Emm unit i

85
CONCEPTS OF MEASUREMENTS g.gOPINATH

Transcript of Emm unit i

Page 1: Emm unit   i

CONCEPTS OF MEASUREMENTS

g.gOPINATH

Page 2: Emm unit   i

WHAT IS METROLOGY

SCIENCE OF MEASUREMENTS

Everything has to do with measurement

Designing

Conducting

Analyzing Results

Experiment or test

within the Metrology realm

Allowing people to plan their lives

and make commercial

exchange with

confidence

CAN BE SEEN EVERYWHERE

Page 3: Emm unit   i

METROLOGY

Metrology Covers Three Main Tasks:

The definition of internationally accepted units of

measurement

The realization of units of measurement by scientific

method

Establishment of traceability chain in documenting the

accuracy of a measurement

“Metrology is essential in scientific research”

Page 4: Emm unit   i

Meaning of Metrology

• Metrology is the science of measurement. • Metrology may be divided depending upon the quantity

to be measured like metrology of length, metrology of time.

• But for engineering purposes, it is restricted to measurement of length and angles and other qualities which are expressed in linear or angular terms.

• In the broader sense it is not limited to length measurement but is also concerned with industrial inspection and its various techniques.

Page 5: Emm unit   i

Continue..

• Metrology is mainly concerned with:

(1) Establishing the units of measurements, ensuring the uniformity of measurements.

(2) Developing methods of measurement.

(3) Errors of measurement.

(4) Accuracy of measuring instruments and their care.

(5) Industrial inspection and its various techniques.

Page 6: Emm unit   i

• In design, design engineer should not only check his design from the point of view of the strength or economical production, but he should also keep in mind how the dimensions specified can be checked or measured.

• Higher productivity and accuracy can be achieved by properly understood, introduced the Metrology.

• You can improve the measuring accuracy and dimensional and geometrical accuracies of the product.

Necessity and importance of MetrologyNecessity and importance of Metrology

Page 7: Emm unit   i

Continue..

• Proper gauges should be designed and used for rapid and effective inspection.

• Also automation and automatic control, which are the modern trends for future developments, are based on measurement. Digital instruments also we can used for inspection.

Page 8: Emm unit   i

CATEGORIES OF METROLOGY

Scientific Metrology – Development of measurement

standards

Industrial Metrology – To ensure the adequate functioning

of measurement instruments used in

industry, production & testing

laboratories

Legal Metrology or

Weights & Measures – Accuracy of measurement where

these have influence on the

transparency of economic

transactions, health & safety

Page 9: Emm unit   i

AREAS OF INDUSTRIAL METROLOGY

Mechanical Metrology – Realises , maintains and

disseminates the national measurement standards in the

areas of Mass, Volume, Pressure and Dimension

Electrical Metrology –– Realises , maintains and

disseminates the national measurement standards in the

areas of AC/DC, low frequency, time & frequency and

temperature

Page 10: Emm unit   i

10

Units of MeasurementSI Units published by BIPM(Bureau of Weights and Measures)

Base Units…

Quantity Unit Symbol

Length metre m

Mass kilogram kg

Time second s

Temperature kelvin K

Electric current ampere A

Luminous intensity candela cd

Amount of substance mole mol

Page 11: Emm unit   i

Mechanical Measurements

• Act of measurement—the quantitative comparison between a predefined standard and a measurand to produce a measured result

• Measurand : physical parameter or variable to be measured

• Standard: basis for comparison of quantitative value to measurand.

Page 12: Emm unit   i

Standards organizations

• SASO— Saudi Arabian Standards organization

• ISO—International Organization for Standardization

• Others—ASME, NFPA, ASTM, etc.

Page 13: Emm unit   i

Objectives of Metrology:

• The basic objective of a measurement is to provide the required accuracy at a minimum cost.

