  

Page 275: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  250  

306.  Clyne  N,  Lins  LE,  Pehrsson  SK.  Occurrence  and  significance  of  heart  disease  

in  uraemia.  An  autopsy  study.  Scand  J  Urol  Nephrol  1986;20:307-­‐11.  

307.   Ikram  H,   Lynn   KL,   Bailey   RR,   Little   PJ.   Cardiovascular   changes   in   chronic  

hemodialysis  patients.  Kidney  Int  1983;24:371-­‐6.  

308.  Joki  N,  Hase  H,  Takahashi  Y,  Ishikawa  H,  Nakamura  R,  Imamura  Y,  Tanaka  Y,  

Saijyo   T,   Fukazawa   M,   Inishi   Y,   Nakamura   M,   Yamaguchi   T.   Angiographical  

severity   of   coronary   atherosclerosis   predicts   death   in   the   first   year   of  

hemodialysis.  Int  Urol  Nephrol  2003;35:289-­‐97.  

309.   Stack  AG,  Bloembergen  WE.  Prevalence  and  clinical   correlates  of   coronary  

artery  disease  among  new  dialysis  patients  in  the  United  States:  a  cross-­‐sectional  

study.  J  Am  Soc  Nephrol  2001;12:1516-­‐23.  

310.  Fox  CS,  Larson  MG,  Keyes  MJ,  Levy  D,  Clouse  ME,  Culleton  B,  O'Donnell  CJ.  

Kidney  function  is  inversely  associated  with  coronary  artery  calcification  in  men  

and  women  free  of  cardiovascular  disease:  the  Framingham  Heart  Study.  Kidney  

Int  2004;66:2017-­‐21.  

311.  Herzog  CA.  Sudden  cardiac  death  and  acute  myocardial  infarction  in  dialysis  

patients:  perspectives  of  a  cardiologist.  Semin  Nephrol  2005;25:363-­‐6.  

312.  Fox  CS,  Muntner  P,  Chen  AY,  Alexander  KP,  Roe  MT,  Cannon  CP,  Saucedo  JF,  

Kontos  MC,  Wiviott  SD.  Use  of  evidence-­‐based  therapies  in  short-­‐term  outcomes  

of   ST-­‐segment   elevation   myocardial   infarction   and   non-­‐ST-­‐segment   elevation  

myocardial   infarction  in  patients  with  chronic  kidney  disease:  a  report  from  the  

National   Cardiovascular   Data   Acute   Coronary   Treatment   and   Intervention  

Outcomes  Network  registry.  Circulation  2010;121:357-­‐65.  

313.  Herzog  CA,  Ma  JZ,  Collins  AJ.  Poor  long-­‐term  survival  after  acute  myocardial  

infarction  among  patients  on  long-­‐term  dialysis.  N  Engl  J  Med  1998;339:799-­‐805.  

Page 276: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  251  

314.   Gibson  CM,  Dumaine  RL,  Gelfand  EV,  Murphy  SA,  Morrow  DA,  Wiviott   SD,  

Giugliano   RP,   Cannon   CP,   Antman   EM,   Braunwald   E.   Association   of   glomerular  

filtration   rate   on   presentation   with   subsequent   mortality   in   non-­‐ST-­‐segment  

elevation  acute  coronary  syndrome;  observations  in  13,307  patients  in  five  TIMI  

trials.  Eur  Heart  J  2004;25:1998-­‐2005.  

315.   Santopinto   JJ,   Fox  KA,  Goldberg  RJ,  Budaj  A,  Pinero  G,  Avezum  A,  Gulba  D,  

Esteban   J,   Gore   JM,   Johnson   J,   Gurfinkel   EP.   Creatinine   clearance   and   adverse  

hospital  outcomes  in  patients  with  acute  coronary  syndromes:  findings  from  the  

global  registry  of  acute  coronary  events  (GRACE).  Heart  2003;89:1003-­‐8.  

316.   Himmelfarb   J.   Chronic   kidney   disease   and   the   public   health:   gaps   in  

evidence  from  interventional  trials.  JAMA  2007;297:2630-­‐3.  

317.   Coca   SG,  Krumholz  HM,  Garg  AX,   Parikh  CR.  Underrepresentation  of   renal  

disease   in   randomized   controlled   trials   of   cardiovascular   disease.   JAMA  

2006;296:1377-­‐84.  

318.  Charytan  D,  Mauri  L,  Agarwal  A,  Servoss  S,  Scirica  B,  Kuntz  RE.  The  use  of  

invasive   cardiac   procedures   after   acute   myocardial   infarction   in   long-­‐term  

dialysis  patients.  Am  Heart  J  2006;152:558-­‐64.  

319.  Keough-­‐Ryan  TM,  Kiberd  BA,  Dipchand  CS,  Cox   JL,  Rose  CL,  Thompson  KJ,  

Clase   CM.   Outcomes   of   acute   coronary   syndrome   in   a   large   Canadian   cohort:  

impact   of   chronic   renal   insufficiency,   cardiac   interventions,   and   anemia.   Am   J  

Kidney  Dis  2005;46:845-­‐55.  

320.  Fox  KA,  Bassand  JP,  Mehta  SR,  Wallentin  L,  Theroux  P,  Piegas  LS,  Valentin  V,  

Moccetti   T,   Chrolavicius   S,   Afzal   R,   Yusuf   S.   Influence   of   renal   function   on   the  

efficacy   and   safety   of   fondaparinux   relative   to   enoxaparin   in   non   ST-­‐segment  

elevation  acute  coronary  syndromes.  Ann  Intern  Med  2007;147:304-­‐10.  

Page 277: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  252  

321.   Collet   JP,   Montalescot   G,   Agnelli   G,   Van   de   Werf   F,   Gurfinkel   EP,   Lopez-­‐

Sendon   J,   Laufenberg   CV,   Klutman   M,   Gowda   N,   Gulba   D.   Non-­‐ST-­‐segment  

elevation  acute  coronary  syndrome  in  patients  with  renal  dysfunction:  benefit  of  

low-­‐molecular-­‐weight   heparin   alone   or  with   glycoprotein   IIb/IIIa   inhibitors   on  

outcomes.   The   Global   Registry   of   Acute   Coronary   Events.   Eur   Heart   J  

2005;26:2285-­‐93.  

322.  Alexander  KP,  Chen  AY,  Roe  MT,  Newby  LK,  Gibson  CM,  Allen-­‐LaPointe  NM,  

Pollack  C,  Gibler  WB,  Ohman  EM,  Peterson  ED.  Excess  dosing  of  antiplatelet  and  

antithrombin   agents   in   the   treatment   of   non-­‐ST-­‐segment   elevation   acute  

coronary  syndromes.  JAMA  2005;294:3108-­‐16.  

323.  Herzog  CA,  Ma  JZ,  Collins  AJ.  Comparative  survival  of  dialysis  patients  in  the  

United  States  after  coronary  angioplasty,  coronary  artery  stenting,  and  coronary  

artery  bypass  surgery  and  impact  of  diabetes.  Circulation  2002;106:2207-­‐11.  

324.   Szczech  LA,  Reddan  DN,  Owen  WF,  Califf  R,  Racz  M,   Jones  RH,  Hannan  EL.  

Differential  survival  after  coronary  revascularization  procedures  among  patients  

with  renal  insufficiency.  Kidney  Int  2001;60:292-­‐9.  

325.  Kahn  JK,  Rutherford  BD,  McConahay  DR,  Johnson  WL,  Giorgi  LV,  Hartzler  GO.  

Short-­‐   and   long-­‐term   outcome   of   percutaneous   transluminal   coronary  

angioplasty  in  chronic  dialysis  patients.  Am  Heart  J  1990;119:484-­‐9.  

326.   Malanuk   RM,   Nielsen   CD,   Theis   P,   Assey   ME,   Usher   BW,   Leman   RB.  

Treatment   of   coronary   artery   disease   in   hemodialysis   patients:   PTCA   vs.   stent.  

Catheter  Cardiovasc  Interv  2001;54:459-­‐63.  

327.  Azar  RR,  Prpic  R,  Ho  KK,  Kiernan  FJ,   Shubrooks  SJ,   Jr.,  Baim  DS,  Popma   JJ,  

Kuntz   RE,   Cohen   DJ.   Impact   of   end-­‐stage   renal   disease   on   clinical   and  

angiographic  outcomes  after  coronary  stenting.  Am  J  Cardiol  2000;86:485-­‐9.  

Page 278: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  253  

328.   Appleby   CE,   Ivanov   J,   Lavi   S,  Mackie   K,   Horlick   EM,   Ing   D,   Overgaard   CB,  

Seidelin   PH,   von   Harsdorf   R,   Dzavik   V.   The   adverse   long-­‐term   impact   of   renal  

impairment   in   patients   undergoing   percutaneous   coronary   intervention   in   the  

drug-­‐eluting  stent  era.  Circ  Cardiovasc  Interv  2009;2:309-­‐16.  

329.  Naidu  SS,  Krucoff  MW,  Rutledge  DR,  Mao  VW,  Zhao  W,  Zheng  Q,  Wilburn  O,  

Sudhir   K,   Simonton   C,   Hermiller   JB.   Contemporary   incidence   and   predictors   of  

stent  thrombosis  and  other  major  adverse  cardiac  events  in  the  year  after  XIENCE  

V   implantation:   results   from   the   8,061-­‐patient   XIENCE   V   United   States   study.  

JACC  Cardiovasc  Interv  2012;5:626-­‐35.  

330.   Guerin   AP,   Marchais   SJ,   Metivier   F,   London   GM.   Arterial   structural   and  

functional  alterations  in  uraemia.  Eur  J  Clin  Invest  2005;35  Suppl  3:85-­‐8.  

331.   Guerin   AP,   Pannier   B,   Marchais   SJ,   London   GM.   Arterial   structure   and  

function  in  end-­‐stage  renal  disease.  Curr  Hypertens  Rep  2008;10:107-­‐11.  

332.   Vlachopoulos   C,   Aznaouridis   K,   Stefanadis   C.   Clinical   appraisal   of   arterial  

stiffness:  the  Argonauts  in  front  of  the  Golden  Fleece.  Heart  2006;92:1544-­‐50.  

333.   Blacher   J,   Guerin   AP,   Pannier   B,   Marchais   SJ,   London   GM.   Arterial  

calcifications,  arterial  stiffness,  and  cardiovascular  risk  in  end-­‐stage  renal  disease.  

Hypertension  2001;38:938-­‐42.  

334.  O'Rourke  MF,  Kelly  RP.  Wave  reflection   in   the  systemic  circulation  and   its  

implications  in  ventricular  function.  J  Hypertens  1993;11:327-­‐37.  

335.   Latham   RD,   Westerhof   N,   Sipkema   P,   Rubal   BJ,   Reuderink   P,   Murgo   JP.  

Regional   wave   travel   and   reflections   along   the   human   aorta:   a   study   with   six  

simultaneous  micromanometric  pressures.  Circulation  1985;72:1257-­‐69.  

Page 279: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  254  

336.   London  G,  Guerin  A,   Pannier  B,  Marchais   S,   Benetos  A,   Safar  M.   Increased  

systolic   pressure   in   chronic   uremia.   Role   of   arterial   wave   reflections.  

Hypertension  1992;20:10-­‐9.  

337.  Watanabe   H,   Ohtsuka   S,   Kakihana  M,   Sugishita   Y.   Coronary   circulation   in  

dogs   with   an   experimental   decrease   in   aortic   compliance.   J   Am   Coll   Cardiol  

1993;21:1497-­‐506.  

338.   Ohtsuka   S,   Kakihana   M,   Watanabe   H,   Sugishita   Y.   Chronically   decreased  

aortic  distensibility  causes  deterioration  of  coronary  perfusion  during  increased  

left  ventricular  contraction.  J  Am  Coll  Cardiol  1994;24:1406-­‐14.  

339.   Watanabe   H,   Ohtsuka   S,   Kakihana   M,   Sugishita   Y.   Decreased   aortic  

compliance  aggravates  subendocardial  ischaemia  in  dogs  with  stenosed  coronary  

artery.  Cardiovasc  Res  1992;26:1212-­‐8.  

340.  Buckberg  GD,  Towers  B,  Paglia  DE,  Mulder  DG,  Maloney  JV.  Subendocardial  

ischemia   after   cardiopulmonary  bypass.   J   Thorac  Cardiovasc   Surg   1972;64:669-­‐

84.   In:   Guerin   AP,   Pannier   B,   Marchais   SJ,   London   GM.   Arterial   structure   and  

function  in  end-­‐stage  renal  disease.  Curr  Hypertens  Rep  2008;10:107-­‐11.  

341.  Hojs  R,  Hojs-­‐Fabjan  T,  Balon  BP.  Atherosclerosis  in  patients  with  end-­‐stage  

renal  failure  prior  to  initiation  of  hemodialysis.  Ren  Fail  2003;25:247-­‐54.  

342.  Shoji  T,  Emoto  M,  Tabata  T,  Kimoto  E,  Shinohara  K,  Maekawa  K,  Kawagishi  T,  

Tahara   H,   Ishimura   E,   Nishizawa   Y.   Advanced   atherosclerosis   in   predialysis  

patients  with  chronic  renal  failure.  Kidney  Int  2002;61:2187-­‐92.  

343.  Joki  N,  Hase  H,  Nakamura  R,  Yamaguchi  T.  Onset  of  coronary  artery  disease  

prior   to   initiation   of   haemodialysis   in   patients   with   end-­‐stage   renal   disease.  

Nephrol  Dial  Transplant  1997;12:718-­‐23.  

Page 280: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  255  

344.  Liu  J,  Huang  Z,  Gilbertson  DT,  Foley  RN,  Collins  AJ.  An  improved  comorbidity  

index  for  outcome  analyses  among  dialysis  patients.  Kidney  Int  2010;77:141-­‐51.  

345.   Toyoda   K,   Fujii   K,   Fujimi   S,   Kumai   Y,   Tsuchimochi   H,   Ibayashi   S,   Iida   M.  

Stroke   in   patients   on  maintenance   hemodialysis:   a   22-­‐year   single-­‐center   study.  

Am  J  Kidney  Dis  2005;45:1058-­‐66.  

346.  London  GM,  Guerin  AP,  Marchais  SJ,  Pannier  B,  Safar  ME,  Day  M,  Metivier  F.  

Cardiac   and   arterial   interactions   in   end-­‐stage   renal   disease.   Kidney   Int  

1996;50:600-­‐8.  

347.  Wang  MC,  Tsai  WC,  Chen  JY,  Huang  JJ.  Stepwise  increase  in  arterial  stiffness  

corresponding   with   the   stages   of   chronic   kidney   disease.   Am   J   Kidney   Dis  

2005;45:494-­‐501.  

348.  Antonini-­‐Canterin  F,  Carerj  S,  Di  Bello  V,  Di  Salvo  G,  La  Carrubba  S,  Vriz  O,  

Pavan   D,   Balbarini   A,   Nicolosi   GL.   Arterial   stiffness   and   ventricular   stiffness:   a  

couple  of  diseases  or  a  coupling  disease?  A  review  from  the  cardiologist's  point  of  

view.  Eur  J  Echocardiogr  2009;10:36-­‐43.  

349.  Proudfoot  D,  Shanahan  CM.  Biology  of  calcification  in  vascular  cells:   intima  

versus  media.  Herz  2001;26:245-­‐51.  

350.   Burke   AP,   Weber   DK,   Kolodgie   FD,   Farb   A,   Taylor   AJ,   Virmani   R.  

Pathophysiology   of   calcium   deposition   in   coronary   arteries.  Herz   2001;26:239-­‐

44.  

351.   Schoenhagen   P,   Ziada   KM,   Kapadia   SR,   Crowe   TD,   Nissen   SE,   Tuzcu   EM.  

Extent   and   direction   of   arterial   remodeling   in   stable   versus   unstable   coronary  

syndromes  :  an  intravascular  ultrasound  study.  Circulation  2000;101:598-­‐603.  

Page 281: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  256  

352.   Smits  PC,  Pasterkamp  G,  de   Jaegere  PP,  de  Feyter  PJ,  Borst  C.  Angioscopic  

complex   lesions   are   predominantly   compensatory   enlarged:   an   angioscopy   and  

intracoronary  ultrasound  study.  Cardiovasc  Res  1999;41:458-­‐64.  

353.  Gussenhoven  EJ,  Essed  CE,  Lancee  CT,  Mastik  F,  Frietman  P,  van  Egmond  FC,  

Reiber   J,   Bosch   H,   van   Urk   H,   Roelandt   J,   et   al.   Arterial   wall   characteristics  

determined   by   intravascular   ultrasound   imaging:   an   in   vitro   study.   J   Am   Coll  

Cardiol  1989;14:947-­‐52.  

354.   Hodgson   JM,   Reddy   KG,   Suneja   R,   Nair   RN,   Lesnefsky   EJ,   Sheehan   HM.  

Intracoronary   ultrasound   imaging:   correlation   of   plaque   morphology   with  

angiography,   clinical   syndrome   and   procedural   results   in   patients   undergoing  

coronary  angioplasty.  J  Am  Coll  Cardiol  1993;21:35-­‐44.  

