Emanuele Coccia · 2020. 10. 2. · E. Coccia (DSCF) 3/11. Programme Definition of statistical...

23
Statistical mechanics Emanuele Coccia Dipartimento di Scienze Chimiche e Farmaceutiche E. Coccia (DSCF) 1 / 11

Transcript of Emanuele Coccia · 2020. 10. 2. · E. Coccia (DSCF) 3/11. Programme Definition of statistical...

  • Statistical mechanics

    Emanuele Coccia

    Dipartimento di Scienze Chimiche e Farmaceutiche

    E. Coccia (DSCF) 1 / 11

  • Practical info

    [email protected] building, fourth floor, room 453/454Wednesday 15h-17h (or whenever you want, just send anemail to me)Register on MoodleTeams group:

    "597SM - STATISTICAL MECHANICS - COCCIA EMANUELE (2020)"Search it on https://corsi.units.it/didattica-a-distanza (insert"Coccia")

    E. Coccia (DSCF) 2 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • ProgrammeDefinition of statistical mechanics and concepts ofthermodynamics

    Boltzmann distribution

    Partition function: canonical (Z ), microcanonical, grandcanonical

    Boltzmann statistics, ideal gas

    Translational, vibrational, rotational and electronic Z

    Energy equipartition law

    Chemical equilibrium

    Vibrations in solids: Einstein and Debye models

    Third law of thermodynamics

    Real gas: virial coefficients, corrections for non-ideality

    Liquids

    Computational methods: molecular dynamics, Monte Carlo

    Quantum ideal gas: Fermi-Dirac and Bose-Einstein statistics

    E. Coccia (DSCF) 3 / 11

  • Where studying

    Lesson notesStatistical mechanics: A concise introduction for chemists,Benjamin Widom, CambridgeNotes on Moodle“Extra“: An Introduction to Statistical Thermodynamics, TerrellL. Hill, Dover Publications

    E. Coccia (DSCF) 4 / 11

  • Exam

    Oral exam: (at least) three questions, possible simplenumerical problems to solveExam done in a lecture room (two rounds in winter session,two rounds in summer session, one round in september)

    E. Coccia (DSCF) 5 / 11

  • My research lines (for the master thesis)

    Simulating time-resolved ultrafast spectroscopies:role of quantum coherence in molecules,

    metallic clusters and nanostructuresCollaboration with the University of Padova

    E. Coccia (DSCF) 6 / 11

  • E. Coccia (DSCF) 7 / 11

  • Simulating nonlinear optical responses in strongelectric fields: high-harmonic generation

    spectroscopy of molecules (H2, CO2, thymine,uracil, benzene etc.)

    Collaboration with Sorbonne University in Paris (TCCM)

    E. Coccia (DSCF) 8 / 11

  • E. Coccia (DSCF) 9 / 11

  • Development and application of quantumMonte Carlo methods to the computation of

    electronic ground- and excited-state propertiesof molecules

    Collaboration with Sorbonne University in Paris (TCCM)

    E. Coccia (DSCF) 10 / 11

  • QMC  

    Compact  and  flexible  wave  func7on  

    Mul7-‐configura7onal  ansatz  

    High-‐performance  compu7ng  Wave  func7on  op7miza7on  

    Explicit  dynamical  correla7on  

    Pros: Accurate, parallel, N3el - N4el

    Cons: prefactor, error, no “black-box”

    E. Coccia (DSCF) 11 / 11