ELI-Extreme Light Infrastructures

118
3rd School on Advanced Laser Applications and Accelerators ELI-Extreme Light Infrastructures: An overview Salamanca 3 rd October 2014 Mauricio Rico [email protected] Centro de Láseres Pulsados. Edificio M5. Parque Científico de la USAL. c/ Adaja, 8. 37185 Villamayor de la Armuña. Salamanca

Transcript of ELI-Extreme Light Infrastructures

Page 1: ELI-Extreme Light Infrastructures

3rd School on Advanced Laser Applications and Accelerators

ELI-Extreme Light Infrastructures: An overview

Salamanca 3rd October 2014

Mauricio Rico [email protected]

Centro de Láseres Pulsados. Edificio M5. Parque Científico de la USAL. c/ Adaja, 8. 37185 Villamayor de la Armuña. Salamanca

Page 2: ELI-Extreme Light Infrastructures

2

ESFRI map Big scientific facilities

during last decades:

CLF - RAL

GSI – Phelix

LOA – Saclay

CILEX

MBI Berlin

CELIA

BESSY II

DESY

CERN

JUPITER – OMEGA

and more …

Facilities

Page 3: ELI-Extreme Light Infrastructures

3

Leading-edge research based on advanced laser sources. This activity aims at furthering the integration of state-of-the art laser technology enabling a wide range of novel applications with high industrial and social impact, such as bio-and nanophotonics, (bio)material analyses, (bio)medical diagnosis and treatment, communication and data processing. Synergies with relevant ESFRI Infrastructures, such as European XFEL, EUROFEL and ELI, should be duly exploited.

Page 4: ELI-Extreme Light Infrastructures

4

Aligning one of the Ultra laser systems at CLF 30 leading institutions in laser-based inter-disciplinary

research from 16 countries

Page 5: ELI-Extreme Light Infrastructures

5

http://www.laserlab-europe.eu

JRA proposal: 1 Biomedical Optics for Life Science Applications (BIOAPP) 2 Innovative Laser Technologies (ILAT) 3 Photonic Techniques for Material Analysis, Nano-science and Sensing (PHOTMAT) 4 Laser-driven High Energy Photon and Particle Sources towards Industrial and Societal Applications (LEPP)

LaserLab IV proposal

An Integrating Activity shall combine, in a closely co-ordinated manner: (i) Networking activities, to foster a culture of co-operation between research infrastructures, scientific communities, industries and other stakeholders as appropriate, and to help developing a more efficient and attractive European Research Area; (ii) Trans-national access or virtual access activities, to support scientific communities in their access to the identified research infrastructures; (iii) Joint research activities, to improve, in quality and/or quantity, the integrated services provided at European level by the infrastructures.

Page 6: ELI-Extreme Light Infrastructures

6

History of ELI

2013

13 countries; >300 projects

Page 7: ELI-Extreme Light Infrastructures

7

The ELI Project

ELI will be the world’s first international laser research infrastructure,

pursuing unique science and research applications for international

users.

ELI will be implemented as a distributed research infrastructure based

initially on 3 specialised and complementary facilities located in the

Czech Republic, Hungary and Romania.

ELI is the first ESFRI project to be fully implemented in the newer EU

Member States.

ELI is pioneering a novel funding model combining the use of EU

structural funds (ERDF) for the implementation, and member

contributions to a yet to be established European Research

Infrastructure Consortium ERIC for the operation.