355.  Schoenhagen  P,  Tuzcu  EM.  Coronary  artery  calcification  and  end-­‐stage  renal  

disease:  vascular  biology  and  clinical  implications.  Cleve  Clin  J  Med  2002;69  Suppl  

3:S12-­‐20.  

356.   Elliott   RJ,   McGrath   LT.   Calcification   of   the   human   thoracic   aorta   during  

aging.  Calcif  Tissue  Int  1994;54:268-­‐73.  

357.   Lindbom   A.   Arteriosclerosis   and   arterial   thrombosis   in   the   lower   limb;   a  

roentgenological   study.   Acta   Radiol   Suppl   1950;80:1-­‐80.   In:   Proudfoot   D,  

Shanahan  CM.  Biology  of  calcification  in  vascular  cells:  intima  versus  media.  Herz  

2001;26:245-­‐51.  

358.  Witteman  JC,  Kok  FJ,  van  Saase   JL,  Valkenburg  HA.  Aortic  calcification  as  a  

predictor  of  cardiovascular  mortality.  Lancet  1986;2:1120-­‐2.  

359.  Wilson  PW,  Kauppila  LI,  O'Donnell  CJ,  Kiel  DP,  Hannan  M,  Polak  JM,  Cupples  

LA.   Abdominal   aortic   calcific   deposits   are   an   important   predictor   of   vascular  

morbidity  and  mortality.  Circulation  2001;103:1529-­‐34.  

Page 282: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  257  

360.  Abbott  RD,  Ueshima  H,  Masaki  KH,  Willcox  BJ,  Rodriguez  BL,  Ikeda  A,  Yano  

K,  White  LR,  Curb  JD.  Coronary  artery  calcification  and  total  mortality  in  elderly  

men.  J  Am  Geriatr  Soc  2007;55:1948-­‐54.  

361.   Wade   AN,   Reilly   MP.   Coronary   calcification   in   chronic   kidney   disease:  

morphology,  mechanisms  and  mortality.  Clin  J  Am  Soc  Nephrol  2009;4:1883-­‐5.  

362.   Thompson   GR,   Partridge   J.   Coronary   calcification   score:   the   coronary-­‐risk  

impact  factor.  Lancet  2004;363:557-­‐9.  

363.  He  ZX,  Hedrick  TD,  Pratt  CM,  Verani  MS,  Aquino  V,  Roberts  R,  Mahmarian  JJ.  

Severity  of  coronary  artery  calcification  by  electron  beam  computed  tomography  

predicts  silent  myocardial  ischemia.  Circulation  2000;101:244-­‐51.  

364.   Guerin   AP,   London   GM,   Marchais   SJ,   Metivier   F.   Arterial   stiffening   and  

vascular   calcifications   in   end-­‐stage   renal   disease.   Nephrol   Dial   Transplant  

2000;15:1014-­‐21.  

365.  Iseki  K,  Miyasato  F,  Tokuyama  K,  Nishime  K,  Uehara  H,  Shiohira  Y,  Sunagawa  

H,  Yoshihara  K,  Yoshi  S,  Toma  S,  Kowatari  T,  Wake  T,  Oura  T,  Fukiyama  K.  Low  

diastolic   blood   pressure,   hypoalbuminemia,   and   risk   of   death   in   a   cohort   of  

chronic  hemodialysis  patients.  Kidney  Int  1997;51:1212-­‐7.  

366.  Klassen  PS,  Lowrie  EG,  Reddan  DN,  DeLong  ER,  Coladonato  JA,  Szczech  LA,  

Lazarus   JM,  Owen  WF,   Jr.   Association   between   pulse   pressure   and  mortality   in  

patients  undergoing  maintenance  hemodialysis.  JAMA  2002;287:1548-­‐55.  

367.   Raggi   P,   Vukicevic   S,   Moyses   RM,   Wesseling   K,   Spiegel   DM.   Ten-­‐year  

experience  with  sevelamer  and  calcium  salts  as  phosphate  binders.  Clin  J  Am  Soc  

Nephrol  2010;5  Suppl  1:S31-­‐40.  

368.  Laurent  S,  Cockcroft  J,  Van  Bortel  L,  Boutouyrie  P,  Giannattasio  C,  Hayoz  D,  

Pannier   B,   Vlachopoulos   C,  Wilkinson   I,   Struijker-­‐Boudier   H.   Expert   consensus  

Page 283: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  258  

document   on   arterial   stiffness:   methodological   issues   and   clinical   applications.  

Eur  Heart  J  2006;27:2588-­‐605.  

369.   Van   Bortel   LM,   Duprez   D,   Starmans-­‐Kool   MJ,   Safar   ME,   Giannattasio   C,  

Cockcroft   J,  Kaiser  DR,  Thuillez  C.  Clinical  applications  of  arterial   stiffness,  Task  

Force  III:  recommendations  for  user  procedures.  Am  J  Hypertens  2002;15:445-­‐52.  

370.   Laurent   S,   Boutouyrie   P.   Arterial   stiffness:   a   new   surrogate   end   point   for  

cardiovascular  disease?  J  Nephrol  2007;20  Suppl  12:S45-­‐50.  

371.  Guerin  AP,  Blacher  J,  Pannier  B,  Marchais  SJ,  Safar  ME,  London  GM.  Impact  of  

aortic   stiffness   attenuation   on   survival   of   patients   in   end-­‐stage   renal   failure.  

Circulation  2001;103:987-­‐92.  

372.  Shoji  T,  Emoto  M,  Shinohara  K,  Kakiya  R,  Tsujimoto  Y,  Kishimoto  H,  Ishimura  

E,   Tabata   T,  Nishizawa  Y.  Diabetes  mellitus,   aortic   stiffness,   and   cardiovascular  

mortality  in  end-­‐stage  renal  disease.  J  Am  Soc  Nephrol  2001;12:2117-­‐24.  

373.  Lemos  MM,  Jancikic  AD,  Sanches  FM,  Christofalo  DM,  Ajzen  SA,  Miname  MH,  

Santos  RD,  Fachini  FC,  Carvalho  AB,  Draibe  SA,  Canziani  ME.  Pulse  wave  velocity-­‐-­‐

a  useful  tool  for  cardiovascular  surveillance  in  pre-­‐dialysis  patients.  Nephrol  Dial  

Transplant  2007;22:3527-­‐32.  

374.  Upadhyay  A,  Hwang  SJ,  Mitchell  GF,  Vasan  RS,  Vita  JA,  Stantchev  PI,  Meigs  JB,  

Larson  MG,   Levy  D,   Benjamin   EJ,   Fox   CS.   Arterial   stiffness   in  mild-­‐to-­‐moderate  

CKD.  J  Am  Soc  Nephrol  2009;20:2044-­‐53.  

375.  Cruickshank  K,  Riste  L,  Anderson  SG,  Wright  JS,  Dunn  G,  Gosling  RG.  Aortic  

pulse-­‐wave   velocity   and   its   relationship   to   mortality   in   diabetes   and   glucose  

intolerance:  an  integrated  index  of  vascular  function?  Circulation  2002;106:2085-­‐

90.  

Page 284: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  259  

376.   Kingwell   BA,  Waddell   TK,  Medley   TL,   Cameron   JD,   Dart   AM.   Large   artery  

stiffness  predicts   ischemic   threshold   in  patients  with   coronary   artery  disease.   J  

Am  Coll  Cardiol  2002;40:773-­‐9.  

377.  Stefanadis  C,  Dernellis  J,  Tsiamis  E,  Stratos  C,  Diamantopoulos  L,  Michaelides  

A,   Toutouzas   P.   Aortic   stiffness   as   a   risk   factor   for   recurrent   acute   coronary  

events  in  patients  with  ischaemic  heart  disease.  Eur  Heart  J  2000;21:390-­‐6.  

378.  Chirinos  JA,  Zambrano  JP,  Chakko  S,  Veerani  A,  Schob  A,  Willens  HJ,  Perez  G,  

Mendez  AJ.  Aortic  pressure  augmentation  predicts  adverse  cardiovascular  events  

in  patients  with  established  coronary  artery  disease.  Hypertension  2005;45:980-­‐

5.  

379.  Laurent  S,  Boutouyrie  P,  Asmar  R,  Gautier  I,  Laloux  B,  Guize  L,  Ducimetiere  

P,   Benetos   A.   Aortic   stiffness   is   an   independent   predictor   of   all-­‐cause   and  

cardiovascular   mortality   in   hypertensive   patients.  Hypertension   2001;37:1236-­‐

41.  

380.   Boutouyrie   P,   Tropeano   AI,   Asmar   R,   Gautier   I,   Benetos   A,   Lacolley   P,  

Laurent   S.   Aortic   stiffness   is   an   independent   predictor   of   primary   coronary  

events  in  hypertensive  patients:  a  longitudinal  study.  Hypertension  2002;39:10-­‐5.  

381.   Laurent   S,   Katsahian   S,   Fassot   C,   Tropeano   AI,   Gautier   I,   Laloux   B,  

Boutouyrie   P.   Aortic   stiffness   is   an   independent   predictor   of   fatal   stroke   in  

essential  hypertension.  Stroke  2003;34:1203-­‐6.  

382.  Meaume  S,  Benetos  A,  Henry  OF,  Rudnichi  A,   Safar  ME.  Aortic  pulse  wave  

velocity   predicts   cardiovascular   mortality   in   subjects   >70   years   of   age.  

Arterioscler  Thromb  Vasc  Biol  2001;21:2046-­‐50.  

383.   Sutton-­‐Tyrrell   K,   Najjar   SS,   Boudreau   RM,   Venkitachalam   L,   Kupelian   V,  

Simonsick  EM,  Havlik  R,  Lakatta  EG,  Spurgeon  H,  Kritchevsky  S,  Pahor  M,  Bauer  D,  

Page 285: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  260  

Newman   A.   Elevated   aortic   pulse   wave   velocity,   a   marker   of   arterial   stiffness,  

predicts   cardiovascular   events   in   well-­‐functioning   older   adults.   Circulation  

2005;111:3384-­‐90.  

384.  Song  BG,  Park  JB,  Cho  SJ,  Lee  SY,  Kim  JH,  Choi  SM,  Park  JH,  Park  YH,  Choi  JO,  

Lee   SC,   Park   SW.   Pulse   wave   velocity   is   more   closely   associated   with  

cardiovascular  risk  than  augmentation  index  in  the  relatively  low-­‐risk  population.  

Heart  Vessels  2009;24:413-­‐8.  

385.  Mitchell  GF,  Hwang  SJ,  Vasan  RS,  Larson  MG,  Pencina  MJ,  Hamburg  NM,  Vita  

JA,   Levy   D,   Benjamin   EJ.   Arterial   stiffness   and   cardiovascular   events:   the  

framingham  heart  study.  Circulation  2010;121:505-­‐11.  

386.  Mohiaddin  RH,  Underwood   SR,   Bogren  HG,   Firmin  DN,  Klipstein  RH,  Rees  

RS,   Longmore   DB.   Regional   aortic   compliance   studied   by   magnetic   resonance  

imaging:   the   effects   of   age,   training,   and   coronary   artery   disease.   Br   Heart   J  

1989;62:90-­‐6.  

387.  Hundley  WG,  Kitzman  DW,  Morgan  TM,  Hamilton  CA,  Darty  SN,  Stewart  KP,  

Herrington   DM,   Link   KM,   Little  WC.   Cardiac   cycle-­‐dependent   changes   in   aortic  

area  and  distensibility  are  reduced  in  older  patients  with  isolated  diastolic  heart  

failure   and   correlate   with   exercise   intolerance.   J   Am   Coll   Cardiol   2001;38:796-­‐

802.  

388.  Savolainen  A,  Keto  P,  Hekali  P,  Nisula  L,  Kaitila  I,  Viitasalo  M,  Poutanen  VP,  

Standertskjold-­‐Nordenstam   CG,   Kupari   M.   Aortic   distensibility   in   children  with  

the  Marfan  syndrome.  Am  J  Cardiol  1992;70:691-­‐3.  

389.  Adams  JN,  Brooks  M,  Redpath  TW,  Smith  FW,  Dean  J,  Gray  J,  Walton  S,  Trent  

RJ.   Aortic   distensibility   and   stiffness   index   measured   by   magnetic   resonance  

imaging  in  patients  with  Marfan's  syndrome.  Br  Heart  J  1995;73:265-­‐9.  

Page 286: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  261  

390.   Groenink  M,  de  Roos  A,  Mulder  BJ,   Spaan   JA,   van  der  Wall  EE.  Changes   in  

aortic   distensibility   and   pulse  wave   velocity   assessed  with  magnetic   resonance  

imaging   following   beta-­‐blocker   therapy   in   the   Marfan   syndrome.   Am   J   Cardiol  

1998;82:203-­‐8.  

391.   Fattori   R,   Bacchi   Reggiani   L,   Pepe  G,  Napoli   G,   Bna   C,   Celletti   F,   Lovato   L,  

Gavelli  G.  Magnetic   resonance   imaging  evaluation  of   aortic   elastic  properties   as  

early  expression  of  Marfan  syndrome.  J  Cardiovasc  Magn  Reson  2000;2:251-­‐6.  

392.   Murai   S,   Hamada   S,   Ueguchi   T,   Khankan   AA,   Sumikawa   H,   Inoue   A,  

Tsubamoto  M,  Honda  O,  Tomiyama  N,  Johkoh  T,  Nakamura  H.  Aortic  compliance  

in   patients   with   aortic   regurgitation:   evaluation   with   magnetic   resonance  

imaging.  Radiat  Med  2005;23:236-­‐41.  

393.   Kupari   M,   Hekali   P,   Keto   P,   Poutanen   VP,   Tikkanen   MJ,   Standerstkjold-­‐

Nordenstam   CG.   Relation   of   aortic   stiffness   to   factors   modifying   the   risk   of  

atherosclerosis  in  healthy  people.  Arterioscler  Thromb  1994;14:386-­‐94.  

394.  Nelson  AJ,  Worthley  SG,  Cameron  JD,  Willoughby  SR,  Piantadosi  C,  Carbone  

A,   Dundon   BK,   Leung   MC,   Hope   SA,   Meredith   IT,   Worthley   MI.   Cardiovascular  

magnetic   resonance-­‐derived   aortic   distensibility:   validation   and   observed  

regional  differences  in  the  elderly.  J  Hypertens  2009;27:535-­‐42.  

395.  Mark  PB,  Doyle  A,  Blyth  KG,  Patel  RK,  Weir  RA,  Steedman  T,  Foster  JE,  Dargie  

HJ,   Jardine   AG.   Vascular   function   assessed   with   cardiovascular   magnetic  

resonance  predicts   survival   in  patients  with  advanced  chronic  kidney  disease.   J  

Cardiovasc  Magn  Reson  2008;10:39.  

396.  Chen  CH,  Ting  CT,  Nussbacher  A,  Nevo  E,  Kass  DA,  Pak  P,  Wang  SP,  Chang  

MS,   Yin   FC.   Validation   of   carotid   artery   tonometry   as   a   means   of   estimating  

augmentation  index  of  ascending  aortic  pressure.  Hypertension  1996;27:168-­‐75.  

Page 287: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  262  

397.  Chen  CH,  Nevo  E,  Fetics  B,  Pak  PH,  Yin  FC,  Maughan  WL,  Kass  DA.  Estimation  

of   central   aortic   pressure   waveform   by   mathematical   transformation   of   radial  

tonometry   pressure.   Validation   of   generalized   transfer   function.   Circulation  

1997;95:1827-­‐36.  

398.   Pauca   AL,   O'Rourke  MF,   Kon   ND.   Prospective   evaluation   of   a   method   for  

estimating  ascending  aortic  pressure   from  the  radial  artery  pressure  waveform.  

Hypertension  2001;38:932-­‐7.  

399.   Adji   A,   O'Rourke   MF.   Determination   of   central   aortic   systolic   and   pulse  

pressure   from   the   radial   artery   pressure   waveform.   Blood   Press   Monit  

2004;9:115-­‐21.  

400.  Fetics  B,  Nevo  E,  Chen  CH,  Kass  DA.  Parametric  model  derivation  of  transfer  

function  for  noninvasive  estimation  of  aortic  pressure  by  radial  tonometry.  IEEE  

Trans  Biomed  Eng  1999;46:698-­‐706.  

401.   Safar   ME,   Blacher   J,   Pannier   B,   Guerin   AP,   Marchais   SJ,   Guyonvarc'h   PM,  

London   GM.   Central   pulse   pressure   and   mortality   in   end-­‐stage   renal   disease.  

Hypertension  2002;39:735-­‐8.  

402.  London  GM,  Blacher  J,  Pannier  B,  Guerin  AP,  Marchais  SJ,  Safar  ME.  Arterial  

wave   reflections   and   survival   in   end-­‐stage   renal   failure.   Hypertension  

2001;38:434-­‐8.  

403.  Weber  T,  Auer  J,  O'Rourke  M  F,  Kvas  E,  Lassnig  E,  Lamm  G,  Stark  N,  Rammer  

M,   Eber   B.   Increased   arterial   wave   reflections   predict   severe   cardiovascular  

events   in  patients  undergoing  percutaneous  coronary   interventions.  Eur  Heart   J  

2005;26:2657-­‐63.  

