ELG5106 Fourier Optics Trevor Hall [email protected].

15
ELG5106 Fourier Optics Trevor Hall [email protected]

Transcript of ELG5106 Fourier Optics Trevor Hall [email protected].

Page 1: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

ELG5106 Fourier OpticsELG5106 Fourier Optics

Trevor [email protected]

Page 2: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

DIFFRACTIONDIFFRACTIONFourier Optics

2

Page 3: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Propagation between Planes in Free SpacePropagation between Planes in Free Space

3

x1

x2

y1

y2

x3

x3=0 x3=z

k

022 k

Page 4: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Plane Wave Expansion IPlane Wave Expansion I

213213221121

222

21

222

21213

222

21

22

21

2213

223

22

21

22

,exp,

: tosgeneralise ion thissuperpositby

,,

,,

)dependence exp(implicit wavegoing forward afor

exp,0

dkdkxkkkxkxkikka

kkkkkkikkk

kkkkkkkkk

ti

kkkkiak

x

k.x

Evanescent wave

4

Page 5: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Plane Wave Expansion IIPlane Wave Expansion II

2122112121

21213221121221

322112132121

21221121321

3

exp,,ˆ

where

,exp,ˆ2

1,

then

,,,,0,,,

:setting and

exp,0,,

:constant tivemultiplica awithin

ansformFourier tr inversean toreduces this0at that Noting

dkdkxkxkixxukku

dkdkzkkkykykikkuyyv

zxyxyxyyvxxxxxu

dkdkxkxkikkaxxx

x

5

Page 6: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Plane Wave Expansion IIIPlane Wave Expansion III

zkkikkkh

dkdkzkkkykykiyyh

dxdxxxuxyxyhyyv

dkdkdxdxzkkkxykxykixxuyyv

21321

212132211221

2121221121

212121322211121221

,exp,ˆ

,exp2

1,

,,,

,exp,2

1,

Explicity

Linear Shift Invariant System

Impulse Response /Point Spread Function

Spatial Frequency Response

6

Page 7: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Propagation as a filterPropagation as a filter

u v

022 k

1k

h2k

7

k0

1

unimodular phase function

exponential decay

Page 8: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Why is the angular spectrum of plane waves expansion rarely used?Why is the angular spectrum of plane waves expansion rarely used?

kz

qpqpi

qpqpm

dpdqmz

yq

z

ypi

kyyh

k

kd

k

kd

k

kkk

z

y

k

k

z

y

k

kikz

kyyh

dkdkzkkkykykiyyh

1,1

1,1

exp2

,

or

,exp

2,

rewriten bemay

,exp2

1,

2222

2222

212

2

21

2121322112

2

21

212132211221

8

Page 9: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Oscillatory IntegralsOscillatory Integrals• We are left with the consideration of integrals of the form:

,,

exp

Ca

dppipaI

• If 0p

then the integrand is highly oscillatory and

,0I

• If 0*

pp

then there is a contribution from the integrand in the neighbourhood of the stationary point p*

9

Page 10: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Stationary Phase ConditionStationary Phase Condition

The stationary phase condition corresponds to a ray from source point to observation point ( recall shift invariance)

00;00

1;,,

21

2211

m

q

z

y

pm

p

z

y

p

qpmqpmz

yq

z

ypqp

1y

z

p

m3

2

3

1 ,k

k

m

q

k

k

m

p

10

Page 11: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Paraxial Approximation IParaxial Approximation IIn a paraxial system rays are inclined at small angles to the optical axis. One may then make the paraxial approximation:

2

2

2

1

2

2

2

1

2221

21

2222

2

1

2

1

2

1

2

11

2

1

2

11

,,

2

1

2

111

z

yq

z

yp

z

y

z

y

qpz

yq

z

yp

qpmz

yq

z

ypqp

qpqpm

z

11

Page 12: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Paraxial Approximation IIParaxial Approximation II

2

2

2

1

2

2

2

1

2

2

2

2

2

2

1222

2

2

2

2

1

2

2

2

12

2

2

2

21

2

1

2

11expexp

2

1

2

1

2

11exp

2

2

2

1

2

11expexp

2

2

1

2

11expexp

2

,exp2

,

z

y

z

yikzikz

z

ik

z

y

z

yi

i

k

z

y

z

yidpdqqpi

k

z

y

z

yidpdq

z

yq

z

ypi

k

dpdqqpik

yyh

12

Page 13: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Fresnel DiffractionFresnel Diffraction

212211

2

2

2

121

2

1

2

1

21

2

22

2

1121

2121221121

exp2

1

2

11exp,

2

1

2

11exp

2

1

2

1

2

11exp,exp

2

1

,,,

dxdxyxyxz

ik

z

x

z

xikzxxu

z

y

z

yikz

z

ik

dxdxz

xy

z

xyikzxxuikz

z

ik

dxdxxxuxyxyhyyv

13

Up to a multiplicative quadratic phase factor (that is often neglected), the field at the observation plane is given by the Fourier transform of the field at the source plane multiplied by a quadratic phase factor.

Page 14: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

Fraunhoffer DiffractionFraunhoffer Diffraction

2122112121 exp,, dxdxyxyxz

ikxxuyyv

14

If the source filed u has compact support (is zero outside some bounded aperture) and z is sufficiently large the variation of the quadratic phase factor over the support of u becomes negligible. The leading phase factor is also often neglected either because the region of interest in the observation plane subtends a sufficiently small angle with respect to the origin at the source plane or because it is the intensity only that is observed. The diffracted field distribution is then given by a Fourier transform of the field distribution in the source plane.

Page 15: ELG5106 Fourier Optics Trevor Hall tjhall@uottawa.ca.

NotesNotes• The oscillatory integral representation of the impulse response of

this optical system can be evaluated asymptotically without recourse to the paraxial approximation using the method of stationary phase.

• The magnitude but not the phase of the leading multiplicative phase factors of the Fresnel and Faunhoffer diffraction integrals may be evaluated by appealing to energy conservation – the integral over the source and observation planes of the field intensity must be equal.

• The choice of outgoing plane waves in the plane wave spectrum ensures that all three diffraction integrals (plane wave expansion, Fresnel & Fraunhoffer formulae satisfy the Sommerfeld radiation condition at infinity.