1.1. Complete evaluationComplete evaluation of newly developed products.

2. Determination of Process CapabilitiesProcess Capabilities.3. Determination of the measuring instrument instrument

capabilities capabilities and ensure that they are quite sufficient for their respective measurements.

4. Minimising the cost of inspectioncost of inspection by effective and efficient use of available facilities.

Page 14: Emm unit   i

Continue..

5. Reducing the cost of rejectscost of rejects and rework through application of statistical quality control techniques.

6.6. To standardiseTo standardise the measuring methods.

7. To maintain maintain the accuraciesthe accuracies of measurement.

8. To prepare designprepare design for all gauges and special inspection fixtures.

Page 15: Emm unit   i

Fundamentals Methods of Measurements

There are two basic methods of measurement:• Direct comparison: with a primary or

secondary standard• Indirect comparison—conversion of

measurand input into an analogous form which can be processed and presented as known function of input

- A transducer is required to convert the

measurand into another form

Page 16: Emm unit   i

Measuring system: A measuring system is made of five elements:

These are:(1) Standard (2) Work piece(3) Instrument(4) Person(5) Environment

- The most basic element of measurement is a standard without which no measurement is possible.

- Once the standard is chosen select a work piece on which measurement will be performed.

- Then select a instrument with the help of which measurement will be done.

- The measurement should be performed under standard environment.

- And lastly there must be some person or mechanism to carry out the measurement.

Page 17: Emm unit   i

Generalized measuring system

Number of measuring instrument used in practice.

1) Primary sensing element

2) Variable conversion element

3) Variable manipulation

4) Data transmission element

5) Data processing element

6) Data presentation element

Page 18: Emm unit   i

Generalized Measurement System

Page 19: Emm unit   i

Generalized Measuring System

• Sensor or transducer stage to detect measurand and Convert input to a form suitable for processing e.g. :

- Temp. to voltage - Force to distance • Signal conditioning stage to modify the

transduced signal e.g. :

Amplification, Attenuation, Filtering, Encoding • Terminating readout stage to present desired

output (Analog or Digital form)

Page 20: Emm unit   i

Primary sensing element:

• Receives energy from the measured medium and o/p corr to measurand.

• O/p –Analogous electrical signal by transducer.

Variable conversion element:

• O/p elect signal volt, freq - more suitable form

Variable manipulation:

• Manipulate the signal and preserving original nature. Amplifies I/p signal

Page 21: Emm unit   i

Data transmission element:

• Transmits the data from one element to the other.

Data processing element:

• Modify the data before displayed or finally recorded.

• Separate signal hidden in noise, provide correction.

Page 22: Emm unit   i

Data presentation element:

• Communicate the information of measured variable to a human observer for monitoring, control or analysis purpose. Ex; analog indicator, digital, recorder.

Page 23: Emm unit   i

Measurement system of a filled thermal system

Page 24: Emm unit   i

Measurement system of a filled thermal system

Page 25: Emm unit   i

Measurement system

• Filled thermal system-process temperature measurement.

• Primary sensing element & variable conversion element-liquid or gas filled temp bulb-sense I/p and convert it in to pressure.

• Data transmission element: Pr is transmitted thro the capillary tube.

Page 26: Emm unit   i

• Variable conversion element: spiral bourdon type pressure gauge.P-L

• Variable manipulation element: linkage and gearing arrangement.

• Data presentation element- pointer and scale

Page 27: Emm unit   i

MEASURING INSTRUMENTS

• A broad classification of the instruments based on the application mode of operation, manner of energy conversion and the nature of energy conversion and the nature of output signal is given,

Page 28: Emm unit   i

MEASURING INSTRUMENTS

1. Deflection and null type instruments

2. Analog and digital instruments

3. Active and passive instruments

4.Automatic and manually operated instruments

5.Contacting and non contacting instruments

6. Absolute and secondary instruments

7. Intelligent instruments.

Page 29: Emm unit   i

Deflection and null type instruments

Page 30: Emm unit   i

Active and passive instruments

Page 31: Emm unit   i

Pressure Gauge

Page 32: Emm unit   i

Automatic operated instrument - example

Page 33: Emm unit   i

Absolute instrument

Page 34: Emm unit   i

Contacting and non contacting instruments

• Examples• Contact type – Thermometer • Non contact type – Optical pyrometer

Page 35: Emm unit   i

A pyrometer is a non-contacting device that intercepts and measures thermal radiation, a process known as pyrometry. This device can be used to determine the temperature of an object's surface.