404.  Williams  B,  Lacy  PS,  Thom  SM,  Cruickshank  K,  Stanton  A,  Collier  D,  Hughes  

AD,   Thurston   H,   O'Rourke   M.   Differential   impact   of   blood   pressure-­‐lowering  

Page 288: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  263  

drugs   on   central   aortic   pressure   and   clinical   outcomes:   principal   results   of   the  

Conduit  Artery  Function  Evaluation  (CAFE)  study.  Circulation  2006;113:1213-­‐25.  

405.  Weber  T,  Auer  J,  O'Rourke  MF,  Kvas  E,  Lassnig  E,  Berent  R,  Eber  B.  Arterial  

stiffness,   wave   reflections,   and   the   risk   of   coronary   artery   disease.   Circulation  

2004;109:184-­‐9.  

406.  Blacher  J,  Guerin  AP,  Pannier  B,  Marchais  SJ,  Safar  ME,  London  GM.  Impact  of  

aortic  stiffness  on  survival  in  end-­‐stage  renal  disease.  Circulation  1999;99:2434-­‐

9.  

407.  Dahlof  B,  Sever  PS,  Poulter  NR,  Wedel  H,  Beevers  DG,  Caulfield  M,  Collins  R,  

Kjeldsen   SE,   Kristinsson   A,   McInnes   GT,   Mehlsen   J,   Nieminen   M,   O'Brien   E,  

Ostergren   J.   Prevention   of   cardiovascular   events   with   an   antihypertensive  

regimen   of   amlodipine   adding   perindopril   as   required   versus   atenolol   adding  

bendroflumethiazide   as   required,   in   the   Anglo-­‐Scandinavian   Cardiac   Outcomes  

Trial-­‐Blood   Pressure   Lowering   Arm   (ASCOT-­‐BPLA):   a   multicentre   randomised  

controlled  trial.  Lancet  2005;366:895-­‐906.  

408.   Devereux   RB,   Dahlof   B.   Potential   mechanisms   of   stroke   benefit   favoring  

losartan   in   the   Losartan   Intervention   For   Endpoint   reduction   in   hypertension  

(LIFE)  study.  Curr  Med  Res  Opin  2007;23:443-­‐57.  

409.  de  Champlain  J.  Do  angiotensin  II  antagonists  provide  benefits  beyond  blood  

pressure  reduction?  Adv  Ther  2005;22:117-­‐36.  

410.   Guyton   AC,   Sagawa   K.   Compensations   of   cardiac   output   and   other  

circulatory   functions   in   areflex   dogs   with   large   A-­‐V   fistulas.   Am   J   Physiol  

1961;200:1157-­‐63.  In:  MacRae  JM,  Levin  A,  Belenkie  I.  The  cardiovascular  effects  

of   arteriovenous   fistulas   in   chronic   kidney  disease:   a   cause   for   concern?   Semin  

Dial  2006;19:349-­‐52.  

Page 289: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  264  

411.  Iwashima  Y,  Horio  T,  Takami  Y,  Inenaga  T,  Nishikimi  T,  Takishita  S,  Kawano  

Y.   Effects   of   the   creation   of   arteriovenous   fistula   for   hemodialysis   on   cardiac  

function  and  natriuretic  peptide  levels  in  CRF.  Am  J  Kidney  Dis  2002;40:974-­‐82.  

412.   Ori   Y,   Korzets   A,   Katz   M,   Perek   Y,   Zahavi   I,   Gafter   U.   Haemodialysis  

arteriovenous   access-­‐-­‐a   prospective   haemodynamic   evaluation.   Nephrol   Dial  

Transplant  1996;11:94-­‐7.  

413.  Basile  C,  Lomonte  C,  Vernaglione  L,  Casucci  F,  Antonelli  M,  Losurdo  N.  The  

relationship   between   the   flow   of   arteriovenous   fistula   and   cardiac   output   in  

haemodialysis  patients.  Nephrol  Dial  Transplant  2008;23:282-­‐7.  

414.   Ori   Y,   Korzets   A,   Katz  M,   Erman   A,  Weinstein   T,  Malachi   T,   Gafter   U.   The  

contribution   of   an   arteriovenous   access   for   hemodialysis   to   left   ventricular  

hypertrophy.  Am  J  Kidney  Dis  2002;40:745-­‐52.  

415.  Anderson  CB,  Codd  JR,  Graff  RA,  Groce  MA,  Harter  HR,  Newton  WT.  Cardiac  

failure   and   upper   extremity   arteriovenous   dialysis   fistulas.   Case   reports   and   a  

review  of  the  literature.  Arch  Intern  Med  1976;136:292-­‐7.  

416.   Ahearn   DJ,   Maher   JF.   Heart   failure   as   a   complication   of   hemodialysis  

arteriovenous  fistula.  Ann  Intern  Med  1972;77:201-­‐4.  

417.  MacRae   JM,  Pandeya  S,  Humen  DP,  Krivitski  N,  Lindsay  RM.  Arteriovenous  

fistula-­‐associated   high-­‐output   cardiac   failure:   a   review   of   mechanisms.   Am   J  

Kidney  Dis  2004;43:e17-­‐22.  

418.  Murray  BM,  Rajczak   S,  Herman  A,   Leary  D.   Effect   of   surgical   banding   of   a  

high-­‐flow  fistula  on  access  flow  and  cardiac  output:  intraoperative  and  long-­‐term  

measurements.  Am  J  Kidney  Dis  2004;44:1090-­‐6.  

Page 290: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  265  

419.   Bajraktari  G,   Rexhepaj  N,   Bakalli   A,   Shaqiri   G,  Osmani   E,   Vokrri   L,   Elezi   S.  

Remission   of   high-­‐output   heart   failure   after   surgical   repair   of   30-­‐month  

arteriovenous  femoral  fistula:  case  report.  Heart  Surg  Forum  2005;8:E118-­‐20.  

420.  Abbott  KC,  Trespalacios  FC,  Agodoa  LY.  Arteriovenous  fistula  use  and  heart  

disease   in   long-­‐term   elderly   hemodialysis   patients:   analysis   of   United   States  

Renal   Data   System   Dialysis   Morbidity   and   Mortality   Wave   II.   J   Nephrol  

2003;16:822-­‐30.  

421.   Savage  MT,   Ferro   CJ,   Sassano  A,   Tomson  CR.   The   impact   of   arteriovenous  

fistula   formation   on   central   hemodynamic   pressures   in   chronic   renal   failure  

patients:  a  prospective  study.  Am  J  Kidney  Dis  2002;40:753-­‐9.  

422.   Crowley   SD,  Butterly  DW,  Peter  RH,   Schwab  SJ.   Coronary   steal   from  a   left  

internal   mammary   artery   coronary   bypass   graft   by   a   left   upper   extremity  

arteriovenous  hemodialysis  fistula.  Am  J  Kidney  Dis  2002;40:852-­‐5.  

423.  Gaudino  M,  Serricchio  M,  Luciani  N,  Giungi  S,  Salica  A,  Pola  R,  Pola  P,  Luciani  

G,  Possati  G.  Risks  of  using   internal   thoracic  artery  grafts   in  patients   in   chronic  

hemodialysis   via   upper   extremity   arteriovenous   fistula.   Circulation  

2003;107:2653-­‐5.  

424.  Rizzoli  G,  Schiavon  L,  Bellini  P.  Does  the  use  of  bilateral  internal  mammary  

artery  (IMA)  grafts  provide  incremental  benefit  relative  to  the  use  of  a  single  IMA  

graft?  A  meta-­‐analysis  approach.  Eur  J  Cardiothorac  Surg  2002;22:781-­‐6.  

425.   Chloroyiannis   IA.   Total   arterial   myocardial   revascularization.   Angiology  

2008;59:80S-­‐2S.  

426.   Lytle   BW.   Prolonging   patency-­‐-­‐choosing   coronary   bypass   grafts.  N   Engl   J  

Med  2004;351:2262-­‐4.  

Page 291: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  266  

427.  Lok  CE,  Oliver  MJ,  Su  J,  Bhola  C,  Hannigan  N,  Jassal  SV.  Arteriovenous  fistula  

outcomes  in  the  era  of  the  elderly  dialysis  population.  Kidney  Int  2005;67:2462-­‐9.  

428.   Wasse   H,   Speckman   RA,   McClellan   WM.   Arteriovenous   fistula   use   is  

associated   with   lower   cardiovascular   mortality   compared   with   catheter   use  

among  ESRD  patients.  Semin  Dial  2008;21:483-­‐9.  

429.  Damy  T,  Goode  KM,  Kallvikbacka-­‐Bennett  A,  Lewinter  C,  Hobkirk   J,  Nikitin  

NP,   Dubois-­‐Rande   JL,   Hittinger   L,   Clark   AL,   Cleland   JG.   Determinants   and  

prognostic   value   of   pulmonary   arterial   pressure   in   patients  with   chronic   heart  

failure.  Eur  Heart  J  2010.  

430.  Lang  IM,  Klepetko  W.  Chronic  thromboembolic  pulmonary  hypertension:  an  

updated  review.  Curr  Opin  Cardiol  2008;23:555-­‐9.  

431.   D'Alonzo   GE,   Barst   RJ,   Ayres   SM,   Bergofsky   EH,   Brundage   BH,   Detre   KM,  

Fishman  AP,  Goldring  RM,  Groves  BM,  Kernis   JT,   et  al.   Survival   in  patients  with  

primary   pulmonary   hypertension.   Results   from   a   national   prospective   registry.  

Ann  Intern  Med  1991;115:343-­‐9.  

432.   Yigla   M,   Nakhoul   F,   Sabag   A,   Tov   N,   Gorevich   B,   Abassi   Z,   Reisner   SA.  

Pulmonary   hypertension   in   patients   with   end-­‐stage   renal   disease.   Chest  

2003;123:1577-­‐82.  

433.   Nakhoul   F,   Yigla   M,   Gilman   R,   Reisner   SA,   Abassi   Z.   The   pathogenesis   of  

pulmonary   hypertension   in   haemodialysis   patients   via   arterio-­‐venous   access.  

Nephrol  Dial  Transplant  2005;20:1686-­‐92.  

434.  Beigi  AA,  Sadeghi  AM,  Khosravi  AR,  Karami  M,  Masoudpour  H.  Effects  of  the  

arteriovenous   fistula   on   pulmonary   artery   pressure   and   cardiac   output   in  

patients  with  chronic  renal  failure.  J  Vasc  Access  2009;10:160-­‐6.  

Page 292: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  267  

435.   Abassi   Z,   Nakhoul   F,   Khankin   E,   Reisner   SA,   Yigla   M.   Pulmonary  

hypertension  in  chronic  dialysis  patients  with  arteriovenous  fistula:  pathogenesis  

and  therapeutic  prospective.  Curr  Opin  Nephrol  Hypertens  2006;15:353-­‐60.  

436.   Abdelwhab   S,   Elshinnawy   S.   Pulmonary   hypertension   in   chronic   renal  

failure  patients.  Am  J  Nephrol  2008;28:990-­‐7.  

437.  Acarturk  G,  Albayrak  R,  Melek  M,  Yuksel  S,  Uslan  I,  Atli  H,  Colbay  M,  Unlu  M,  

Fidan   F,   Asci   Z,   Cander   S,   Karaman   O,   Acar   M.   The   relationship   between  

arteriovenous   fistula   blood   flow   rate   and   pulmonary   artery   pressure   in  

hemodialysis  patients.  Int  Urol  Nephrol  2008;40:509-­‐13.  

438.   Sheashaa   H,   Hassan   N,   Osman   Y,   Sabry   A,   Sobh  M.   Effect   of   spontaneous  

closure  of  arteriovenous  fistula  access  on  cardiac  structure  and  function  in  renal  

transplant  patients.  Am  J  Nephrol  2004;24:432-­‐7.  

439.  Unger  P,  Velez-­‐Roa  S,  Wissing  KM,  Hoang  AD,  van  de  Borne  P.  Regression  of  

left   ventricular   hypertrophy   after   arteriovenous   fistula   closure   in   renal  

transplant  recipients:  a  long-­‐term  follow-­‐up.  Am  J  Transplant  2004;4:2038-­‐44.  

440.  van  Duijnhoven  EC,  Cheriex  EC,  Tordoir  JH,  Kooman  JP,  van  Hooff  JP.  Effect  

of   closure   of   the   arteriovenous   fistula   on   left   ventricular   dimensions   in   renal  

transplant  patients.  Nephrol  Dial  Transplant  2001;16:368-­‐72.  

441.   Cridlig   J,   Selton-­‐Suty   C,   Alla   F,   Chodek   A,   Pruna   A,   Kessler   M,   Frimat   L.  

Cardiac   impact  of   the  arteriovenous   fistula  after  kidney   transplantation:  a  case-­‐

controlled,  match-­‐paired  study.  Transpl  Int  2008;21:948-­‐54.  

442.  Movilli  E,  Viola  BF,  Brunori  G,  Gaggia  P,  Camerini  C,  Zubani  R,  Berlinghieri  N,  

Cancarini   G.   Long-­‐term   effects   of   arteriovenous   fistula   closure   on  

echocardiographic   functional  and  structural   findings   in  hemodialysis  patients:  a  

prospective  study.  Am  J  Kidney  Dis  2010;55:682-­‐9.  

Page 293: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  268  

443.  Wolfe  RA,  Ashby  VB,  Milford  EL,  Ojo  AO,  Ettenger  RE,  Agodoa  LY,  Held  PJ,  

Port  FK.  Comparison  of  mortality   in  all  patients  on  dialysis,  patients  on  dialysis  

awaiting   transplantation,   and   recipients  of   a   first   cadaveric   transplant.  N  Engl   J  

Med  1999;341:1725-­‐30.  

444.  Aakhus  S,  Dahl  K,  Wideroe  TE.  Cardiovascular  morbidity  and  risk  factors  in  

renal  transplant  patients.  Nephrol  Dial  Transplant  1999;14:648-­‐54.  

445.  Oniscu  GC,  Brown  H,  Forsythe  JL.  Impact  of  cadaveric  renal  transplantation  

on  survival  in  patients  listed  for  transplantation.  J  Am  Soc  Nephrol  2005;16:1859-­‐

65.  

446.   Rabbat   CG,   Thorpe   KE,   Russell   JD,   Churchill   DN.   Comparison   of  mortality  

risk  for  dialysis  patients  and  cadaveric  first  renal  transplant  recipients  in  Ontario,  

Canada.  J  Am  Soc  Nephrol  2000;11:917-­‐22.  

447.  Schnuelle  P,  Lorenz  D,  Trede  M,  Van  Der  Woude  FJ.  Impact  of  renal  cadaveric  

transplantation   on   survival   in   end-­‐stage   renal   failure:   evidence   for   reduced  

mortality  risk  compared  with  hemodialysis  during  long-­‐term  follow-­‐up.  J  Am  Soc  

Nephrol  1998;9:2135-­‐41.  

448.  Shrestha  A,  Basarab-­‐Horwath  C,  McKane  W,  Shrestha  B,  Raftery  A.  Quality  of  

life   following   live   donor   renal   transplantation:   A   single   centre   experience.  Ann  

Transplant  2010;15:5-­‐10.  

449.  Tomasz  W,  Piotr  S.  A  trial  of  objective  comparison  of  quality  of  life  between  

chronic   renal   failure   patients   treated   with   hemodialysis   and   renal  

transplantation.  Ann  Transplant  2003;8:47-­‐53.  

450.  Lindholm  A,  Albrechtsen  D,  Frodin  L,  Tufveson  G,  Persson  NH,  Lundgren  G.  

Ischemic   heart   disease-­‐-­‐major   cause   of   death   and   graft   loss   after   renal  

transplantation  in  Scandinavia.  Transplantation  1995;60:451-­‐7.  

Page 294: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  269  

451.  McDonald  S,  Excell  L,  Livingston  B.  ANZDATA  Registry  Report  Australia  and  

New   Zealand   Dialysis   and   Transplant   Registry.   Adelaide,   South   Australia:  

Australia  and  New  Zealand  Dialysis  and  Transplant    Registry,  2009.  

452.   Disney   APS,   Russ   GR,   Walker   R,   Collins   J,   Herbert   K,   Kerr   P.   ANZDATA  

Registry   Report   1998   Australia   and   New   Zealand   Dialysis   and   Transplant  

Registry.   Adelaide,   South   Australia:   Australia   and   New   Zealand   Dialysis   and  

Transplant    Registry,  1998.  

453.  Kasiske  BL.  Risk   factors   for  accelerated  atherosclerosis   in  renal   transplant  

recipients.  Am  J  Med  1988;84:985-­‐92.  

454.  Parfrey  PS,  Harnett  JD,  Foley  RN,  Kent  GM,  Murray  DC,  Barre  PE,  Guttmann  

RD.   Impact  of  renal   transplantation  on  uremic  cardiomyopathy.  Transplantation  

1995;60:908-­‐14.  

455.   De   Lima   JJ,   Vieira   ML,   Viviani   LF,   Medeiros   CJ,   Ianhez   LE,   Kopel   L,   de  

Andrade   JL,  Krieger  EM,  Lage  SG.  Long-­‐term   impact  of   renal   transplantation  on  

carotid   artery   properties   and   on   ventricular   hypertrophy   in   end-­‐stage   renal  

failure  patients.  Nephrol  Dial  Transplant  2002;17:645-­‐51.  