Page 8: ELI-Extreme Light Infrastructures

8

Czech Republic Prague

Hungary Szeged Romania

Bucharest - Magurele

Site selection: decision on 2011

Overall cost: ≈850M€

Page 9: ELI-Extreme Light Infrastructures

9

Timeline of ELI

Page 10: ELI-Extreme Light Infrastructures

10

Budget evolution for ELI

Page 11: ELI-Extreme Light Infrastructures

11

SUMMARY of Laser-Plasma Interaction in “Radiation-Dominant” Regimes

Non- relativistic regime

Relativistic regime

Radiation dominant regime

Quantum Electro- Dynamics regime

e–-e+ pair creation in vacuum  

aµ1/4aµ 3/8aµ

1 rada Qa QEDa

p

aCurrently      Imax  =  1022  W/cm2    

ELI  pushes  the  limits  by  more  than  2  orders      

         

Ultrarela?vis?c  ELI  a0  >  2000,  E=  4  PV/m  

Es=    1320PV/m

408crada = γ = 70 MeV

Page 12: ELI-Extreme Light Infrastructures

12

530 pages Science, technology and implementation strategies of ELI > 170 authors

http://cswiki.eli-beams.eu/public/ELI_White_Book-092010.pdf

WhiteBook

Page 13: ELI-Extreme Light Infrastructures

13

Page 14: ELI-Extreme Light Infrastructures

14

ELI pillars

ELI-ALPS, Hu

ELI-Beamlines, Cz

Attosecond XUV/X-ray physics Applications in material sciences and biology

High-brightness sources of X-rays & particles Molecular & biomedical sciences, particle acceleration, dense plasma physics, exotic physics

ELI-NP, Ro

High-intensity development

Laser-induced nuclear physics Photonuclear science and applications

Exawatt-class laser technology High-intensity laser technologies for frontier physical research

Site to be determined

Page 15: ELI-Extreme Light Infrastructures

15

Page 16: ELI-Extreme Light Infrastructures

16

Título de la ponencia

Page 17: ELI-Extreme Light Infrastructures

17

Page 18: ELI-Extreme Light Infrastructures

18

Page 19: ELI-Extreme Light Infrastructures

19

Page 20: ELI-Extreme Light Infrastructures

20

Page 21: ELI-Extreme Light Infrastructures

21

Page 22: ELI-Extreme Light Infrastructures

22

Page 23: ELI-Extreme Light Infrastructures

ELI  Beamlines  facility  laser  

Exp.  areas  Laser  system  

Page 24: ELI-Extreme Light Infrastructures

Technologies  of  rep-­‐rate  pump  lasers  for  ELI-­‐Beamlines  

Thin  disk  pump  technology    Development  at  MPQ/LMU/MBI  ELI:  cooperaCon  on  scaling  to  >kW  avg  power  0.5  kW  1.5ps,  3kHz  

Design of 25 kW head

Mul?slab  pump  technology  LLNL  -­‐  Mercury  60J/10Hz,    Development  of  cryogenic  Yb:YAG  at  RAL  ELI:  cooperaCon  on  dev’t  of  500  J/10  Hz  cryogenic  amps,  HILASE      

Page 25: ELI-Extreme Light Infrastructures

Compressor (negative GDD) (Uni Jena 1400 Lines/mm): Bandwidth ~1 nm @ 1030 nm GDD ~ -108 fs² Efficiency ~ 77 % Pulse duration 1,6 ps Pulsenergie 25,0 mJ

0.5 kW ; 1J-2 J, 1 kHz staging for pumping the OPCPA, 1 kHz, Common effort, MPQ, court.T. Metzger

Page 26: ELI-Extreme Light Infrastructures

8 Yb:YAG slabs, each 8 mm thick Nominal operation temp. 170K

Modelling  of  ASE  losses  and  energy  budget  in  mulCslab  lasers  

Design  phase  of  500  J/  10  Hz  mulCslab  amplifiers  (collaboraCon  with  Rutherford  Appleton  Laboratory)  

Baseline model

pump  

ASE

E1

E2

E3

 M.  Divoký  et  al.        Numerical  evalua3on  of  heat  deposi3on  in  cryogenically  cooled  mul3-­‐slab  amplifier  

-­‐  ASE  losses  can  be  limited  by  MLD  absorpCve  coaCng  or  Cr:YAG  absorber  -­‐  Heat  conducCon  calculaCons  predict  <  4  K  temperature  non-­‐uniformity  