Page 36: Emm unit   i
Page 37: Emm unit   i

Intelligent instruments

Page 38: Emm unit   i

sensitivity One of the qualities of measuring instruments is

their sensitivity. A measuring instrument is more sensitive the smaller the quantity that it is able to measure.

Sensitivity -- a measure of the smallest signal the instrument can measure. Usually, this is defined at the lowest range setting of the instrument.

For example, an AC meter with a lowest measurement range of 10 V may be able to measure signals with 1 mV resolution but the smallest detectable voltage it can measure may be 15 mV. In this case, the AC meter has a resolution of 1 mV but a sensitivity of 15 mV.

Page 39: Emm unit   i

Accuracy:

• Accuracy is defined as the closeness of the measured value with true value.

OR• Accuracy is defined as the degree to which the

measured value agrees with the true value.• Practically it is very difficult to measure the true

value and therefore a set of observations is made whose mean value is taken as the true value of the quantity measured.

Page 40: Emm unit   i

Precision:

• A measure of how close repeated trials are to each other. OR

• The closeness of repeated measurements.• Precision is the repeatability of the measuring process. It

refers to the group of measurements for the same characteristics taken under identical conditions.

• It indicated to what extent the identically performed measurements agree with each other.

• If the instrument is not precise it will give different results for the same dimension when measured again and again.

Page 41: Emm unit   i

Distinction between Precision and Accuracy

Page 42: Emm unit   i

• Figure shows the difference between the concepts of accuracy versus precision using a dartboard analogy that shows four different scenarios that contrast the two terms.

• A: Three darts hit the target center and are very close together = high accuracy and precision

• B: Three darts hit the target center but are not very close together = high accuracy, low precision

• C: Three darts do not hit the target center but are very close together = low accuracy, high precision

• D: Three darts do not hit the target center and are not close together = low accuracy and precision

Page 43: Emm unit   i

Factors affecting the accuracy of the measuring system:

• The basic components of an accuracy evolution are the five elements of a measuring system such as:1. Factors affecting the calibration standards.2. Factors affecting the work piece.3. Factors affecting the inherent characteristics of the instrument.4. Factors affecting the person, who carries out

the measurements. 5. Factors affecting the environment.

Page 44: Emm unit   i

Continue..

1. Factors affecting the standard. It may be affecting by:- Coefficient of thermal expansion,- calibration internal- stability with time- elastic properties- geometric compatibility

2. Factors affecting the work piece, these are- cleanliness, surface finish, surface defects etc.- elastic properties- hidden properties- arrangement of supporting workpiece.

Page 45: Emm unit   i

Continue..

3 .Factors affecting the inherent characteristics of instrument.- Scale error- effect of friction, hysteresis, zero drift- calibration errors- repeatability and readability- constant geometry for both workpiece and standard

4. Factors affecting person:- training skill- ability to select the measuring instruments and standard- attitude towards personal accuracy achievements- sense of precision appreciation

Page 46: Emm unit   i

Continue..5. Factors affecting environment:

- temperature, humidity etc.- clean surrounding and minimum vibration enhance precision- temperature equalization between standard, workpiece and instrument,- thermal expansion effects due to heat radiation from lights, heating elements, sunlight and people.

The above analysis of five basic metrology elements can be composed into the acronym.