456.   Deligiannis   A,   Paschalidou   E,   Sakellariou   G,   Vargemezis   V,   Geleris   P,  

Kontopoulos   A,   Papadimitriou   M.   Changes   in   left   ventricular   anatomy   during  

haemodialysis,   continuous   ambulatory   peritoneal   dialysis   and   after   renal  

transplantation.  Proc  Eur  Dial  Transplant  Assoc  Eur  Ren  Assoc  1985;21:185-­‐9.  

457.  Himelman  RB,  Landzberg   JS,   Simonson   JS,  Amend  W,  Bouchard  A,  Merz  R,  

Schiller   NB.   Cardiac   consequences   of   renal   transplantation:   changes   in   left  

ventricular  morphology  and  function.  J  Am  Coll  Cardiol  1988;12:915-­‐23.  

458.  Huting   J.   Course   of   left   ventricular   hypertrophy   and   function   in   end-­‐stage  

renal  disease  after  renal  transplantation.  Am  J  Cardiol  1992;70:1481-­‐4.  

Page 295: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  270  

459.   Huting   J.   Diastolic   left   ventricular   function   after   renal   transplantation   in  

patients  with  normal  and  hypertrophied  myocardium.  Clin  Cardiol  1992;15:845-­‐

50.  

460.   Lai   KN,   Barnden   L,   Mathew   TH.   Effect   of   renal   transplantation   on   left  

ventricular  function  in  hemodialysis  patients.  Clin  Nephrol  1982;18:74-­‐8.  

461.  Larsson  O,  Attman  PO,  Beckman-­‐Suurkula  M,  Wallentin  I,  Wikstrand  J.  Left  

ventricular  function  before  and  after  kidney  transplantation.  A  prospective  study  

in  patients  with  juvenile-­‐onset  diabetes  mellitus.  Eur  Heart  J  1986;7:779-­‐91.  

462.  Peteiro  J,  Alvarez  N,  Calvino  R,  Penas  M,  Ribera  F,  Castro  Beiras  A.  Changes  

in   left   ventricular   mass   and   filling   after   renal   transplantation   are   related   to  

changes   in   blood   pressure:   an   echocardiographic   and   pulsed   Doppler   study.  

Cardiology  1994;85:273-­‐83.  

463.  Rigatto  C,  Foley  RN,  Kent  GM,  Guttmann  R,  Parfrey  PS.  Long-­‐term  changes  in  

left   ventricular   hypertrophy   after   renal   transplantation.   Transplantation  

2000;70:570-­‐5.  

464.   Kasiske   BL,   Guijarro   C,   Massy   ZA,  Wiederkehr  MR,   Ma   JZ.   Cardiovascular  

disease  after  renal  transplantation.  J  Am  Soc  Nephrol  1996;7:158-­‐65.  

465.   Rigatto   C.   Clinical   epidemiology   of   cardiac   disease   in   renal   transplant  

recipients.  Semin  Dial  2003;16:106-­‐10.  

466.   Culleton   BF,   Larson   MG,   Wilson   PW,   Evans   JC,   Parfrey   PS,   Levy   D.  

Cardiovascular   disease   and   mortality   in   a   community-­‐based   cohort   with   mild  

renal  insufficiency.  Kidney  Int  1999;56:2214-­‐9.  

467.   Senni  M,   Tribouilloy   CM,   Rodeheffer   RJ,   Jacobsen   SJ,   Evans   JM,   Bailey   KR,  

Redfield  MM.  Congestive  heart  failure  in  the  community:  trends  in  incidence  and  

survival  in  a  10-­‐year  period.  Arch  Intern  Med  1999;159:29-­‐34.  

Page 296: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  271  

468.  Ritz  E,  Schwenger  V,  Wiesel  M,  Zeier  M.  Atherosclerotic  complications  after  

renal  transplantation.  Transpl  Int  2000;13  Suppl  1:S14-­‐9.  

469.  Roger  VL,  Weston  SA,  Redfield  MM,  Hellermann-­‐Homan   JP,  Killian   J,  Yawn  

BP,   Jacobsen  SJ.  Trends   in  heart   failure   incidence  and  survival   in  a   community-­‐

based  population.  JAMA  2004;292:344-­‐50.  

470.  Oflaz  H,  Turkmen  A,  Turgut  F,  Pamukcu  B,  Umman  S,  Ucar  A,  Akyol  Y,  Uzun  

S,   Kazancioglu  R,   Kurt  R,   Sever  MS.   Changes   in   endothelial   function   before   and  

after  renal  transplantation.  Transpl  Int  2006;19:333-­‐7.  

471.   Kocak   H,   Ceken   K,   Yavuz   A,   Yucel   S,   Gurkan   A,   Erdogan   O,   Ersoy   F,  

Yakupoglu   G,   Demirbas   A,   Tuncer   M.   Effect   of   renal   transplantation   on  

endothelial   function   in   haemodialysis   patients.   Nephrol   Dial   Transplant  

2006;21:203-­‐7.  

472.   Mark   PB,   Murphy   K,   Mohammed   AS,   Morris   ST,   Jardine   AG.   Endothelial  

dysfunction  in  renal  transplant  recipients.  Transplant  Proc  2005;37:3805-­‐7.  

473.  Boots  JM,  Christiaans  MH,  van  Hooff  JP.  Effect  of  immunosuppressive  agents  

on  long-­‐term  survival  of  renal  transplant  recipients:  focus  on  the  cardiovascular  

risk.  Drugs  2004;64:2047-­‐73.  

474.   Covic   A,   Haydar   AA,   Bhamra-­‐Ariza   P,   Gusbeth-­‐Tatomir   P,   Goldsmith   DJ.  

Aortic   pulse  wave   velocity   and   arterial  wave   reflections   predict   the   extent   and  

severity  of  coronary  artery  disease  in  chronic  kidney  disease  patients.   J  Nephrol  

2005;18:388-­‐96.  

475.  Covic  A,  Goldsmith  DJ,  Florea  L,  Gusbeth-­‐Tatomir  P,  Covic  M.  The  influence  

of   dialytic  modality   on   arterial   stiffness,   pulse  wave   reflections,   and   vasomotor  

function.  Perit  Dial  Int  2004;24:365-­‐72.  

Page 297: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  272  

476.  Barenbrock  M,  Spieker  C,  Laske  V,  Baumgart  P,  Hoeks  AP,  Zidek  W,  Rahn  KH.  

Effect  of  long-­‐term  hemodialysis  on  arterial  compliance  in  end-­‐stage  renal  failure.  

Nephron  1993;65:249-­‐53.  

477.   Yildiz   A,   Fazlioglu  M,   Ersoy   A,   Gullulu  M,   Gullulu   S,   Yurtkuran  M.   Arterial  

elasticity   measurement   in   renal   transplant   recipients.   Transplant   Proc  

2007;39:1455-­‐7.  

478.   Posadzy-­‐Malaczynska   A,   Kosch   M,   Hausberg   M,   Rahn   KH,   Stanisic   G,  

Malaczynski   P,   Gluszek   J,   Tykarski   A.   Arterial   distensibility,   intima   media  

thickness   and   pulse   wave   velocity   after   renal   transplantation   and   in   dialysis  

normotensive  patients.  Int  Angiol  2005;24:89-­‐94.  

479.  Zoungas  S,  Kerr  PG,  Chadban  S,  Muske  C,  Ristevski  S,  Atkins  RC,  McNeil   JJ,  

McGrath   BP.   Arterial   function   after   successful   renal   transplantation.  Kidney   Int  

2004;65:1882-­‐9.  

480.  Cohen  DL,  Warburton  KM,  Warren  G,  Bloom  RD,  Townsend  RR.  Pulse  wave  

analysis   to   assess   vascular   compliance   changes   in   stable   renal   transplant  

recipients.  Am  J  Hypertens  2004;17:209-­‐12.  

481.   Wystrychowski   G,   Chudek   J,   Zukowska-­‐Szczechowska   E,   Wiecek   A,  

Grzeszczak   W.   Associations   between   calcineurin   inhibitors   and   arterial  

compliance  in  kidney  transplant  recipients.  J  Nephrol  2008;21:81-­‐92.  

482.   Strozecki   P,   Adamowicz   A,   Wlodarczyk   Z,   Manitius   J.   The   influence   of  

calcineurin   inhibitors  on  pulse  wave  velocity   in   renal   transplant   recipients.  Ren  

Fail  2007;29:679-­‐84.  

483.   Covic   A,   Mardare   N,   Gusbeth-­‐Tatomir   P,   Buhaescu   I,   Goldsmith   DJ.   Acute  

effect   of   CyA   A   (Neoral)   on   large   artery   hemodynamics   in   renal   transplant  

patients.  Kidney  Int  2005;67:732-­‐7.  

Page 298: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  273  

484.  Kosch  M,  Hausberg  M,  Suwelack  B.  Studies  on  effects  of  calcineurin  inhibitor  

withdrawal  on  arterial  distensibility  and  endothelial  function  in  renal  transplant  

recipients.  Transplantation  2003;76:1516-­‐9.  

485.   Gill   JS,  Ma   I,   Landsberg  D,   Johnson  N,   Levin   A.   Cardiovascular   events   and  

investigation  in  patients  who  are  awaiting  cadaveric  kidney  transplantation.  J  Am  

Soc  Nephrol  2005;16:808-­‐16.  

486.  Ojo  AO,  Hanson  JA,  Meier-­‐Kriesche  H,  Okechukwu  CN,  Wolfe  RA,  Leichtman  

AB,   Agodoa   LY,   Kaplan   B,   Port   FK.   Survival   in   recipients   of  marginal   cadaveric  

donor   kidneys   compared   with   other   recipients   and   wait-­‐listed   transplant  

candidates.  J  Am  Soc  Nephrol  2001;12:589-­‐97.  

487.   Karthikeyan   V,   Ananthasubramaniam   K.   Coronary   risk   assessment   and  

management   options   in   chronic   kidney   disease   patients   prior   to   kidney  

transplantation.  Curr  Cardiol  Rev  2009;5:177-­‐86.  

488.  Kasiske  BL,  Ramos  EL,  Gaston  RS,  Bia  MJ,  Danovitch  GM,  Bowen  PA,  Lundin  

PA,   Murphy   KJ.   The   evaluation   of   renal   transplant   candidates:   clinical   practice  

guidelines.   Patient   Care   and   Education   Committee   of   the   American   Society   of  

Transplant  Physicians.  J  Am  Soc  Nephrol  1995;6:1-­‐34.  

489.  Gaston  RS,  Basadonna  G,  Cosio  FG,  Davis  CL,  Kasiske  BL,  Larsen  J,  Leichtman  

AB,  Delmonico  FL.  Transplantation  in  the  diabetic  patient  with  advanced  chronic  

kidney  disease:  a  task  force  report.  Am  J  Kidney  Dis  2004;44:529-­‐42.  

490.  Danovitch  GM,  Hariharan  S,  Pirsch  JD,  Rush  D,  Roth  D,  Ramos  E,  Starling  RC,  

Cangro   C,   Weir   MR.   Management   of   the   waiting   list   for   cadaveric   kidney  

transplants:   report   of   a   survey   and   recommendations   by   the   Clinical   Practice  

Guidelines   Committee   of   the   American   Society   of   Transplantation.   J   Am   Soc  

Nephrol  2002;13:528-­‐35.  

Page 299: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  274  

491.  Knoll  G,  Cockfield  S,  Blydt-­‐Hansen  T,  Baran  D,  Kiberd  B,  Landsberg  D,  Rush  

D,  Cole  E.  Canadian  Society  of  Transplantation:  consensus  guidelines  on  eligibility  

for  kidney  transplantation.  CMAJ  2005;173:S1-­‐25.  

492.   Pilmore   H.   Cardiac   assessment   for   renal   transplantation.  Am   J   Transplant  

2006;6:659-­‐65.  

493.   Sharma   R,   Pellerin   D,   Gaze   DC,   Gregson   H,   Streather   CP,   Collinson   PO,  

Brecker  SJ.  Dobutamine  stress  echocardiography  and  the  resting  but  not  exercise  

electrocardiograph   predict   severe   coronary   artery   disease   in   renal   transplant  

candidates.  Nephrol  Dial  Transplant  2005;20:2207-­‐14.  

494.  Sharma  R,  Pellerin  D,  Gaze  DC,  Shah  JS,  Streather  CP,  Collinson  PO,  Brecker  

SJ.  Dobutamine  stress  echocardiography  and  cardiac  troponin  T  for  the  detection  

of  significant  coronary  artery  disease  and  predicting  outcome  in  renal  transplant  

candidates.  Eur  J  Echocardiogr  2005;6:327-­‐35.  

495.   Braun   WE,   Phillips   DF,   Vidt   DG,   Novick   AC,   Nakamoto   S,   Popowniak   KL,  

Paganini  E,  Magnusson  M,  Pohl  M,  Steinmuller  DR,  et  al.  Coronary  artery  disease  

in  100  diabetics  with  end-­‐stage  renal  failure.  Transplant  Proc  1984;16:603-­‐7.  In:  

Karthikeyan   V,   Ananthasubramaniam   K.   Coronary   risk   assessment   and  

management   options   in   chronic   kidney   disease   patients   prior   to   kidney  

transplantation.  Curr  Cardiol  Rev  2009;5:177-­‐86.  

496.   Margolis   JR,   Kannel   WS,   Feinleib   M,   Dawber   TR,   McNamara   PM.   Clinical  

features   of   unrecognized   myocardial   infarction-­‐-­‐silent   and   symptomatic.  

Eighteen   year   follow-­‐up:   the   Framingham   study.   Am   J   Cardiol   1973;32:1-­‐7.   In:  

Karthikeyan   V,   Ananthasubramaniam   K.   Coronary   risk   assessment   and  

management   options   in   chronic   kidney   disease   patients   prior   to   kidney  

transplantation.  Curr  Cardiol  Rev  2009;5:177-­‐86.  

Page 300: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  275  

497.  Roig  E,  Betriu  A,  Castaner  A,  Magrina  J,  Sanz  G,  Navarro-­‐Lopez  F.  Disabling  

angina  pectoris  with  normal  coronary  arteries  in  patients  undergoing  long-­‐term  

hemodialysis.  Am  J  Med  1981;71:431-­‐4.  

498.   Rostand   SG,   Kirk   KA,   Rutsky   EA.   The   epidemiology   of   coronary   artery  

disease   in  patients  on  maintenance  hemodialysis:   implications   for  management.  

Contrib   Nephrol   1986;52:34-­‐41.   In:   Karthikeyan   V,   Ananthasubramaniam   K.  

Coronary   risk   assessment   and   management   options   in   chronic   kidney   disease  

patients  prior  to  kidney  transplantation.  Curr  Cardiol  Rev  2009;5:177-­‐86.  

499.   Bart   BA,   Cen   YY,   Hendel   RC,   Lee   R,  Marwick   TH,  Missov   ED,   Bachour   FA,  

Herzog   CA.   Comparison   of   dobutamine   stress   echocardiography,   dobutamine  

SPECT,  and  adenosine  SPECT  myocardial  perfusion  imaging  in  patients  with  end-­‐

stage  renal  disease.  J  Nucl  Cardiol  2009;16:507-­‐15.  

500.  De  Lima  JJ,  Sabbaga  E,  Vieira  ML,  de  Paula  FJ,  Ianhez  LE,  Krieger  EM,  Ramires  

JA.   Coronary   angiography   is   the   best   predictor   of   events   in   renal   transplant  

candidates  compared  with  noninvasive  testing.  Hypertension  2003;42:263-­‐8.  

501.  Enkiri  SA,  Taylor  AM,  Keeley  EC,  Lipson  LC,  Gimple  LW,  Ragosta  M.  Coronary  

angiography   is   a   better   predictor   of   mortality   than   non-­‐invasive   testing   in  

patients  evaluated  for  renal  transplantation.  Catheter  Cardiovasc  Interv  2010.  

502.   Feringa   HH,   Bax   JJ,   Schouten   O,   Poldermans   D.   Ischemic   heart   disease   in  

renal   transplant   candidates:   towards   non-­‐invasive   approaches   for   preoperative  

risk  stratification.  Eur  J  Echocardiogr  2005;6:313-­‐6.  

503.   Gang   S,   Dabhi   M,   Rajapurkar   MM.   Ischaemia   imaging   in   type   2   diabetic  

kidney   transplant   candidates-­‐-­‐is   coronary   angiography   essential?   Nephrol   Dial  

Transplant  2007;22:2334-­‐8.  

Page 301: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  276  

504.  Gowdak  LH,  de  Paula  FJ,  Cesar  LA,  Martinez  Filho  EE,  Ianhez  LE,  Krieger  EM,  

Ramires  JA,  de  Lima  JJ.  Screening  for  significant  coronary  artery  disease  in  high-­‐

risk  renal  transplant  candidates.  Coron  Artery  Dis  2007;18:553-­‐8.  

505.   Herzog   CA,   Marwick   TH,   Pheley   AM,   White   CW,   Rao   VK,   Dick   CD.  

Dobutamine   stress   echocardiography   for   the   detection   of   significant   coronary  

artery  disease  in  renal  transplant  candidates.  Am  J  Kidney  Dis  1999;33:1080-­‐90.  