Heat  sources  in  the  crystal:    -­‐  TransiCon  (>11  %):    

Stokes  defect  Quantum  efficiency  (non-­‐radiaCve)  

-­‐  RadiaCve  (>35  %)  AbsorpCon  on  impuriCes  AbsorpCon  on  the  ASE  absorber  Higher  orders  effects  (colecCve  absorpCon)  

Page 27: ELI-Extreme Light Infrastructures

Concept  for  1  kJ  DPSSL  Amplifier,  RAL  design  HILASE,  HIPER  

•  Beam size 14 x 14 cm2 ð 5 J/cm2 extraction fluence (safe?)

•  2 Amplifier heads •  Pump 5kW/cm2 each side for 1 ms

•  Δλpump = 5 nm, λc,pump = 939 nm •  Combined pump power 4 MW ð need to

reach 25% o-o efficiency •  175 Kelvin (or lower) •  12 slabs, variable doping •  ASE control: go*l < 3 along diagonal

Page 28: ELI-Extreme Light Infrastructures

HiLASE project

Ins?tute  of  Physics  AS  CR  30 M € Diode pumped Lasers for applications

Page 29: ELI-Extreme Light Infrastructures

New  lasers  for  industry  and  research  ●    High  average  power  pulsed  LASErs    ●   Czech   na?onal   project   on   development   of   advanced   solid-­‐state   laser  technologies  based  on  diode  pumping    ●    Mo?vated   by   strong   need   for   head-­‐start   laser   technology   development  &  prototyping  for  the  next  genera?on  of  high  rep.  rate  laser  facili?es      ●   Poten?al   of   industrial   applica?ons   using   rep.   rate,   high-­‐peak   and   high-­‐average  power  lasers    ●      Implementa?on  phase:  4  years  (fully  supported)  ●      Opera?onal  phase:  ALAP  (ins?tu?onal/grants/contractual)  

Page 30: ELI-Extreme Light Infrastructures

Electron  acceleraCon  (LWFA)  with  10  PW  laser  pulses  

Submitted

Page 31: ELI-Extreme Light Infrastructures

10  PW  pump  lasers  (1st  floor)  

If  available,  disk  lasers  providing  kJ  energy  and  bandwidth  >12  nm  (~130  fs  pulses)      would  be  an  excellent  choice  for  e-­‐  acceleraCon!  Back  up  for  OPCPA  

Page 32: ELI-Extreme Light Infrastructures

ELI-­‐Beamlines  layout    

Ground  floor  Laser  systems  

First  floor  10  PW  pump  lasers  Cryogenic  &  thermal  management  support  systems  

Basement  Compressor  hall  of  10-­‐PW  beamlines        Pulse  distribuCon                6  dedicated  experimental  areas  

Page 33: ELI-Extreme Light Infrastructures

Oscillator  &  Front  end  

10  J  /  10  Hz      beamlines  

50  J  /  10  Hz      beamlines  

Broadband      10  PW  amps  

Cryogenic  systems,  power  supply  cooling,  auxiliary  systems  

10  PW  pump  lasers  

10  PW  opCcal        compressors   ExoCc  Physics  

e-­‐  acceleraCon  

p+  acceleraCon  

Material  &  biomolecular  applicaCons  

X-­‐ray  sources  

Plasma  physics  

All  laser  systems  shown,  including  those  which  might  be  located  at  the  facility  in  future  

Potential future laser driven FEL cooperation with accelerator people ( important )

X-­‐ray  sources:  plasma  x-­‐ray  laser  (seeded),  k-­‐alpha,  Betatron  

Page 34: ELI-Extreme Light Infrastructures

Underground  target  areas  with  shielding  

protons  100  MeV                /  10  Hz  

gamma-­‐rays  175  MeV  /  4  Sv  electrons  10  GeV  /  2  nC  

electrons  2-­‐3  GeV  /  1  nC  /  10  Hz  50  GeV  /  1.5  nC  /  <0.1  Hz  

protons  200  MeV  /  10  Hz  3  GeV  /  <0.1  Hz  

CombinaCon  of  bulk  shielding  and  local  shielding  (beam  dumps)  Radiological  classificaCon:  Control  rooms  are  class  R1,  accumulated  annual  dose  <1mSv    