SWIPE for convenient referenceWhere, S- standard

W- Workpiece I- Instrument

P- PersonE- Environment

Page 47: Emm unit   i

Sensitivity:• Sensitivity may be defined as the rate of

displacement of the indicating device of an instrument, with respect to the measured quantity.

• Sensitivity of thermometer means that it is the length of increase of the liquid per degree rise in temperature. More sensitive means more noticeable expansion.

Page 48: Emm unit   i

Continue…

• In other words, sensitivity of an instrument is the ratio of scale spacing to the scale division value. For example, if on a dial indicator, the scale spacing is 1 mm and the scale division value is 0.01 mm then sensitivity is 100. It is also called as amplification factor or gearing ratio.

Page 49: Emm unit   i

Readability:• Readability refers to the ease with which

the readings of a measuring instrument can be read.

• Fine and widely spaced graduation lines improve the readability.

• To make the micrometers more readable they are provided with venier scale or magnifying devices.

Page 50: Emm unit   i

Calibration:• The calibration of any measuring

instrument is necessary to measure the quantity in terms of standard unit.

• It is carried out by making adjustments such that the read out device produces zero output for zero input.

Page 51: Emm unit   i

Continue…

• The process whereby the magnitude of the output of a measuring instrument is related to the magnitude of the input force driving the instrument (i.e. Adjusting a weight scale to zero when there is nothing on it).

• The accuracy of the instrument depends on the calibration.

• If the output of the measuring instrument is linear and repeatable, it can be easily calibrated.

Page 52: Emm unit   i

Magnification:

• Magnification is the process of enlarging something only in appearance, not in physical size so that it is more readable.

(The stamp appears larger with the use of a magnifying glass.)

Page 53: Emm unit   i

Repeatability:• It is the ability of the measuring instrument to repeat the

same results for the measurements for the same quantity, when the measurements are carried out- by the same observer,- with the same instrument,- under the same conditions,- without any change in location,- without change in the method of measurement,- the measurements are carried out in short intervals of time.

• It may be expressed in terms of dispersion of the results.

Page 54: Emm unit   i

Reproducibility:

• Reproducibility is the closeness of the agreement between the results of measurements of the same quantity, when individual measurements are carried out:- by different observers,- by different methods,- using different instruments,- under different conditions, locations, times etc.

• It may be expressed in terms of the dispersion of the results.

Page 55: Emm unit   i

Backlash:

• In Mechanical Engineering, backlash, is clearance between mating components, sometimes described as the amount of lost motion due to clearance or slackness when movement is reversed and contact is re-established.

Page 56: Emm unit   i

Hysteresis:

• It is the difference between the indications of a measuring instrument when the same value of measured quantity is reached by increasing or decreasing that quantity.

• It is caused by friction, slack motion in the bearings and gears, elastic deformation, magnetic and thermal effects.

Page 57: Emm unit   i

Drift:

• It is an undesirable gradual deviation of the instrument output over a period of time that is unrelated to changes in input operating conditions or load.

• An instrument is said to have no drift if is reproduces the same readings at different times for same variation in measured quantity.

• It is caused by wear and tear, high stress developed at some parts etc.

Page 58: Emm unit   i

Threshold:

• The min. value below which no output change can be detected when the input of an instrument is increased gradually from zero is called the threshold of the instrument.

• Threshold may be caused by backlash.

Page 59: Emm unit   i

Resolution:

• When the input is slowly increased from some non-zero value, it is observed that the output does not change at all until a certain increment is exceeded; this increment is called resolution.

• It is the min. change in measured variable which produces an effective response of the instrument.

• It may be expressed in units of measured variable

Page 60: Emm unit   i

Dead zone and Dead Time:

Dead Zone:• The largest change of input quantity for which

there is no change of output of the instrument is termed as dead zone.

• It may occur due to friction in the instrument which does not allow the pointer to move till sufficient driving force is developed to overcome the friction loss.