506.  Le  A,  Wilson  R,  Douek  K,  Pulliam  L,  Tolzman  D,  Norman  D,  Barry  J,  Bennett  

W.  Prospective  risk  stratification  in  renal  transplant  candidates  for  cardiac  death.  

Am  J  Kidney  Dis  1994;24:65-­‐71.  

507.  Lewis  MS,  Wilson  RA,  Walker  KW,  Wilson  DJ,  Norman  DJ,  Barry  JM,  Bennett  

WM.  Validation  of  an  algorithm  for  predicting  cardiac  events  in  renal  transplant  

candidates.  Am  J  Cardiol  2002;89:847-­‐50.  

508.   Lin   K,   Stewart   D,   Cooper   S,   Davis   CL.   Pre-­‐transplant   cardiac   testing   for  

kidney-­‐pancreas   transplant   candidates   and   association   with   cardiac   outcomes.  

Clin  Transplant  2001;15:269-­‐75.  

509.  Patel  AD,  Abo-­‐Auda  WS,  Davis  JM,  Zoghbi  GJ,  Deierhoi  MH,  Heo  J,  Iskandrian  

AE.  Prognostic  value  of  myocardial  perfusion  imaging  in  predicting  outcome  after  

renal  transplantation.  Am  J  Cardiol  2003;92:146-­‐51.  

510.   Penfornis   A,   Zimmermann   C,   Boumal   D,   Sabbah   A,  Meneveau   N,   Gaultier-­‐

Bourgeois  S,  Bassand  JP,  Bernard  Y.  Use  of  dobutamine  stress  echocardiography  

in   detecting   silent   myocardial   ischaemia   in   asymptomatic   diabetic   patients:   a  

comparison   with   thallium   scintigraphy   and   exercise   testing.   Diabet   Med  

2001;18:900-­‐5.  

511.  Rabbat  CG,  Treleaven  DJ,  Russell  JD,  Ludwin  D,  Cook  DJ.  Prognostic  value  of  

myocardial   perfusion   studies   in   patients  with   end-­‐stage   renal   disease   assessed  

Page 302: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  277  

for  kidney  or  kidney-­‐pancreas  transplantation:  a  meta-­‐analysis.  J  Am  Soc  Nephrol  

2003;14:431-­‐9.  

512.   West   JC,   Napoliello   DA,   Costello   JM,   Nassef   LA,   Butcher   RJ,   Hartle   JE,  

McConnell  TR,  Finley   JW,  Kelley  SE,  Chao  S,  Latsha  R.  Preoperative  dobutamine  

stress  echocardiography  versus   cardiac  arteriography   for   risk  assessment  prior  

to  renal  transplantation.  Transpl  Int  2000;13  Suppl  1:S27-­‐30.  

513.  Worthley  MI,   Unger   SA,  Mathew   TH,   Russ   GR,   Horowitz   JD.   Usefulness   of  

tachycardic-­‐stress  perfusion   imaging  to  predict  coronary  artery  disease   in  high-­‐

risk  patients  with  chronic  renal  failure.  Am  J  Cardiol  2003;92:1318-­‐20.  

514.  Al  Jaroudi  W,  Iskandrian  AE.  Regadenoson:  a  new  myocardial  stress  agent.  J  

Am  Coll  Cardiol  2009;54:1123-­‐30.  

515.   Rossen   JD,   Quillen   JE,   Lopez   AG,   Stenberg   RG,   Talman   CL,  Winniford  MD.  

Comparison   of   coronary   vasodilation   with   intravenous   dipyridamole   and  

adenosine.  J  Am  Coll  Cardiol  1991;18:485-­‐91.  

516.   Wilson   RF,   Wyche   K,   Christensen   BV,   Zimmer   S,   Laxson   DD.   Effects   of  

adenosine  on  human  coronary  arterial  circulation.  Circulation  1990;82:1595-­‐606.  

517.  Navare   SM,  Mather   JF,   Shaw  LJ,   Fowler  MS,  Heller  GV.  Comparison  of   risk  

stratification   with   pharmacologic   and   exercise   stress   myocardial   perfusion  

imaging:  a  meta-­‐analysis.  J  Nucl  Cardiol  2004;11:551-­‐61.  

518.   Fleischmann   KE,   Hunink   MG,   Kuntz   KM,   Douglas   PS.   Exercise  

echocardiography  or  exercise  SPECT  imaging?  A  meta-­‐analysis  of  diagnostic  test  

performance.  JAMA  1998;280:913-­‐20.  

519.   Imran  MB,  Palinkas  A,  Picano  E.  Head-­‐to-­‐head  comparison  of  dipyridamole  

echocardiography  and  stress  perfusion  scintigraphy  for  the  detection  of  coronary  

Page 303: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  278  

artery   disease:   a   meta-­‐analysis.   Comparison   between   stress   echo   and  

scintigraphy.  Int  J  Cardiovasc  Imaging  2003;19:23-­‐8.  

520.   Kim   C,   Kwok   YS,   Heagerty   P,   Redberg   R.   Pharmacologic   stress   testing   for  

coronary  disease  diagnosis:  A  meta-­‐analysis.  Am  Heart  J  2001;142:934-­‐44.  

521.  Mahajan  N,  Polavaram  L,  Vankayala  H,  Ference  B,  Wang  Y,  Ager  J,  Kovach  J,  

Afonso   L.   Diagnostic   accuracy   of   myocardial   perfusion   imaging   and   stress  

echocardiography  for  the  diagnosis  of  left  main  and  triple  vessel  coronary  artery  

disease:  a  comparative  meta-­‐analysis.  Heart  2010;96:956-­‐66.  

522.  Picano  E,  Molinaro  S,  Pasanisi  E.  The  diagnostic  accuracy  of  pharmacological  

stress  echocardiography   for   the  assessment  of   coronary  artery  disease:  a  meta-­‐

analysis.  Cardiovasc  Ultrasound  2008;6:30.  

523.  De  Lorenzo  A,  Hachamovitch  R,  Kang  X,  Gransar  H,  Sciammarella  MG,  Hayes  

SW,  Friedman  JD,  Cohen  I,  Germano  G,  Berman  DS.  Prognostic  value  of  myocardial  

perfusion   SPECT   versus   exercise   electrocardiography   in   patients   with   ST-­‐

segment  depression  on  resting  electrocardiography.  J  Nucl  Cardiol  2005;12:655-­‐

61.  

524.  Hachamovitch  R,  Berman  DS,  Kiat  H,  Cohen  I,  Friedman  JD,  Shaw  LJ.  Value  of  

stress   myocardial   perfusion   single   photon   emission   computed   tomography   in  

patients   with   normal   resting   electrocardiograms:   an   evaluation   of   incremental  

prognostic  value  and  cost-­‐effectiveness.  Circulation  2002;105:823-­‐9.  

525.  Hachamovitch  R,  Kang  X,  Amanullah  AM,  Abidov  A,  Hayes  SW,  Friedman  JD,  

Cohen   I,   Thomson   LE,   Germano   G,   Berman   DS.   Prognostic   implications   of  

myocardial   perfusion   single-­‐photon   emission   computed   tomography   in   the  

elderly.  Circulation  2009;120:2197-­‐206.  

Page 304: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  279  

526.   Kang   X,   Berman   DS,   Lewin   HC,   Cohen   I,   Friedman   JD,   Germano   G,  

Hachamovitch  R,  Shaw  LJ.  Incremental  prognostic  value  of  myocardial  perfusion  

single  photon  emission  computed  tomography  in  patients  with  diabetes  mellitus.  

Am  Heart  J  1999;138:1025-­‐32.  

527.   Krivokapich   J,   Child   JS,   Walter   DO,   Garfinkel   A.   Prognostic   value   of  

dobutamine  stress  echocardiography  in  predicting  cardiac  events  in  patients  with  

known  or  suspected  coronary  artery  disease.  J  Am  Coll  Cardiol  1999;33:708-­‐16.  

528.   Poldermans  D,   Fioretti   PM,  Boersma  E,   Cornel   JH,   Borst   F,   Vermeulen  EG,  

Arnese   M,   el-­‐Hendy   A,   Roelandt   JR.   Dobutamine-­‐atropine   stress  

echocardiography  and  clinical  data   for  predicting   late  cardiac  events   in  patients  

with  suspected  coronary  artery  disease.  Am  J  Med  1994;97:119-­‐25.  

529.  Steinberg  EH,  Madmon  L,  Patel  CP,  Sedlis  SP,  Kronzon  I,  Cohen  JL.  Long-­‐term  

prognostic   significance   of   dobutamine   echocardiography   in   patients   with  

suspected  coronary  artery  disease:  results  of  a  5-­‐year  follow-­‐up  study.  J  Am  Coll  

Cardiol  1997;29:969-­‐73.  

530.  Zellweger  MJ,  Hachamovitch  R,  Kang  X,  Hayes  SW,  Friedman  JD,  Germano  G,  

Berman  DS.  Threshold,  incidence,  and  predictors  of  prognostically  high-­‐risk  silent  

ischemia   in   asymptomatic   patients   without   prior   diagnosis   of   coronary   artery  

disease.  J  Nucl  Cardiol  2009;16:193-­‐200.  

531.  Tonino  PA,  De  Bruyne  B,  Pijls  NH,  Siebert  U,  Ikeno  F,  van'  t  Veer  M,  Klauss  V,  

Manoharan  G,  Engstrom  T,  Oldroyd  KG,  Ver  Lee  PN,  MacCarthy  PA,  Fearon  WF.  

Fractional   flow   reserve   versus   angiography   for   guiding   percutaneous   coronary  

intervention.  N  Engl  J  Med  2009;360:213-­‐24.  

532.  Tonino  PA,  Fearon  WF,  De  Bruyne  B,  Oldroyd  KG,  Leesar  MA,  Ver  Lee  PN,  

Maccarthy  PA,  Van't  Veer  M,  Pijls  NH.  Angiographic  versus  functional  severity  of  

Page 305: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  280  

coronary   artery   stenoses   in   the   FAME   study   fractional   flow   reserve   versus  

angiography  in  multivessel  evaluation.  J  Am  Coll  Cardiol  2010;55:2816-­‐21.  

533.   Melikian   N,   De   Bondt   P,   Tonino   P,   De   Winter   O,   Wyffels   E,   Bartunek   J,  

Heyndrickx   GR,   Fearon   WF,   Pijls   NH,   Wijns   W,   De   Bruyne   B.   Fractional   flow  

reserve   and   myocardial   perfusion   imaging   in   patients   with   angiographic  

multivessel  coronary  artery  disease.  JACC  Cardiovasc  Interv  2010;3:307-­‐14.  

534.  Pijls  NH,  Fearon  WF,  Tonino  PA,  Siebert  U,  Ikeno  F,  Bornschein  B,  van't  Veer  

M,  Klauss  V,  Manoharan  G,  Engstrom  T,  Oldroyd  KG,  Ver  Lee  PN,  MacCarthy  PA,  

De   Bruyne   B.   Fractional   flow   reserve   versus   angiography   for   guiding  

percutaneous  coronary  intervention  in  patients  with  multivessel  coronary  artery  

disease:   2-­‐year   follow-­‐up   of   the   FAME   (Fractional   Flow   Reserve   Versus  

Angiography  for  Multivessel  Evaluation)  study.  J  Am  Coll  Cardiol  2010;56:177-­‐84.  

535.   Pijls  NH,   van  Schaardenburgh  P,  Manoharan  G,  Boersma  E,  Bech   JW,   van't  

Veer  M,  Bar  F,  Hoorntje  J,  Koolen  J,  Wijns  W,  de  Bruyne  B.  Percutaneous  coronary  

intervention   of   functionally   nonsignificant   stenosis:   5-­‐year   follow-­‐up   of   the  

DEFER  Study.  J  Am  Coll  Cardiol  2007;49:2105-­‐11.  

536.   Ragosta  M,   Bishop   AH,   Lipson   LC,  Watson   DD,   Gimple   LW,   Sarembock   IJ,  

Powers  ER.  Comparison  between  angiography  and  fractional  flow  reserve  versus  

single-­‐photon  emission  computed  tomographic  myocardial  perfusion  imaging  for  

determining  lesion  significance  in  patients  with  multivessel  coronary  disease.  Am  

J  Cardiol  2007;99:896-­‐902.  

537.  Gebker  R,  Jahnke  C,  Hucko  T,  Manka  R,  Mirelis  JG,  Hamdan  A,  Schnackenburg  

B,   Fleck   E,   Paetsch   I.   Dobutamine   stress   magnetic   resonance   imaging   for   the  

detection  of  coronary  artery  disease  in  women.  Heart  2010;96:616-­‐20.  

Page 306: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  281  

538.  Kelle  S,  Egnell  C,  Vierecke  J,  Chiribiri  A,  Vogel  S,  Fleck  E,  Nagel  E.  Prognostic  

value  of  negative  dobutamine-­‐stress  cardiac  magnetic  resonance  imaging.  Med  Sci  

Monit  2009;15:MT131-­‐136.  

539.  Paetsch  I,  Jahnke  C,  Wahl  A,  Gebker  R,  Neuss  M,  Fleck  E,  Nagel  E.  Comparison  

of  dobutamine  stress  magnetic  resonance,  adenosine  stress  magnetic  resonance,  

and   adenosine   stress  magnetic   resonance   perfusion.   Circulation   2004;110:835-­‐

42.  

540.  Wallace  EL,  Morgan  TM,  Walsh  TF,  Dall'Armellina  E,  Ntim  W,  Hamilton  CA,  

Hundley   WG.   Dobutamine   cardiac   magnetic   resonance   results   predict   cardiac  

prognosis   in   women   with   known   or   suspected   ischemic   heart   disease.   JACC  

Cardiovasc  Imaging  2009;2:299-­‐307.  

541.  Jahnke  C,  Nagel  E,  Gebker  R,  Kokocinski  T,  Kelle  S,  Manka  R,  Fleck  E,  Paetsch  

I.   Prognostic   value  of   cardiac  magnetic   resonance   stress   tests:   adenosine   stress  

perfusion   and   dobutamine   stress   wall   motion   imaging.   Circulation  

2007;115:1769-­‐76.  

542.  Allison   JD,  Flickinger  FW,  Wright   JC,   Falls  DG,  3rd,  Prisant  LM,  VonDohlen  

TW,   Frank   MJ.   Measurement   of   left   ventricular   mass   in   hypertrophic  

cardiomyopathy   using   MRI:   comparison   with   echocardiography.   Magn   Reson  

Imaging  1993;11:329-­‐34.  

543.   Devlin   AM,   Moore   NR,   Ostman-­‐Smith   I.   A   comparison   of   MRI   and  

echocardiography  in  hypertrophic  cardiomyopathy.  Br  J  Radiol  1999;72:258-­‐64.  

544.   Keenan   NG,   Pennell   DJ.   CMR   of   ventricular   function.   Echocardiography  

2007;24:185-­‐93.  

545.   Hundley  WG,   Kizilbash   AM,   Afridi   I,   Franco   F,   Peshock   RM,   Grayburn   PA.  

Administration   of   an   intravenous   perfluorocarbon   contrast   agent   improves  

Page 307: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  282  

echocardiographic   determination   of   left   ventricular   volumes   and   ejection  

fraction:   comparison   with   cine   magnetic   resonance   imaging.   J   Am   Coll   Cardiol  

1998;32:1426-­‐32.  

546.   Malm   S,   Frigstad   S,   Sagberg   E,   Larsson   H,   Skjaerpe   T.   Accurate   and  

reproducible   measurement   of   left   ventricular   volume   and   ejection   fraction   by  

contrast  echocardiography:  a  comparison  with  magnetic  resonance  imaging.  J  Am  

Coll  Cardiol  2004;44:1030-­‐5.  

547.  Nayyar  S,  Magalski  A,  Khumri  TM,  Idupulapati  M,  Stoner  CN,  Kusnetzky  LL,  

Coggins  TR,  Morris  BA,  Main  ML.  Contrast  administration  reduces  interobserver  

variability   in  determination  of   left   ventricular   ejection   fraction   in  patients  with  

left   ventricular   dysfunction   and   good   baseline   endocardial   border   delineation.  

Am  J  Cardiol  2006;98:1110-­‐4.  

548.   Thomson  HL,   Basmadjian  AJ,   Rainbird  AJ,   Razavi  M,   Avierinos   JF,   Pellikka  

PA,  Bailey  KR,  Breen  JF,  Enriquez-­‐Sarano  M.  Contrast  echocardiography  improves  

the  accuracy  and  reproducibility  of  left  ventricular  remodeling  measurements:  a  

prospective,  randomly  assigned,  blinded  study.  J  Am  Coll  Cardiol  2001;38:867-­‐75.  

549.   Bottini   PB,   Carr   AA,   Prisant   LM,   Flickinger   FW,   Allison   JD,   Gottdiener   JS.  

Magnetic   resonance   imaging   compared   to   echocardiography   to   assess   left  

ventricular  mass  in  the  hypertensive  patient.  Am  J  Hypertens  1995;8:221-­‐8.  