Page 35: ELI-Extreme Light Infrastructures

Vibration analysis of the laser building

Master structural model

Monolithic structure (laser and experimental areas)

Supporting technologies (air conditioning, vacuum pumps, etc.) & auxiliary laboratories

The analysis accounts for actual sources of vibration measured on the site

Page 36: ELI-Extreme Light Infrastructures

36

Page 37: ELI-Extreme Light Infrastructures

37

Page 38: ELI-Extreme Light Infrastructures

38

Page 39: ELI-Extreme Light Infrastructures

39

Page 40: ELI-Extreme Light Infrastructures

40

Page 41: ELI-Extreme Light Infrastructures

41

Page 42: ELI-Extreme Light Infrastructures

42

Page 43: ELI-Extreme Light Infrastructures

43

Page 44: ELI-Extreme Light Infrastructures

44

Page 45: ELI-Extreme Light Infrastructures

45

Page 46: ELI-Extreme Light Infrastructures

46

Eli – attosecond Hungary

Page 47: ELI-Extreme Light Infrastructures

47

Page 48: ELI-Extreme Light Infrastructures

48

Page 49: ELI-Extreme Light Infrastructures

49

Page 50: ELI-Extreme Light Infrastructures

50

Page 51: ELI-Extreme Light Infrastructures

51

Page 52: ELI-Extreme Light Infrastructures

52

Page 53: ELI-Extreme Light Infrastructures

53

Page 54: ELI-Extreme Light Infrastructures

54

Page 55: ELI-Extreme Light Infrastructures

55

Page 56: ELI-Extreme Light Infrastructures

56

Page 57: ELI-Extreme Light Infrastructures

57

Page 58: ELI-Extreme Light Infrastructures

58

Page 59: ELI-Extreme Light Infrastructures

59

Layout – Scientific areas

Page 60: ELI-Extreme Light Infrastructures

60

Eli nuclear physics Romania

Page 61: ELI-Extreme Light Infrastructures

61

Page 62: ELI-Extreme Light Infrastructures

62

Page 63: ELI-Extreme Light Infrastructures

63

Page 64: ELI-Extreme Light Infrastructures

64

Page 65: ELI-Extreme Light Infrastructures

65

Page 66: ELI-Extreme Light Infrastructures

66

Page 67: ELI-Extreme Light Infrastructures

67

Page 68: ELI-Extreme Light Infrastructures

68

Page 69: ELI-Extreme Light Infrastructures

69

Page 70: ELI-Extreme Light Infrastructures

70

Page 71: ELI-Extreme Light Infrastructures

71

Page 72: ELI-Extreme Light Infrastructures

72

Page 73: ELI-Extreme Light Infrastructures

73

Page 74: ELI-Extreme Light Infrastructures

74

Page 75: ELI-Extreme Light Infrastructures

75

Page 76: ELI-Extreme Light Infrastructures

76

Page 77: ELI-Extreme Light Infrastructures

77

Page 78: ELI-Extreme Light Infrastructures

78

Page 79: ELI-Extreme Light Infrastructures

79

Page 80: ELI-Extreme Light Infrastructures

80

Page 81: ELI-Extreme Light Infrastructures

81

Page 82: ELI-Extreme Light Infrastructures

82

Page 83: ELI-Extreme Light Infrastructures

83

Page 84: ELI-Extreme Light Infrastructures

84

Page 85: ELI-Extreme Light Infrastructures

85

Page 86: ELI-Extreme Light Infrastructures

86

Page 87: ELI-Extreme Light Infrastructures

87

Page 88: ELI-Extreme Light Infrastructures

88

Page 89: ELI-Extreme Light Infrastructures

89

Page 90: ELI-Extreme Light Infrastructures

Thanks

Título ponencia Nombre evento

Centro de Láseres Pulsados. Edificio M5. Parque Científico de la Universidad de Salamanca.