• Dead zone caused by backlash and hysteresis in the instrument.

Page 61: Emm unit   i

Continue…

Dead Time:

• The time required by a measurement system to begin to respond to a change in the measurand is termed as dead time.

• It represents the time before the instrument begins to respond after the measured quantity has been changed.

Page 62: Emm unit   i

Errors in measurements:

• It is never possible to measure the true value of a dimension, there is always some error.

• The error in the measurement is the difference between the measured value and the true value of measured dimensions.

• The error in measurement may be expressed either as on absolute error or as a relative error.

Page 63: Emm unit   i

Continue…

Absolute error:

- True absolute error: It is the algebraic difference between the result of measurement and the conventional true value of the quantity.

- Apparent absolute error: If the series of measurement are made then the algebraic difference between one of the results of measurement and the arithmetical mean is known as apparent absolute error.

Page 64: Emm unit   i

Continue…

Relative error:

- It is the quotient of absolute error and the true value or the arithmetical mean for series of measurement.

Page 65: Emm unit   i

Continue…

• Types of errors: During measurement several types of error may

arise, these are:1. Static errors which includes:

(a) Reading errors(b) Characteristic errors(c) Environmental errors

2. Instrumental loading errors.3. Dynamic errors.

Page 66: Emm unit   i

Continue…1.Static errors:

- These errors result from the physical nature of various components of measuring system. There are three basic sources of static errors:

(a) Reading errors:

- These errors occur due to carelessness of operators. These do not have any direct relationship with other types of errors within the measuring system.

Page 67: Emm unit   i

Continue…

Reading errors include: Parallax error:

parallax errors arise on account of pointer and scale not being in same plane, we can eliminate this error by having the pointer and scale in same plane.

Wrong scale reading and wrong recording of data.

Inaccurate estimates of average reading. Incorrect conversion of units in calculations.

Page 68: Emm unit   i

Continue…

(b) Characteristics error: It is defined as the deviation of the

output of the measuring system from the theoretical predicated performance or from nominal performance specifications.

Linearity errors, repeatability, hysteresis are the characteristics errors if theoretical output is straight line. Calibration error is also included in characteristics error.

Page 69: Emm unit   i

Continue…

(c) Environmental errors: These error result from the effect of

surrounding such as temperature, pressure, humidity etc. on measuring system.

It can be reduced by controlling the atmosphere according to the specific requirement.

Page 70: Emm unit   i

Continue…

2. Instrument loading error: Loading errors results from the change in

measurand itself when being measured. Instrument loading error is the difference

between the value of measurand before and after the measurement.

For example a soft or ductile component is subjected to deformation during measurement due to the contact pressure of the instrument and cause a loading error. The effect of this error is unavoidable.

Page 71: Emm unit   i

Continue…

3. Dynamic errors:Dynamic error, also called measurement

error, is the difference between the true value of measuring quantity and value indicated by measurement system if no static error is assumed.

These errors can be broadly classified as:

Page 72: Emm unit   i

Continue…(a) Systematic or controllable errors:

- These errors are controllable in both their magnitude and stress. These can also be determined and reduced. These are due to:

(1) Calibrations errors:

- The actual length of standards such as scales will vary from nominal value by small amount. This will cause an error in measurement of constant magnitude.

Page 73: Emm unit   i

Continue…

(2) Atmospheric error:

- Variation in atmospheric condition (i.e temperature, pressure and moisture content) at the place of measurement from that of internationally agreed standard values (20’ temp. and 760 mm of Hg pressure) can give rise to error in measurand size of the component.

Page 74: Emm unit   i

Continue…

(3) Stylus pressure:- Another common source of error is the pressure with which the workpiece is pressed while measuring. Though the pressure involved is generally small but this is sufficient enough to cause appreciable deformation of both the stylus and the workpiece.-Variations in force applied by the anvils of micrometer on the work to be measured results in the difference in its readings. In this case error is caused by the distortion of both micrometer frame and workpiece.