550.  Myerson  SG,  Montgomery  HE,  World  MJ,  Pennell  DJ.  Left  ventricular  mass:  

reliability   of   M-­‐mode   and   2-­‐dimensional   echocardiographic   formulas.  

Hypertension  2002;40:673-­‐8.  

551.   Anderson   JL,   Horne   BD,   Pennell   DJ.   Atrial   dimensions   in   health   and   left  

ventricular  disease  using  cardiovascular  magnetic  resonance.   J  Cardiovasc  Magn  

Reson  2005;7:671-­‐5.  

Page 308: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  283  

552.  Artang  R,  Migrino  RQ,  Harmann  L,  Bowers  M,  Woods  TD.  Left  atrial  volume  

measurement   with   automated   border   detection   by   3-­‐dimensional  

echocardiography:   comparison   with   Magnetic   Resonance   Imaging.   Cardiovasc  

Ultrasound  2009;7:16.  

553.   Jenkins   C,   Bricknell   K,   Marwick   TH.   Use   of   real-­‐time   three-­‐dimensional  

echocardiography   to   measure   left   atrial   volume:   comparison   with   other  

echocardiographic  techniques.  J  Am  Soc  Echocardiogr  2005;18:991-­‐7.  

554.  Aaron  CP,  Tandri  H,  Barr  RG,  Johnson  WC,  Bagiella  E,  Chahal  H,  Jain  A,  Kizer  

JR,   Bertoni   AG,   Lima   JA,   Bluemke   DA,   Kawut   SM.   Physical   Activity   and   Right  

Ventricular  Structure  and  Function:  The  MESA-­‐Right  Ventricle  Study.  Am  J  Respir  

Crit  Care  Med  2010.  

555.  Kaufmann  MR,  Barr  RG,  Bluemke  DM,  Jain  A,  Lima  JAC,  Tandri  H,  Kawut  SM.  

Right   Ventricular   Structure   And   Function   Predict   The   Onset   Of   Dyspnea:   The  

MESA-­‐Right  Ventricle  Study.  Am  J  Respir  Crit  Care  Med  2010;181:A3403.  

556.   Shimada   YJ,   Shiota   M,   Siegel   RJ,   Shiota   T.   Accuracy   of   right   ventricular  

volumes   and   function   determined   by   three-­‐dimensional   echocardiography   in  

comparison  with  magnetic   resonance   imaging:   a  meta-­‐analysis   study.   J   Am   Soc  

Echocardiogr  2010;23:943-­‐53.  

557.   Iskandrian   AE,   Germano   G,   VanDecker   W,   Ogilby   JD,   Wolf   N,   Mintz   R,  

Berman  DS.  Validation  of  left  ventricular  volume  measurements  by  gated  SPECT  

99mTc-­‐labeled  sestamibi  imaging.  J  Nucl  Cardiol  1998;5:574-­‐8.  

558.   Anagnostopoulos   C,   Gunning   MG,   Pennell   DJ,   Laney   R,   Proukakis   H,  

Underwood  SR.  Regional  myocardial  motion   and   thickening   assessed  at   rest   by  

ECG-­‐gated   99mTc-­‐MIBI   emission   tomography   and   by   magnetic   resonance  

imaging.  Eur  J  Nucl  Med  1996;23:909-­‐16.  

Page 309: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  284  

559.   Johnson   LL,   Verdesca   SA,   Aude  WY,   Xavier   RC,   Nott   LT,   Campanella  MW,  

Germano  G.  Postischemic  stunning  can  affect  left  ventricular  ejection  fraction  and  

regional  wall  motion  on  post-­‐stress  gated  sestamibi  tomograms.  J  Am  Coll  Cardiol  

1997;30:1641-­‐8.  

560.   Lee   DS,   Ahn   JY,   Kim   SK,   Oh   BH,   Seo   JD,   Chung   JK,   Lee   MC.   Limited  

performance  of  quantitative  assessment  of  myocardial   function  by  thallium-­‐201  

gated   myocardial   single-­‐photon   emission   tomography.   Eur   J   Nucl   Med  

2000;27:185-­‐91.  

561.  Sharir  T,  Germano  G,  Kavanagh  PB,  Lai  S,  Cohen  I,  Lewin  HC,  Friedman  JD,  

Zellweger   MJ,   Berman   DS.   Incremental   prognostic   value   of   post-­‐stress   left  

ventricular   ejection   fraction   and   volume   by   gated   myocardial   perfusion   single  

photon  emission  computed  tomography.  Circulation  1999;100:1035-­‐42.  

562.   Wang   F,   Zhang   J,   Fang   W,   Zhao   SH,   Lu   MJ,   He   ZX.   Evaluation   of   left  

ventricular   volumes   and   ejection   fraction   by   gated   SPECT   and   cardiac   MRI   in  

patients  with  dilated  cardiomyopathy.  Eur  J  Nucl  Med  Mol  Imaging  2009;36:1611-­‐

21.  

563.  de  Graaf  FR,  Schuijf  JD,  Delgado  V,  van  Velzen  JE,  Kroft  LJ,  de  Roos  A,  Jukema  

JW,  van  der  Wall  EE,  Bax  JJ.  Clinical  application  of  CT  coronary  angiography:  state  

of  the  art.  Heart  Lung  Circ  2010;19:107-­‐16.  

564.   Kim   SS,   Ko   SM,   Song   MG,   Kim   JS.   Assessment   of   global   function   of   left  

ventricle  with  dual-­‐source  CT   in  patients  with  severe  arrhythmia:  a  comparison  

with  the  use  of  two-­‐dimensional  transthoracic  echocardiography.  Int  J  Cardiovasc  

Imaging  2010.  

565.  Koch  K,  Oellig  F,  Kunz  P,  Bender  P,  Oberholzer  K,  Mildenberger  P,  Hake  U,  

Kreitner   KF,   Thelen   M.   [Assessment   of   global   and   regional   left   ventricular  

Page 310: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  285  

function   with   a   16-­‐slice   spiral-­‐CT   using   two   different   software   tools   for  

quantitative  functional  analysis  and  qualitative  evaluation  of  wall  motion  changes  

in   comparison   with   magnetic   resonance   imaging].   Rofo   2004;176:1786-­‐93.   In:  

Keenan   NG,   Pennell   DJ.   CMR   of   ventricular   function.   Echocardiography  

2007;24:185-­‐93.  

566.  Nikolaou  K,  Flohr  T,  Knez  A,  Rist  C,  Wintersperger  B,  Johnson  T,  Reiser  MF,  

Becker   CR.   Advances   in   cardiac   CT   imaging:   64-­‐slice   scanner.   Int   J   Cardiovasc  

Imaging  2004;20:535-­‐40.  

567.  Palumbo  A,  Maffei  E,  Martini  C,  Messalli  G,  Seitun  S,  Malago  R,  Aldrovandi  A,  

Emiliano   E,   Cuttone   A,   Weustink   A,   Mollet   N,   Cademartiri   F.   Functional  

parameters  of   the   left  ventricle:   comparison  of   cardiac  MRI  and  cardiac  CT   in  a  

large  population.  Radiol  Med  2010;115:702-­‐13.  

568.  Salm  LP,  Schuijf  JD,  de  Roos  A,  Lamb  HJ,  Vliegen  HW,  Jukema  JW,  Joemai  R,  

van  der  Wall  EE,  Bax  JJ.  Global  and  regional  left  ventricular  function  assessment  

with  16-­‐detector  row  CT:  comparison  with  echocardiography  and  cardiovascular  

magnetic  resonance.  Eur  J  Echocardiogr  2006;7:308-­‐14.  

569.   Seneviratne  SK,  Truong  QA,  Bamberg  F,  Rogers   IS,  Shapiro  MD,  Schlett  CL,  

Chae   CU,   Cury   R,   Abbara   S,   Brady   TJ,   Nagurney   JT,   Hoffmann   U.   Incremental  

diagnostic  value  of  regional  left  ventricular  function  over  coronary  assessment  by  

cardiac   computed   tomography   for   the  detection  of   acute   coronary   syndrome   in  

patients  with  acute  chest  pain:  from  the  ROMICAT  trial.  Circ  Cardiovasc  Imaging  

2010;3:375-­‐83.  

570.  Wen   Z,   Zhang   Z,   Yu  W,   Fan   Z,   Du   J,   Lv   B.   Assessing   the   left   atrial   phasic  

volume   and   function   with   dual-­‐source   CT:   comparison   with   3T   MRI.   Int   J  

Cardiovasc  Imaging  2010;26  Suppl  1:83-­‐92.  

Page 311: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  286  

571.  Ganten  M,  Krautter  U,  Hosch  W,  Hansmann  J,  von  Tengg-­‐Kobligk  H,  Delorme  

S,   Kauczor   HU,   Kauffmann   GW,   Bock   M.   Age   related   changes   of   human   aortic  

distensibility:  evaluation  with  ECG-­‐gated  CT.  Eur  Radiol  2007;17:701-­‐8.  

572.  Einstein  AJ,  Henzlova  MJ,  Rajagopalan  S.  Estimating  risk  of  cancer  associated  

with   radiation   exposure   from   64-­‐slice   computed   tomography   coronary  

angiography.  JAMA  2007;298:317-­‐23.  

573.   Faletra   FF,   D'Angeli   I,   Klersy   C,   Averaimo   M,   Klimusina   J,   Pasotti   E,  

Pedrazzini  GB,  Curti  M,  Carraro  C,  Diliberto  R,  Moccetti  T,  Auricchio  A.  Estimates  

of   lifetime  attributable  risk  of  cancer  after  a  single  radiation  exposure   from  64-­‐

slice  computed  tomographic  coronary  angiography.  Heart  2010;96:927-­‐32.  

574.   Huang   B,   Li   J,   Law   MW,   Zhang   J,   Shen   Y,   Khong   PL.   Radiation   dose   and  

cancer  risk  in  retrospectively  and  prospectively  ECG-­‐gated  coronary  angiography  

using  64-­‐slice  multidetector  CT.  Br  J  Radiol  2010;83:152-­‐8.  

575.   Bloomgarden  DC,   Fayad   ZA,   Ferrari   VA,   Chin  B,   Sutton  MG,   Axel   L.   Global  

cardiac   function   using   fast   breath-­‐hold   MRI:   validation   of   new   acquisition   and  

analysis  techniques.  Magn  Reson  Med  1997;37:683-­‐92.  

576.   Jarvinen  VM,  Kupari  MM,  Poutanen  VP,  Hekali  PE.  A  simplified  method   for  

the  determination  of   left  atrial   size  and   function  using  cine  magnetic   resonance  

imaging.  Magn  Reson  Imaging  1996;14:215-­‐26.  

577.  Myerson  SG,  Bellenger  NG,  Pennell  DJ.  Assessment  of   left  ventricular  mass  

by  cardiovascular  magnetic  resonance.  Hypertension  2002;39:750-­‐5.  

578.   Sechtem   U,   Pflugfelder   PW,   Gould   RG,   Cassidy   MM,   Higgins   CB.  

Measurement   of   right   and   left   ventricular   volumes   in   healthy   individuals   with  

cine  MR  imaging.  Radiology  1987;163:697-­‐702.  

Page 312: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  287  

579.  Grothues  F,  Smith  GC,  Moon  JC,  Bellenger  NG,  Collins  P,  Klein  HU,  Pennell  DJ.  

Comparison   of   interstudy   reproducibility   of   cardiovascular  magnetic   resonance  

with  two-­‐dimensional  echocardiography  in  normal  subjects  and  in  patients  with  

heart  failure  or  left  ventricular  hypertrophy.  Am  J  Cardiol  2002;90:29-­‐34.  

580.   Carpenter   JP,   Alpendurada   F,   Deac   M,   Maceira   A,   Garbowski   M,   Kirk   P,  

Walker   JM,   Porter   JB,   Shah   F,   Banya   W,   He   T,   Smith   GC,   Pennell   DJ.   Right  

ventricular  volumes  and  function  in  thalassemia  major  patients  in  the  absence  of  

myocardial  iron  overload.  J  Cardiovasc  Magn  Reson  2010;12:24.  

581.  Katz   J,  Whang   J,  Boxt  LM,  Barst  RJ.  Estimation  of   right  ventricular  mass   in  

normal  subjects  and  in  patients  with  primary  pulmonary  hypertension  by  nuclear  

magnetic  resonance  imaging.  J  Am  Coll  Cardiol  1993;21:1475-­‐81.  

582.   Marcus   F,   Basso   C,   Gear   K,   Sorrell   VL.   Pitfalls   in   the   diagnosis   of  

arrhythmogenic   right   ventricular   cardiomyopathy/dysplasia.   Am   J   Cardiol  

2010;105:1036-­‐9.  

583.  Teo  KS,  Dundon  BK,  Molaee  P,  Williams  KF,  Carbone  A,  Brown  MA,  Worthley  

MI,   Disney   PJ,   Sanders   P,   Worthley   SG.   Percutaneous   closure   of   atrial   septal  

defects   leads   to   normalisation   of   atrial   and   ventricular   volumes.   J   Cardiovasc  

Magn  Reson  2008;10:55.  

584.  Maceira  AM,  Cosin-­‐Sales  J,  Roughton  M,  Prasad  SK,  Pennell  DJ.  Reference  left  

atrial   dimensions   and   volumes   by   steady   state   free   precession   cardiovascular  

magnetic  resonance.  J  Cardiovasc  Magn  Reson  2010;12:65.  

585.  Daneshvar  D,  Wei   J,  Tolstrup  K,  Thomson  LE,  Shufelt  C,  Merz  CN.  Diastolic  

dysfunction:   Improved   understanding   using   emerging   imaging   techniques.   Am  

Heart  J  2010;160:394-­‐404.  

Page 313: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  288  

586.   Maceira   AM,   Prasad   SK,   Khan   M,   Pennell   DJ.   Normalized   left   ventricular  

systolic   and   diastolic   function   by   steady   state   free   precession   cardiovascular  

magnetic  resonance.  J  Cardiovasc  Magn  Reson  2006;8:417-­‐26.  

587.  Rathi  VK,  Doyle  M,  Yamrozik  J,  Williams  RB,  Caruppannan  K,  Truman  C,  Vido  

D,   Biederman   RW.   Routine   evaluation   of   left   ventricular   diastolic   function   by  

cardiovascular   magnetic   resonance:   a   practical   approach.   J   Cardiovasc   Magn  

Reson  2008;10:36.  

588.   Rubinshtein   R,   Glockner   JF,   Feng   D,   Araoz   PA,   Kirsch   J,   Syed   IS,   Oh   JK.  

Comparison  of  magnetic  resonance  imaging  versus  Doppler  echocardiography  for  

the   evaluation   of   left   ventricular   diastolic   function   in   patients   with   cardiac  

amyloidosis.  Am  J  Cardiol  2009;103:718-­‐23.  

589.  Valsangiacomo  ER,  Barrea  C,  Macgowan  CK,  Smallhorn  JF,  Coles   JG,  Yoo  SJ.  

Phase-­‐contrast  MR  assessment  of  pulmonary  venous  blood  flow  in  children  with  

surgically  repaired  pulmonary  veins.  Pediatr  Radiol  2003;33:607-­‐13.  

590.  Negrou  K,  Burns  J,  Gupta  S,  Plein  S,  Radjenovic  A,  Greenwood  JP.  Assessment  

of   change   in   aortic   distensibility   in   patients   with   left   ventricular   hypertrophy  

(LVH),   before   and   after   therapy,   using   Cardiac   Magnetic   Resonance   (CMR)  

imaging.  J  Cardiovasc  Magn  Reson.  2009;11:P142.  

591.   Foster  MC,  Keyes  MJ,   Larson  MG,  Vita   JA,  Mitchell  GF,  Meigs   JB,  Vasan  RS,  

Benjamin   EJ,   Fox   CS.   Relations   of  measures   of   endothelial   function   and   kidney  

disease:  the  Framingham  Heart  Study.  Am  J  Kidney  Dis  2008;52:859-­‐67.  

592.  Malik  AR,  Kondragunta  V,  Kullo  IJ.  Forearm  vascular  reactivity  and  arterial  

stiffness   in   asymptomatic   adults   from   the   community.   Hypertension  

2008;51:1512-­‐8.  

Page 314: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  289  

593.  Covic  A,  Goldsmith  DJ,  Gusbeth-­‐Tatomir  P,  Buhaescu   I,  Covic  M.  Successful  

renal  transplantation  decreases  aortic  stiffness  and  increases  vascular  reactivity  

in  dialysis  patients.  Transplantation  2003;76:1573-­‐7.  

594.  Barac  A,  Campia  U,  Panza  JA.  Methods  for  evaluating  endothelial  function  in  

humans.  Hypertension  2007;49:748-­‐60.  

595.  Philpott  AC,  Lonn  E,  Title  LM,  Verma  S,  Buithieu  J,  Charbonneau  F,  Anderson  

TJ.  Comparison  of  new  measures  of  vascular  function  to  flow  mediated  dilatation  

as  a  measure  of  cardiovascular  risk  factors.  Am  J  Cardiol  2009;103:1610-­‐5.  

596.   Hudsmith   LE,   Petersen   SE,   Francis   JM,   Robson   MD,   Neubauer   S.   Normal  

human  left  and  right  ventricular  and  left  atrial  dimensions  using  steady  state  free  

precession  magnetic  resonance  imaging.  J  Cardiovasc  Magn  Reson  2005;7:775-­‐82.  