c/ Adaja, 8. 37185 Villamayor de la Armuña. Salamanca. Spain

Acknowledges for info: Georg Korn eli-beamlines Karoly Osavy eli-alps Razvan Dabu eli-np Calin A. Ur eli-np

Page 91: ELI-Extreme Light Infrastructures

� ELI pillars and ELI-Beamlines� Facility layouts� Lasers (RP1)� Beam transport and switchyards� Experiments (RP2-RP6)� RP3 (ion and electron acceleration)

Page 92: ELI-Extreme Light Infrastructures

Relativistic Nonlinear Optics

2 sources of Nonlinearity1. relativistic mass change2. Pondermotive Pressure

Page 93: ELI-Extreme Light Infrastructures

RelativisticOptics

r

F = qr

E +r

v

c∧

r

B

a)Classical optics v<<c, b) Relativistic optics v~c

�x~ao

�z~ao2

a0<<1, a0>>a 02 a0>>1, a0<<a 0

2

a0 =eA0

mc2=

eE0 λmc2

Page 94: ELI-Extreme Light Infrastructures

See talk of D. Margarone, electron and ion acceleration

Page 95: ELI-Extreme Light Infrastructures

Relativistic Rectification(Wake-Field Tajima, Dawson) sE

r

+ -

1) pushes the electrons.

2) The charge separation generates an electrostatic longitudinal field. (Tajima and Dawson: Wake Fields or Snow Plough)

3) The electrostatic field

r

F Bz= q

r

v

c∧

r

B

r

v ∧r

B

Es=cγmoω p

e= 4πγmoc

2ne

E s≈ E L Compact accelerators

Page 96: ELI-Extreme Light Infrastructures

Proton Acceleration mechanism (TNSA)

Page 97: ELI-Extreme Light Infrastructures

Experimental Area (ground floor)

Page 98: ELI-Extreme Light Infrastructures

Experimental Areas, Basement floor

44

E1: HHG, k-alpha,

3D3C imag.E2: Betatron

E3: Plasma Physics

Combinations with different lasers,

Backighters x-rays and protons, opticalE4: ELIMAIA

Combination with backlighting, after

proton heating of samples

E5: LUX , HELL, HHG

OPA, Compton, Kalpha

Page 99: ELI-Extreme Light Infrastructures

LUX/XFEL X-rays from relativistic e-beams

Harmonics (gas)Plasma sources

Undulator 5 mm period, K = 0.4

500 T/m gradient

Plasma Target

X-Rays

electron beam para

430 MeV, few pC ch

RP2: Laser-driven X -ray sourcesS. Sebban

Page 100: ELI-Extreme Light Infrastructures

.

1.05

1.00

0.95

0.90

0.85

0.80Nor

m. i

nteg

r. in

tens

ity

6543210-1

Delay (ps)

Ablation Phase transitions Bio structures, damage

X-ray microscopy

Warm dense matter

Magnetism

Plasma diagnostics

Atomic physics

Motivations : brigth fs sources for applications

See Talk of J. Andreasson

Motivations : brigth fs sources for applications

See Talk of J. Andreasson

Page 101: ELI-Extreme Light Infrastructures

• Development in collaboration withHamburg University (F. Gruner) and DESY

• Water window wavelength range with sub-5fs pulse duration

• Future extension to laser driven X-FEL with more undulators ( water window and 5 keV, short and tunable x-ray pulses)

LUX (Laser Undulator X-ray) beamlineF. Gruener

REGAE beamline (Hamburg) CAD model

laserelectrons

electrons

Page 102: ELI-Extreme Light Infrastructures

LUX beamlineLUX beamline

M. Fuchs et al., Nature Physics 5, 826 (2009)

Undulator 5 mm period, K = 0.4

PM Quadrupoles 500 T/m gradient

Plasma Target capillary, gas jet, gas cell

Laser ~100 TW class

Electron Spectrometer

X-Rays

electron beam parameters:

430 MeV, few pC charge

0.2 mm.mrad norm emi ance

photons (2016)

• bandwidth stabilized to 2%

• poin ng stabilized

• 105…6 photons per pulse

• down to 3 nm

• pump-probe experiments

Page 103: ELI-Extreme Light Infrastructures

Laser driven LUX and x-FEL (F. Grüner et al.)Long term vision, ELI-white book

200 TW -1 PW @ 5-10 Hz, L2, L3 Cooperation with DESY using accelerator know-how, injection with

synchronized relativistic electron gun

Water window FEL needs 400 MeV2 GeV electrons, 5 keV, short and tunable x-ray pulses

Page 104: ELI-Extreme Light Infrastructures

Time-resolved single-particle diffraction imaging of biological molecules without crystallization, J. Andreasson

Kirz,Nature Physics 2, 799 - 800 (2006)

Page 105: ELI-Extreme Light Infrastructures

Scientific programmes under development in RA4

1: Coherent Diffractive Imaging (CDI)

and Atomic, Molecular and Optical (AMO) Science

2: Soft X-ray Materials Science

3: X-ray Absorption Spectroscopy (XAS) and Incoherent X-ray

Imaging

4: X-ray Diffraction

5: Optical Spectroscopy and Molecular Dynamics

@ the direct beamline of the HHG source

@ the monochromator beamline of

the HHG source

@ one of the PXS beamlines

@ the other of the PXS beamlines

@ the optical spectroscopy stations

Page 106: ELI-Extreme Light Infrastructures

E1 layout, beam distribution and experimental stations

1

2

3

4

5

4 beams from the L1 laser allows complex time-resolved experiments

• 2 secondary sources: Higher Harmonics Generation (HHG) for soft X-rays and a Plasma X-ray Source

(PXS) for hard X-rays

• 5 Experimental end-stations where experiments are performed

HHG

PXS

Page 107: ELI-Extreme Light Infrastructures
Page 108: ELI-Extreme Light Infrastructures
Page 109: ELI-Extreme Light Infrastructures

RP5: Laser plasma and high -energy -density physics, S. Weber

� X-ray diagnostics for E3

� Target chamber design

� Radiation protection in a

PW-laser environment

� The ELI Virtual Beamline

� Laser-plasma interaction

for shock-ignition

approach to ICF

� Amplification of short

light pulses

� WDM investigations

� Laboratory Astrophysics

� Proton and X-ray plasma

radiography….

Plasma Physics Target Area (E3)

Page 110: ELI-Extreme Light Infrastructures
Page 111: ELI-Extreme Light Infrastructures

e

e

2 rel

2 ultrarel p

2 comp rel

e E = m c

e E = m c

e E = m c

λλ

λ6( ) 2.4 10comp electron x µmλ −=

Fundamental intensity dependentregimes of interaction

Very compact accelerators can be built

Page 112: ELI-Extreme Light Infrastructures

Concept of high power gamma-flash generation

8/26/201458

Page 113: ELI-Extreme Light Infrastructures

Laser-induced Nonlinear QED

Quantum description is necessary when the recoil du e to photon emission is of the order of the electron energy ���� 1021 Wcm -2 for 10 GeV electrons

Stepan Bulanov et al, AAC 2012

Page 114: ELI-Extreme Light Infrastructures

Laser-induced Nonlinear QED

e-

Page 115: ELI-Extreme Light Infrastructures

� ELI pillars and ELI-Beamlines� Facility layouts� Lasers (RP1)� Beam transport and switchyards� Experiments (RP2-RP6)� RP3 (ion and electron acceleration)

Page 116: ELI-Extreme Light Infrastructures

«Virtual» ELIMAIA...

Page 117: ELI-Extreme Light Infrastructures
Page 118: ELI-Extreme Light Infrastructures