Page 75: Emm unit   i

Continue…

(4) Avoidable errors:

- These errors may occur due to parallax, non alignment of workpiece centers, improper location of measuring instruments such as a thermometer in sunlight while measuring temperature.

Page 76: Emm unit   i

Continue…(b) Random errors:

- The random errors occur randomly and the specific causes of such errors cannot be determined. The likely sources of this type of error are:• Small variations in the position of setting standard

and workpiece.• Slight displacement of lever joints in the measuring

instrument.• Friction in measuring system.• Operator errors in reading scale.

Page 77: Emm unit   i

Difference between Systematic and Random errors:

Systematic error- These errors are

repetitive in nature and are of constant & similar form.

- These errors result from improper conditions.

Random error- These are non

consistent. The sources giving rise to such errors are random.

- Such errors are inherent in the measuring system.

Page 78: Emm unit   i

Continue…

- Expect personal errors all other systematic errors can be controlled in magnitude and sense.

- If properly analyzed these can be determined and reduced or eliminated.

- Specific causes, magnitudes and sense of these errors cannot be determined from the knowledge of measuring system.

- These errors cannot be eliminated, but the results obtained can be corrected.

Page 79: Emm unit   i

Continue…

- These errors includes calibration errors, variation in atmosphere, pressure, misalignment error etc.

- These errors includes Small variations in the position of setting standard and workpiece, Slight displacement of lever joints in the measuring instrument, Friction in measuring system, Operator errors in reading scale.

Page 80: Emm unit   i

Calibration

• Calibration involves the determination of the relationship between the input and output of a measurement system

• Eliminate Bias error• The proving of a measurement system’s

capability to quantify the input accurately• Calibration is accomplished by applying

known magnitudes of the input and observing the measurement system output

• The indirect measuring system must be calibrated.

Page 81: Emm unit   i

CALIBRATION

• Once a measurement device is selected, it must be calibrated– Calibration –Comparison of instrument’s reading to a

calibration standard

– Calibration standard created from a measurement• Inherent error

• Basic issue is how do we know that what we record has any relation to what we wish to measure?

Page 82: Emm unit   i

Calibration using Primary or/and Secondary Standards

• Known input signal and find the output.

- To establish the correct output scale.

- To find instrument reliability.

- To eliminate bias error (systematic error)• For linear relation o/p ∝ I/p needs single

point calibration.• For non-linear relation needs multi-point

calibrations. • Static calibration – vs – Dynamic calibration

Page 83: Emm unit   i

Primary Standards For Comparison and Calibration

• SI System: Meter – Kg -- Sec.– Kelvin – volt - Mole – Ampere – Radian

• LENGTH (meter): Distance traveled by light in vacuum during 1/299792458 of a sec.

• MASS (Kg.): International prototype (alloy of platinum and iridium) kept near Paris.

• TIME (Sec.): Duration of 9192631770 periods of the radiation emitted between two excitation levels of Cesium-133

• TEMPERATURE (Kelvin): K = oC + 273

Page 84: Emm unit   i

Dimensional Analysis

• Data presented in dimensionless form.

• Reducing No of experimental variables.

No of variables - No of dims.= No of π groups

• Use pi method or by inspection

• Basic dimensions: M L T θ(kg,m,sec,ok) • Saving(time&$)(10 tests –vs- 104 tests for F= fn (L,V,ρ, μ ))

Force coef. F/ρv2L2 = fn (Reynolds number ρvL/μ)• Helping in exp. Planning, insight, and similitude.

Page 85: Emm unit   i

Uncertainty of Measurements

• Measurement error = Measured result - True value

• The true value of a measurand is Unknown ( Error is unknown )

• The potential value of error can be estimated (uncertainty)

• Two types of error:

- Systematic errors (bias) and Random errors

( Statistics to estimate random errors)