597.  Alfakih  K,  Plein  S,  Thiele  H,   Jones  T,  Ridgway   JP,   Sivananthan  MU.  Normal  

human   left   and   right   ventricular   dimensions   for   MRI   as   assessed   by   turbo  

gradient  echo  and  steady-­‐state  free  precession  imaging  sequences.  J  Magn  Reson  

Imaging  2003;17:323-­‐9.  

598.  Pennell  DJ.  Ventricular  volume  and  mass  by  CMR.  J  Cardiovasc  Magn  Reson  

2002;4:507-­‐13.  

599.   Karamitsos   TD,   Hudsmith   LE,   Selvanayagam   JB,   Neubauer   S,   Francis   JM.  

Operator   induced   variability   in   left   ventricular   measurements   with  

cardiovascular  magnetic  resonance  is  improved  after  training.  J  Cardiovasc  Magn  

Reson  2007;9:777-­‐83.  

600.  Fieno  DS,  Thomson  LE,  Slomka  PJ,  Abidov  A,  Nishina  H,  Chien  D,  Hayes  SW,  

Saouaf   R,   Germano   G,   Friedman   JD,   Berman   DS.   Rapid   assessment   of   left  

ventricular   segmental   wall   motion,   ejection   fraction,   and   volumes   with   single  

Page 315: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  290  

breath-­‐hold,   multi-­‐slice   TrueFISP   MR   imaging.   J   Cardiovasc   Magn   Reson  

2006;8:435-­‐44.  

601.   Cerqueira   MD,   Weissman   NJ,   Dilsizian   V,   Jacobs   AK,   Kaul   S,   Laskey   WK,  

Pennell   DJ,   Rumberger   JA,   Ryan   T,   Verani   MS.   Standardized   myocardial  

segmentation   and   nomenclature   for   tomographic   imaging   of   the   heart:   a  

statement   for   healthcare   professionals   from   the   Cardiac   Imaging   Committee   of  

the  Council  on  Clinical  Cardiology  of  the  American  Heart  Association.  Circulation  

2002;105:539-­‐42.  

602.   Anderson   TJ,   Worthley   MI,   Goodhart   DM,   Curtis   MJ.   Relation   of   Basal  

coronary   nitric   oxide   activity   to   the   burden   of   atherosclerosis.   Am   J   Cardiol  

2005;95:1170-­‐4.  

603.  Farouque  HM,  Worthley  SG,  Meredith  IT,  Skyrme-­‐Jones  RA,  Zhang  MJ.  Effect  

of   ATP-­‐sensitive   potassium   channel   inhibition   on   resting   coronary   vascular  

responses  in  humans.  Circ  Res  2002;90:231-­‐6.  

604.  Eschbach  JW,  Egrie  JC,  Downing  MR,  Browne  JK,  Adamson  JW.  Correction  of  

the  anemia  of   end-­‐stage   renal  disease  with   recombinant  human  erythropoietin.  

Results  of  a  combined  phase  I  and  II  clinical  trial.  N  Engl  J  Med  1987;316:73-­‐8.  

605.  Aaron  CP,  Tandri  H,  Barr  RG,  Johnson  WC,  Bagiella  E,  Chahal  H,  Jain  A,  Kizer  

JR,   Bertoni   AG,   Lima   JA,   Bluemke   DA,   Kawut   SM.   Physical   activity   and   right  

ventricular   structure   and   function:   the  MESA-­‐right   ventricle   study.  Am   J   Respir  

Crit  Care  Med  2011;183:396-­‐404.  

606.   La   Gerche   A,   Heidbuchel   H,   Burns   AT,   Mooney   DJ,   Taylor   AJ,   Pfluger   HB,  

Inder  WJ,  Macisaac  AI,  Prior  DL.  Disproportionate  Exercise  Load  and  Remodeling  

of  the  Athlete's  Right  Ventricle.  Med  Sci  Sports  Exerc  2010.  

Page 316: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  291  

607.  Scott  JM,  Esch  BT,  Haykowsky  MJ,  Paterson  I,  Warburton  DE,  Chow  K,  Cheng  

Baron   J,   Lopaschuk   GD,   Thompson   RB.   Effects   of   high   intensity   exercise   on  

biventricular   function   assessed   by   cardiac   magnetic   resonance   imaging   in  

endurance   trained  and  normally   active   individuals.  Am   J  Cardiol   2010;106:278-­‐

83.  

608.  Grosse-­‐Wortmann  L,  Roche  SL,  Yoo  SJ,   Seed  M,  Kantor  P.  Early   changes   in  

right   ventricular   function   and   their   clinical   consequences   in   childhood   and  

adolescent  dilated  cardiomyopathy.  Cardiol  Young  2010;20:418-­‐25.  

609.   Banks   L,   Sasson   Z,   Busato   M,   Goodman   JM.   Impaired   left   and   right  

ventricular  function  following  prolonged  exercise  in  young  athletes:  influence  of  

exercise   intensity   and   responses   to   dobutamine   stress.   J   Appl   Physiol  

2010;108:112-­‐9.  

610.   Stevens   GR,   Lala   A,   Sanz   J,   Garcia   MJ,   Fuster   V,   Pinney   S.   Exercise  

performance  in  patients  with  pulmonary  hypertension  linked  to  cardiac  magnetic  

resonance  measures.  J  Heart  Lung  Transplant  2009;28:899-­‐905.  

611.  Moller  T,  Peersen  K,  Pettersen  E,  Thaulow  E,  Holmstrom  H,  Fredriksen  PM.  

Non-­‐invasive   measurement   of   the   response   of   right   ventricular   pressure   to  

exercise,  and  its  relation  to  aerobic  capacity.  Cardiol  Young  2009;19:465-­‐73.  

612.   Laurent   S,   Boutouyrie   P.   Recent   advances   in   arterial   stiffness   and   wave  

reflection  in  human  hypertension.  Hypertension  2007;49:1202-­‐6.  

613.  Apter  JT.  Correlation  of  visco-­‐elastic  properties  with  microscopic  structure  

of   large  arteries.   IV.  Thermal  responses  of  collagen,  elastin,  smooth  muscle,  and  

intact  arteries.  Circ  Res  1967;21:901-­‐18.  

614.  Virmani  R,  Avolio  AP,  Mergner  WJ,  Robinowitz  M,  Herderick  EE,  Cornhill  JF,  

Guo   SY,   Liu   TH,   Ou   DY,   O'Rourke   M.   Effect   of   aging   on   aortic   morphology   in  

Page 317: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  292  

populations  with   high   and   low  prevalence   of   hypertension   and   atherosclerosis.  

Comparison   between   occidental   and   Chinese   communities.   Am   J   Pathol  

1991;139:1119-­‐29.  

615.   Safar   ME,   Levy   BI,   Struijker-­‐Boudier   H.   Current   perspectives   on   arterial  

stiffness   and   pulse   pressure   in   hypertension   and   cardiovascular   diseases.  

Circulation  2003;107:2864-­‐9.  

616.   Benetos   A,   Laurent   S,   Hoeks   AP,   Boutouyrie   PH,   Safar   ME.   Arterial  

alterations  with   aging   and   high   blood   pressure.   A   noninvasive   study   of   carotid  

and  femoral  arteries.  Arterioscler  Thromb  1993;13:90-­‐7.  

617.  Boutouyrie  P,  Laurent  S,  Benetos  A,  Girerd  XJ,  Hoeks  AP,  Safar  ME.  Opposing  

effects   of   ageing   on   distal   and   proximal   large   arteries   in   hypertensives.   J  

Hypertens  Suppl  1992;10:S87-­‐91.  

618.  van  der  Heijden-­‐Spek  JJ,  Staessen  JA,  Fagard  RH,  Hoeks  AP,  Boudier  HA,  van  

Bortel  LM.  Effect  of  age  on  brachial  artery  wall  properties  differs  from  the  aorta  

and  is  gender  dependent:  a  population  study.  Hypertension  2000;35:637-­‐42.  

619.  Kimoto  E,  Shoji  T,  Shinohara  K,  Inaba  M,  Okuno  Y,  Miki  T,  Koyama  H,  Emoto  

M,  Nishizawa  Y.  Preferential  stiffening  of  central  over  peripheral  arteries  in  type  

2  diabetes.  Diabetes  2003;52:448-­‐52.  

620.  Hatsuda  S,  Shoji  T,  Shinohara  K,  Kimoto  E,  Mori  K,  Fukumoto  S,  Koyama  H,  

Emoto  M,  Nishizawa  Y.  Regional  arterial  stiffness  associated  with  ischemic  heart  

disease  in  type  2  diabetes  mellitus.  J  Atheroscler  Thromb  2006;13:114-­‐21.  

621.  Kimoto  E,  Shoji  T,  Shinohara  K,  Hatsuda  S,  Mori  K,  Fukumoto  S,  Koyama  H,  

Emoto  M,  Okuno  Y,  Nishizawa  Y.  Regional  arterial  stiffness  in  patients  with  type  2  

diabetes  and  chronic  kidney  disease.  J  Am  Soc  Nephrol  2006;17:2245-­‐52.  

Page 318: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  293  

622.  Bonal   J,  Cleries  M,  Vela  E.  Transplantation  versus  haemodialysis   in  elderly  

patients.  Renal  Registry  Committee.  Nephrol  Dial  Transplant  1997;12:261-­‐4.  

623.  Controlling  the  epidemic  of  cardiovascular  disease  in  chronic  renal  disease:  

What   do   we   know?   What   do   we   need   to   know?   Where   do   we   go   from   here?  

Special   report   from   the   National   Kidney   Foundation   Task   Force   on  

Cardiovascular  Disease.  Am  J  Kidney  Dis  1998;32:S1-­‐199.  

624.  Chammas  E,  El-­‐Khoury  J,  Barbari  A,  Kamel  G,  Karam  A,  Tarcha  W,  Ghanem  G,  

Stephan   A.   Early   and   late   effects   of   renal   transplantation   on   cardiac   functions.  

Transplant  Proc  2001;33:2680-­‐2.  

625.  De  Lima  JJ,  Vieira  ML,  Molnar  LJ,  Medeiros  CJ,  Ianhez  LE,  Krieger  EM.  Cardiac  

effects   of   persistent   hemodialysis   arteriovenous   access   in   recipients   of   renal  

allograft.  Cardiology  1999;92:236-­‐9.  

626.  Ferreira  SR,  Moises  VA,  Tavares  A,  Pacheco-­‐Silva  A.  Cardiovascular  effects  of  

successful   renal   transplantation:   a   1-­‐year   sequential   study   of   left   ventricular  

morphology   and   function,   and   24-­‐hour   blood   pressure   profile.  Transplantation  

2002;74:1580-­‐7.  

627.   Arnol   M,   Knap   B,   Oblak   M,   Buturovic-­‐Ponikvar   J,   Bren   AF,   Kandus   A.  

Subclinical   left   ventricular   echocardiographic   abnormalities   1   year   after   kidney  

transplantation   are   associated   with   graft   function   and   future   cardiovascular  

events.  Transplant  Proc  2010;42:4064-­‐8.  

628.  McGregor  E,  Jardine  AG,  Murray  LS,  Dargie  HJ,  Rodger  RS,  Junor  BJ,  McMillan  

MA,   Briggs   JD.   Pre-­‐operative   echocardiographic   abnormalities   and   adverse  

outcome  following  renal  transplantation.  Nephrol  Dial  Transplant  1998;13:1499-­‐

505.  

Page 319: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  294  

629.   Zimmerli   LU,  Mark  PB,   Steedman  T,   Foster   JE,  Berg  GA,  Dargie  HJ,   Jardine  

AG,  Delles  C,  Dominiczak  AF.  Vascular   function   in  patients  with  end-­‐stage   renal  

disease   and/or   coronary   artery   disease:   a   cardiac  magnetic   resonance   imaging  

study.  Kidney  Int  2007;71:68-­‐73.  

630.  Recio-­‐Mayoral  A,  Banerjee  D,  Streather  C,  Kaski  JC.  Endothelial  dysfunction,  

inflammation   and   atherosclerosis   in   chronic   kidney   disease   -­‐   a   cross-­‐sectional  

study  of  predialysis,  dialysis  and  kidney-­‐transplantation  patients.  Atherosclerosis  

2011.  

631.   Stadler   M,   Theuer   E,   Anderwald   C,   Hanusch-­‐Enserer   U,   Auinger   M,  

Bieglmayer   C,   Quehenberger   P,   Bischof  M,   Kastenbauer   T,  Wolzt  M,  Wagner   O,  

Prager   R.   Persistent   arterial   stiffness   and   endothelial   dysfunction   following  

successful   pancreas-­‐kidney   transplantation   in   Type   1   diabetes.   Diabet   Med  

2009;26:1010-­‐8.  

632.   Asberg   A,   Midtvedt   K,   Voytovich   MH,   Line   PD,   Narverud   J,   Reisaeter   AV,  

Morkrid   L,   Jenssen   T,   Hartmann   A.   Calcineurin   inhibitor   effects   on   glucose  

metabolism   and   endothelial   function   following   renal   transplantation.   Clin  

Transplant  2009;23:511-­‐8.  

633.  Nishioka  T,  Akiyama  T,  Nose  K,  Koike  H.  Arterial   stiffness   after   successful  

renal  transplantation.  Transplant  Proc  2008;40:2405-­‐8.  

634.  Unger  P,  Wissing  KM,  de  Pauw  L,  Neubauer  J,  van  de  Borne  P.  Reduction  of  

left  ventricular  diameter  and  mass  after  surgical  arteriovenous  fistula  closure  in  

renal  transplant  recipients.  Transplantation  2002;74:73-­‐9.  

635.   Suessenbacher  A,  Frick  M,  Alber  HF,  Barbieri  V,  Pachinger  O,  Weidinger  F.  

Association   of   improvement   of   brachial   artery   flow-­‐mediated   vasodilation  with  

cardiovascular  events.  Vasc  Med  2006;11:239-­‐44.  

Page 320: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  295  

636.  Bergeron  S,  Hillis  GS,  Haugen  EN,  Oh  JK,  Bailey  KR,  Pellikka  PA.  Prognostic  

value   of   dobutamine   stress   echocardiography   in   patients   with   chronic   kidney  

disease.  Am  Heart  J  2007;153:385-­‐91.  

637.  Tita  C,  Karthikeyan  V,  Stroe  A,   Jacobsen  G,  Ananthasubramaniam  K.  Stress  

echocardiography   for  risk  stratification   in  patients  with  end-­‐stage  renal  disease  

undergoing  renal  transplantation.  J  Am  Soc  Echocardiogr  2008;21:321-­‐6.  

638.   Nandalur   KR,   Dwamena   BA,   Choudhri   AF,   Nandalur   MR,   Carlos   RC.  

Diagnostic   performance   of   stress   cardiac   magnetic   resonance   imaging   in   the  

detection   of   coronary   artery   disease:   a   meta-­‐analysis.   J   Am   Coll   Cardiol  

2007;50:1343-­‐53.  

639.   Nagel   E,   Lehmkuhl   HB,   Bocksch  W,   Klein   C,   Vogel   U,   Frantz   E,   Ellmer   A,  

Dreysse   S,   Fleck   E.   Noninvasive   diagnosis   of   ischemia-­‐induced   wall   motion  

abnormalities  with  the  use  of  high-­‐dose  dobutamine  stress  MRI:  comparison  with  

dobutamine  stress  echocardiography.  Circulation  1999;99:763-­‐70.  

640.   Rakhit   DJ,   Zhang   XH,   Leano   R,   Armstrong   KA,   Isbel   NM,   Marwick   TH.  

Prognostic   role   of   subclinical   left   ventricular   abnormalities   and   impact   of  

transplantation  in  chronic  kidney  disease.  Am  Heart  J  2007;153:656-­‐64.  

641.  Sahagun-­‐Sanchez  G,  Espinola-­‐Zavaleta  N,  Lafragua-­‐Contreras  M,  Chavez  PY,  

Gomez-­‐Nunez   N,   Keirns   C,   Romero-­‐Cardenas   A,   Perez-­‐Grovas   H,   Acosta   JH,  

Vargas-­‐Barron   J.   The   effect   of   kidney   transplant   on   cardiac   function:   an  

echocardiographic  perspective.  Echocardiography  2001;18:457-­‐62.  

642.   Reis   G,   Marcovitz   PA,   Leichtman   AB,   Merion   RM,   Fay   WP,   Werns   SW,  

Armstrong  WF.  Usefulness   of   dobutamine   stress   echocardiography   in   detecting  

coronary  artery  disease  in  end-­‐stage  renal  disease.  Am  J  Cardiol  1995;75:707-­‐10.  

Page 321: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  296  

643.  Rerkpattanapipat  P,  Morgan  TM,  Neagle  CM,  Link  KM,  Hamilton  CA,  Hundley  

WG.  Assessment  of  preoperative   cardiac   risk  with  magnetic   resonance   imaging.  

Am  J  Cardiol  2002;90:416-­‐9.  

644.  Hundley  WG,  Morgan  TM,  Neagle  CM,  Hamilton  CA,  Rerkpattanapipat  P,  Link  

KM.  Magnetic  resonance  imaging  determination  of  cardiac  prognosis.  Circulation  

2002;106:2328-­‐33.  

645.   Kelle   S,   Chiribiri   A,   Vierecke   J,   Egnell   C,   Hamdan   A,   Jahnke   C,   Paetsch   I,  

Wellnhofer   E,   Fleck   E,   Klein   C,   Gebker   R.   Long-­‐term   prognostic   value   of  

dobutamine  stress  CMR.  JACC  Cardiovasc  Imaging  2011;4:161-­‐72.  

646.   Geleijnse   ML,   Elhendy   A,   Fioretti   PM,   Roelandt   JR.   Dobutamine   stress  

myocardial  perfusion  imaging.  J  Am  Coll  Cardiol  2000;36:2017-­‐27.  

647.   Sicari   R,   Nihoyannopoulos   P,   Evangelista   A,   Kasprzak   J,   Lancellotti   P,  

Poldermans  D,  Voigt  JU,  Zamorano  JL.  Stress  Echocardiography  Expert  Consensus  

Statement-­‐-­‐Executive   Summary:   European   Association   of   Echocardiography  

(EAE)  (a  registered  branch  of  the  ESC).  Eur  Heart  J  2009;30:278-­‐89.  

648.  Paetsch   I,   Jahnke  C,  Ferrari  VA,  Rademakers  FE,  Pellikka  PA,  Hundley  WG,  

Poldermans   D,   Bax   JJ,   Wegscheider   K,   Fleck   E,   Nagel   E.   Determination   of  

interobserver   variability   for   identifying   inducible   left   ventricular   wall   motion  

abnormalities  during  dobutamine  stress  magnetic  resonance  imaging.  Eur  Heart  J  

2006;27:1459-­‐64.  

649.   Walsh   TF,   Dall'Armellina   E,   Chughtai   H,   Morgan   TM,   Ntim   W,   Link   KM,  

Hamilton   CA,   Kitzman   DW,   Hundley   WG.   Adverse   effect   of   increased   left  

ventricular   wall   thickness   on   five   year   outcomes   of   patients   with   negative  

dobutamine  stress.  J  Cardiovasc  Magn  Reson  2009;11:25.  

Page 322: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  297  

650.  Charoenpanichkit  C,  Morgan  TM,  Hamilton  CA,  Wallace  EL,  Robinson  K,  Ntim  

WO,   Hundley  WG.   Left   ventricular   hypertrophy   influences   cardiac   prognosis   in  

patients  undergoing  dobutamine   cardiac   stress   testing.  Circ   Cardiovasc   Imaging  

2010;3:392-­‐7.  

651.  Chung  SY,  Lee  KY,  Chun  EJ,  Lee  WW,  Park  EK,  Chang  HJ,  Choi  SI.  Comparison  

of   stress   perfusion   MRI   and   SPECT   for   detection   of   myocardial   ischemia   in  

patients  with  angiographically  proven   three-­‐vessel   coronary  artery  disease.  AJR  

Am  J  Roentgenol  2010;195:356-­‐62.  

652.  Schwitter  J,  Wacker  CM,  van  Rossum  AC,  Lombardi  M,  Al-­‐Saadi  N,  Ahlstrom  

H,   Dill   T,   Larsson   HB,   Flamm   SD,   Marquardt   M,   Johansson   L.   MR-­‐IMPACT:  

comparison   of   perfusion-­‐cardiac   magnetic   resonance   with   single-­‐photon  

emission  computed  tomography  for  the  detection  of  coronary  artery  disease  in  a  

multicentre,  multivendor,  randomized  trial.  Eur  Heart  J  2008;29:480-­‐9.  

653.  Sakuma  H,  Suzawa  N,  Ichikawa  Y,  Makino  K,  Hirano  T,  Kitagawa  K,  Takeda  K.  

Diagnostic  accuracy  of   stress   first-­‐pass  contrast-­‐enhanced  myocardial  perfusion  

MRI   compared   with   stress   myocardial   perfusion   scintigraphy.   AJR   Am   J  

Roentgenol  2005;185:95-­‐102.  

654.   Lee   DC,   Simonetti   OP,   Harris   KR,   Holly   TA,   Judd   RM,   Wu   E,   Klocke   FJ.  

Magnetic   resonance   versus   radionuclide   pharmacological   stress   perfusion  

imaging   for   flow-­‐limiting   stenoses  of   varying   severity.  Circulation   2004;110:58-­‐

65.  

655.  Kim  RJ,  Wu  E,  Rafael  A,  Chen  EL,  Parker  MA,  Simonetti  O,  Klocke  FJ,  Bonow  

RO,   Judd   RM.   The   use   of   contrast-­‐enhanced   magnetic   resonance   imaging   to  

identify  reversible  myocardial  dysfunction.  N  Engl  J  Med  2000;343:1445-­‐53.  

Page 323: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  298  

656.  Kim  RJ,  Fieno  DS,  Parrish  TB,  Harris  K,  Chen  EL,  Simonetti  O,  Bundy  J,  Finn  

JP,   Klocke   FJ,   Judd   RM.   Relationship   of   MRI   delayed   contrast   enhancement   to  

irreversible   injury,   infarct   age,   and   contractile   function.   Circulation  

1999;100:1992-­‐2002.  

657.  McCrohon  JA,  Moon  JC,  Prasad  SK,  McKenna  WJ,  Lorenz  CH,  Coats  AJ,  Pennell  

DJ.   Differentiation   of   heart   failure   related   to   dilated   cardiomyopathy   and  

coronary   artery   disease   using   gadolinium-­‐enhanced   cardiovascular   magnetic  

resonance.  Circulation  2003;108:54-­‐9.  

658.   Cowper   SE.   Nephrogenic   Fibrosing   Dermopathy   [ICNSFR  Website],   2001-­‐

2009.  

659.   Manka   R,   Jahnke   C,   Gebker   R,   Schnackenburg   B,   Paetsch   I.   Head-­‐to-­‐head  

comparison  of   first-­‐pass  MR  perfusion   imaging  during  adenosine  and  high-­‐dose  

dobutamine/atropine  stress.  Int  J  Cardiovasc  Imaging  2010.  

660.  Wahl  A,  Paetsch  I,  Gollesch  A,  Roethemeyer  S,  Foell  D,  Gebker  R,  Langreck  H,  

Klein  C,  Fleck  E,  Nagel  E.  Safety  and  feasibility  of  high-­‐dose  dobutamine-­‐atropine  

stress  cardiovascular  magnetic  resonance  for  diagnosis  of  myocardial  ischaemia:  

experience  in  1000  consecutive  cases.  Eur  Heart  J  2004;25:1230-­‐6.  

661.  Varga  A,  Garcia  MA,  Picano  E.  Safety  of   stress  echocardiography  (from  the  

International  Stress  Echo  Complication  Registry).  Am  J  Cardiol  2006;98:541-­‐3.  

662.   Lattanzi   F,   Picano   E,   Adamo   E,   Varga   A.   Dobutamine   stress  

echocardiography:   safety   in   diagnosing   coronary   artery   disease.   Drug   Saf  

2000;22:251-­‐62.  

663.   Kane   GC,   Hepinstall   MJ,   Kidd   GM,   Kuehl   CA,   Murphy   AT,   Nelson   JM,  

Schneider  L,  Stussy  VL,  Warmsbecker   JA,  Miller  FA,   Jr.,  Pellikka  PA,  McCully  RB.  

Page 324: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  299  

Safety  of  stress  echocardiography  supervised  by  registered  nurses:  results  of  a  2-­‐

year  audit  of  15,404  patients.  J  Am  Soc  Echocardiogr  2008;21:337-­‐41.  

664.  Lockie  T,   Ishida  M,  Perera  D,  Chiribiri  A,  De  Silva  K,  Kozerke  S,  Marber  M,  

Nagel   E,   Rezavi   R,   Redwood   S,   Plein   S.   High-­‐resolution   magnetic   resonance  

myocardial  perfusion  imaging  at  3.0-­‐Tesla  to  detect  hemodynamically  significant  

coronary   stenoses   as   determined   by   fractional   flow   reserve.   J   Am   Coll   Cardiol  

2011;57:70-­‐5.  

665.   Watkins   S,   McGeoch   R,   Lyne   J,   Steedman   T,   Good   R,   McLaughlin   MJ,  

Cunningham  T,  Bezlyak  V,  Ford  I,  Dargie  HJ,  Oldroyd  KG.  Validation  of  magnetic  

resonance   myocardial   perfusion   imaging   with   fractional   flow   reserve   for   the  

detection  of  significant  coronary  heart  disease.  Circulation  2009;120:2207-­‐13.  

666.  Kurita  T,  Sakuma  H,  Onishi  K,  Ishida  M,  Kitagawa  K,  Yamanaka  T,  Tanigawa  

T,   Kitamura   T,   Takeda   K,   Ito   M.   Regional   myocardial   perfusion   reserve  

determined   using  myocardial   perfusion  magnetic   resonance   imaging   showed   a  

direct  correlation  with  coronary  flow  velocity  reserve  by  Doppler  flow  wire.  Eur  

Heart  J  2009;30:444-­‐52.  

667.   Costa  MA,   Shoemaker   S,   Futamatsu  H,  Klassen  C,  Angiolillo  DJ,  Nguyen  M,  

Siuciak   A,   Gilmore   P,   Zenni   MM,   Guzman   L,   Bass   TA,   Wilke   N.   Quantitative  

magnetic   resonance   perfusion   imaging   detects   anatomic   and   physiologic  

coronary   artery   disease   as   measured   by   coronary   angiography   and   fractional  

flow  reserve.  J  Am  Coll  Cardiol  2007;50:514-­‐22.  

668.  Rieber   J,  Huber  A,  Erhard   I,  Mueller   S,   Schweyer  M,  Koenig  A,   Schiele  TM,  

Theisen   K,   Siebert   U,   Schoenberg   SO,   Reiser   M,   Klauss   V.   Cardiac   magnetic  

resonance   perfusion   imaging   for   the   functional   assessment   of   coronary   artery  

Page 325: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  300  

disease:   a   comparison   with   coronary   angiography   and   fractional   flow   reserve.  

Eur  Heart  J  2006;27:1465-­‐71.  

669.   Marwick   TH,   Steinmuller   DR,   Underwood   DA,   Hobbs   RE,   Go   RT,   Swift   C,  

Braun   WE.   Ineffectiveness   of   dipyridamole   SPECT   thallium   imaging   as   a  

screening  technique  for  coronary  artery  disease  in  patients  with  end-­‐stage  renal  

failure.  Transplantation  1990;49:100-­‐3.  

670.   Schachinger   V,   Britten   MB,   Zeiher   AM.   Prognostic   impact   of   coronary  

vasodilator  dysfunction  on  adverse  long-­‐term  outcome  of  coronary  heart  disease.  

Circulation  2000;101:1899-­‐906.  

671.  Teragawa  H,  Ueda  K,  Matsuda  K,  Kimura  M,  Higashi  Y,  Oshima  T,  Yoshizumi  

M,   Chayama   K.   Relationship   between   endothelial   function   in   the   coronary   and  

brachial  arteries.  Clin  Cardiol  2005;28:460-­‐6.  

672.  Takase  B,  Hamabe  A,  Satomura  K,  Akima  T,  Uehata  A,  Ohsuzu  F,  Ishihara  M,  

Kurita  A.  Close  relationship  between  the  vasodilator  response  to  acetylcholine  in  

the   brachial   and   coronary   artery   in   suspected   coronary   artery   disease.   Int   J  

Cardiol  2005;105:58-­‐66.  

673.   Takiuchi   S,   Fujii   H,   Kamide   K,   Horio   T,   Nakatani   S,   Hiuge   A,   Rakugi   H,  

Ogihara   T,   Kawano   Y.   Plasma   asymmetric   dimethylarginine   and   coronary   and  

peripheral   endothelial   dysfunction   in   hypertensive   patients.   Am   J   Hypertens  

2004;17:802-­‐8.  

674.   Matsuo   S,   Matsumoto   T,   Takashima   H,   Ohira   N,   Yamane   T,   Yasuda   Y,  

Tarutani   Y,   Horie   M.   The   relationship   between   flow-­‐mediated   brachial   artery  

vasodilation  and  coronary  vasomotor  responses  to  bradykinin:  comparison  with  

those  to  acetylcholine.  J  Cardiovasc  Pharmacol  2004;44:164-­‐70.  

Page 326: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  301  

675.  Sato  A,  Terata  K,  Miura  H,  Toyama  K,  Loberiza  FR,   Jr.,  Hatoum  OA,  Saito  T,  

Sakuma   I,   Gutterman   DD.  Mechanism   of   vasodilation   to   adenosine   in   coronary  

arterioles   from   patients   with   heart   disease.   Am   J   Physiol   Heart   Circ   Physiol  

2005;288:H1633-­‐40.  

676.  Canty  JM,  Jr.  Coronary  Blood  Flow  and  Myocardial  Ischemia  In:  Braunwald  E,  

Bonow   RO,   eds.   Braunwald's   Heart   Disease   :   A   Textbook   of   Cardiovascular  

Medicine.  Philadelphia:  Saunders,  2011:p.1049-­‐1075.  

677.  Kern  MJ,  Lerman  A,  Bech  JW,  De  Bruyne  B,  Eeckhout  E,  Fearon  WF,  Higano  

ST,   Lim   MJ,   Meuwissen   M,   Piek   JJ,   Pijls   NH,   Siebes   M,   Spaan   JA.   Physiological  

assessment  of  coronary  artery  disease  in  the  cardiac  catheterization  laboratory:  a  

scientific   statement   from   the   American   Heart   Association   Committee   on  

Diagnostic   and   Interventional   Cardiac   Catheterization,   Council   on   Clinical  

Cardiology.  Circulation  2006;114:1321-­‐41.  

678.   Herzog   CA.   Is   there   something   special   about   ischemic   heart   disease   in  

patients  undergoing  dialysis?  Am  Heart  J  2004;147:942-­‐4.  

679.  Vandenberg  BF,  Rossen  JD,  Grover-­‐McKay  M,  Shammas  NW,  Burns  TL,  Rezai  

K.   Evaluation   of   diabetic   patients   for   renal   and   pancreas   transplantation:  

noninvasive   screening   for   coronary   artery   disease   using   radionuclide  methods.  

Transplantation  1996;62:1230-­‐5.  

680.  Boudreau  RJ,  Strony  JT,  duCret  RP,  Kuni  CC,  Wang  Y,  Wilson  RF,  Schwartz  JS,  

Castaneda-­‐Zuniga  WR.  Perfusion  thallium  imaging  of  type  I  diabetes  patients  with  

end   stage   renal   disease:   comparison   of   oral   and   intravenous   dipyridamole  

administration.  Radiology  1990;175:103-­‐5.  

681.   Ng   MK,   Yeung   AC,   Fearon   WF.   Invasive   assessment   of   the   coronary  

microcirculation:  superior  reproducibility  and  less  hemodynamic  dependence  of  

Page 327: END0STAGE*RENAL FAILURE BENJAMIN*KANE*DUNDON · 2014. 6. 19. · EVALUATIONOF*ALTERATIONSIN*CARDIOVASCULAR STRUCTURE*ANDFUNCTIONIN* END0STAGE*RENALFAILURE* BENJAMIN*KANE*DUNDON* MBBS*FRACP*

  302  

index   of   microcirculatory   resistance   compared   with   coronary   flow   reserve.  

Circulation  2006;113:2054-­‐61.  

682.   Aarnoudse  W,   van   den   Berg   P,   van   de   Vosse   F,   Geven   M,   Rutten   M,   Van  

Turnhout  M,  Fearon  W,  de  Bruyne  B,  Pijls  N.  Myocardial   resistance  assessed  by  

guidewire-­‐based   pressure-­‐temperature   measurement:   in   vitro   validation.  

Catheter  Cardiovasc  Interv  2004;62:56-­‐63.  

683.   Fearon  WF,   Aarnoudse   W,   Pijls   NH,   De   Bruyne   B,   Balsam   LB,   Cooke   DT,  

Robbins   RC,   Fitzgerald   PJ,   Yeung   AC,   Yock   PG.   Microvascular   resistance   is   not  

influenced   by   epicardial   coronary   artery   stenosis   severity:   experimental  

validation.  Circulation  2004;109:2269-­‐72.  

684.   Melikian   N,   Vercauteren   S,   Fearon   WF,   Cuisset   T,   MacCarthy   PA,  

Davidavicius  G,  Aarnoudse  W,  Bartunek  J,  Vanderheyden  M,  Wyffels  E,  Wijns  W,  

Heyndrickx   GR,   Pijls   NH,   de   Bruyne   B.   Quantitative   assessment   of   coronary  

microvascular   function   in   patients  with   and  without   epicardial   atherosclerosis.  

EuroIntervention  2010;5:939-­‐45.  

685.   Layland   J,   Burns   AT,   Somaratne   J,   Whitbourn   R.   Looks   can   be   deceiving:  

dissociation   between   angiographic   severity   and   hemodynamic   significance   of   a  

lesion.  The  importance  of  microvascular  resistance.  Cardiovasc  Revasc  Med  2010.